你的位置:
  • 范文大全
  • >教案
  • >高中教案
  • >导航
  • >计算教学应关注什么 万能通用篇
  • 计算教学应关注什么 万能通用篇

    发表时间:2022-01-18

    【www.jk251.com - 计算教学应关注什么】

    无论何时,撰写教案都是我们教学必不可少的一步,主动编写教案能够提高老师的教学研究能力,每一位老师都要慎重考虑教案的设计,优秀的高中教案是什么样子的?下面是小编为大家整理的“计算教学应关注什么 万能通用篇”相关内容,仅供参考,欢迎大家阅读。

    ——一节美国数学课的思考

    案例片段

    退位减法

    教师出示算式:42-27=?(提示学生借用回形针来思考和寻求这个算式的答案)

    师:同学们,有谁来说说42-27表示什么?怎么去找到答案?

    生1:我还剩多少个?我有42个回形针,用了27个,还剩多少个回形针?

    学生操作:

    (1)摆4链(每链10个)和2个回形针在桌上,把其中一链拆开,成3链与12个;

    (2)取走2链与7个回形针;

    (3)数一数剩下多少个,并且决定剩下的要排成一链加5个或是15个。

    生2:我比别人多几个?我有42个回形针,金吉有27个回形针,我比金吉多几个回形针?

    学生操作:

    (1)摆4链和2个回形针在桌上;

    (2)再摆2链与7个回形针在桌上;

    (3)为了使42个与27能互相配合计算,42里面要有一链被拆散;

    (4)拆散42中的一链,回形针成为3链与12个;

    (5)两组对齐后,各取走7个单独的回形针;

    (6)两组对齐后,各取走2个链的回形针;

    (7)数一数,我比金吉多了一链加5个或单独15个回形针。

    生3:她还需要多少个?克拉蒂有27个回形针,她需要42个回形针,她还需要多少个回形针?

    学生操作:

    (1)摆4链和2个回形针在桌上;

    (2)摆2链和7个回形针在桌上;

    (3)为了使42能与27个配合,42里面的一链必须拆散;

    (4)拆散42中的一链,成3链和12个;

    (5)将两组中的链和单个的回形针配对;

    (6)数一数,克拉蒂还需要一链加5个或单独15个回形针。

    ......

    【案例反思】

    一、计算教学应关注“算式的意义”。

    “问题教学与运算教学紧密结合”是《全日制小学数学课程标准》的一个重大变化,小学数学教材中不再专门设置应用题的教学单元。这种变化对传统的计算教学提出了新的挑战,由单纯的计算技巧训练转向算式意义的理解,由低层次的“量的学习”转向高层次的“质的学习”。

    在美国的教学案例中,教师把理解退位减法的法则与解决实际问题有机的结合在一起。启发学生多视角的思考减法算式的意义,从“还剩多少”到“谁比谁多(少)”再到“还需要多少”,充分尊重了学生的生活经验。在加深算式意义理解的同时,突出了减法的实际应用价值,提高了学生利用所学知识解决实际问题的能力。

    英国著名教育家迪恩斯认为,学生掌握数学意义必须从他们的熟悉的环境中实现,要适合儿童的兴趣、能力和个人的亲身经验。案例中的美国教师巧妙的借助回形针来引导学生思考,从学生的实际生活情境出发理解算式的意义。利用这种具体化的学具,有效地发展了学生对数学知识的认识和应用数学知识的能力。

    二、计算教学应关注数学思维的培养。

    在小学阶段,学生的思维是一个具体形象思维和抽象逻辑思维同时获得发展的时期,处于由具体形象思维向抽象逻辑思维的过渡阶段。皮亚杰曾指出,逻辑思维是儿童数学学习中的本质要求,是儿童综合智力发展的重要途径之一,儿童要理解数学的意义,就必须掌握一定的逻辑规则。然而,反思美国的教学案例,则忽视了学生思维抽象性的发展,基本停留在具体操作水平上,缺乏对一般计算法则的概括和提炼。因此,在计算教学中不仅要关注算式的意义,突出计算的应用性,而且还要关注学生思维的发展,引导学生归纳出一般的计算法则,在归纳过程中培养学生的抽象思维能力。譬如,在美国的教学案例中,教师可以加强三次操作过程的对比,引导学生发现三次操作过程的相同点:即“42里面的一链必须拆散”,为学生理解“借一当十”做好铺垫。还可以引导学生在头脑里面想一想自己的操作过程,并用自己的语言表述出来,帮助学生实现“实物操作”向“算法操作”的自然过渡,从而促使学生抽象思维能力的发展。

    三、计算教学应关注数学思维策略的发展。

    通过计算教学可以逐步发展学生的数学思维,同时也可以促进学生数学思维策略的形成。美国教师的教学就关注了学生“比较策略”和“相等策略”的发展。例如,学生在解决“我比别人多几个”时,体验了一种比较的数学思维策略,加深了学生对减法意义的理解,渗透了一种“联系”的数学思想,产生“不把相关量联系起来就无法解决问题”的意识。再如,学生在解决“她还需要多少个”时,体验了一种“相等”的数学思维策略,领悟了“通过调整使两个集合相等”的方法,体会到集合之间的一一对应的数学思想。

    jK251.COm精选阅读

    指数__万能通用篇


    教学目标

    1.理解分数的概念,掌握有理幂的运算性质.

    (1)理解n次方根,n次根式的概念及其性质,能根据性质进行相应的根式计算.

    (2)能认识到分数是概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数幂的互化.

    (3)能利用有理运算性质简化根式运算.

    2.通过范围的扩大,使学生能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力.

    3.通过对根式与分数幂的关系的认识,使学生能学会透过表面去认清事物的本质.

    教学建议

    教材分析

    (1)本节的教学重点是分数幂的概念及其运算性质.教学难点是根式的概念和分数幂的概念.

    (2)由于分数幂的概念是借助次方根给出的,而次根式,次方根又是学生刚刚接触到的概念,也是比较陌生的.以此为基础去学习认识新知识自然是比较困难的.且次方根,分数幂的定义都是用抽象字母和符号的形式给出的,学生在接受理解上也是比较困难的.基于以上原因,根式和分数幂的概念成为本节应突破的难点.

    (3)学习本节主要目的是将从整数推广到有理数,为函数的研究作好准备.且有理幂具备的运算性质还可以推广到无理幂,也就是说在运算上已将范围推广到了实数范围,为对数运算的出现作好了准备,而使这些成为可能的就是分数幂的引入.

    教法建议

    (1)根式概念的引入是本节教学的关键.为了让学生感到根式的学习是很自然也很必要的,不妨在设计时可以考虑以下几点:

    ①先以具体数字为例,复习正整数幂,介绍各部分的名称及运算的本质是乘方,让它与学生熟悉的运算联系起来,树立起转化的观点.

    ②当复习负幂时,由于与乘除共同有关,所以出现了分式,这样为分数幂的运算与根式相关作好准备.

    ③在引入根式时可先由学生知道的平方根和立方根入手,再大胆写出即谁的四次方根等于16.指出2和-2是它的四次方根后再把换成,写成即谁的次方等于,在语言描述的同时,也把数学的符号语言自然的给出.

    (2)在次方根的定义中并没有将次方根符号化原因是结论的多样性,不能乱表示,所以需要先研究规律,再把它符号化.按这样的研究思路学生对次方根的认识逐层递进,直至找出运算上的规律.

    教学设计示例

    课题根式

    教学目标:

    1.理解次方根和次根式的概念及其性质,能根据性质进行简单的根式计算.

    2.通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力.

    3.通过对根式的化简,使学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.

    教学重点难点:

    重点是次方根的概念及其取值规律.

    难点是次方根的概念及其运算根据的研究.

    教学用具:投影仪

    教学方法:启发探索式.

    教学过程:

    一.复习引入

    今天我们将学习新的一节.与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展.

    下面从我们熟悉的的复习开始.能举一个具体的运算的例子吗?

    以为例,是运算要求学生指明各部分的名称,其中2称为底数,4为,称为幂.

    教师还可引导学生回顾运算的由来,是从乘方而来,因此最初只能是正整数,同时引出正整数幂的定义..然后继续引导学生回忆零幂和负整数幂的定义,分别写出及,同时追问这里的由来.最后将三条放在一起,用投影仪打出整数幂的概念

    2.5(板书)

    1.关于整数幂的复习

    (1)概念

    既然是一种运算,除了定义之外,自然要给出它的运算规律,再来回顾一下关于整数幂的运算性质.可以找一个学生说出相应的运算性质,教师用投影仪依次打出:

    (2)运算性质:;;.

    复习后直接提出新课题,今天在此基础上把从整数范围推广到分数范围.在刚才的复习我们已经看到当在整数范围内时,运算最多也就是与分式有关,如果推广到分会与什么有关呢?应与根式有关.初中时虽然也学过一点根式,但不够用,因此有必要先从根式说起.

    2.根式(板书)

    我们知道根式来源于开方,开方是乘方的逆运算,所以谈根式还是先从大家熟悉的乘方说起.

    如果给出了4和2进行运算,那就是乘方运算.如果是知道了16和2,求4即,求?

    问题也就是:谁的平方是16,大家都能回答是4和-4,这就是开方运算,且4和-4有个名字叫16的平方根.

    再如

    知3和8,问题就是谁的立方是8?这就是开方运算,大家也知道结果为2,同时指出2叫做8的立方根.

    (根据情况教师可再适当举几个例子,如,要求学生用语言描述式子的含义,I再说出结果分别为和-2,同时指出它们分别称为9的四次方根和-8的立方根)

    在以上几个式子会解释的基础上,提出即一个数的次方等于,求这个数,即开次方,那么这个数叫做的次方根.

    (1)次方根的定义:如果一个数的次方等于(,那么这个数叫做的次方根.

    (板书)

    对定义理解的第一步就是能把上述语言用数学符号表示,请同学们试试看.

    由学生翻译为:若(,则叫做的次方根.(把它补在定义的后面)

    翻译后教师在此基础上再次提出翻译的不够彻底,如结论中的的次方根就没有用符号表示,原因是什么?(如果学生不知从何入手,可引导学生回到刚才的几个例子,在符号表示上存在的问题,并一起研究解决的办法)最终把问题引向对的次方根的取值规律的研究.

    (2)的次方根的取值规律:(板书)

    先让学生看到的次方根的个数是由的奇偶性决定的,所以应对分奇偶情况讨论

    当为奇数时,再问学生的次方根是个什么样的数,与谁有关,再提出对的正负的讨论,从而明确分类讨论的标准,按的正负分为三种情况.

    Ⅰ当为奇数时

    ,的次方根为一个正数;

    ,的次方根为一个负数;

    ,的次方根为零.(板书)

    当奇数情况讨论完之后,再用几个具体例子辅助说明为偶数时的结论,再由学生总结归纳

    Ⅱ当为偶数时

    ,的次方根为两个互为相反数的数;

    ,的次方根不存在;

    ,的次方根为零.

    对于这个规律的总结,还可以先看的正负,再分的奇偶,换个角度加深理解.

    有了这个规律之后,就可以用准确的数学符号去描述次方根了.

    (3)的次方根的符号表示(板书)

    可由学生试说一说,若学生说不好,教师可与学生一起总结,当为奇数时,由于无论为何值,次方根都只有一个值,可用统一的符号表示,此时要求学生解释符号的含义:为正数,则为一个确定的正数,为负数,则为一个确定的负数,为零,则为零.

    当为偶数时,为正数时,有两个值,而只能表示其中一个且应表示是正的,另一个应与它互为相反数,故只需在前面放一个负号,写成,其含义为为偶数时,正数的次方根有两个分别为和.

    为了加深对符号的认识,还可以提出这样的问题:一定表示一个正数吗?中的一定是正数或非负数吗?让学生来回答,在回答中进一步认清符号的含义,再从另一个角度进行总结.对于符号,当为偶数是,它有意义的条件是;当为奇数时,它有意义的条件时.

    把称为根式,其中为根,叫做被开方数.(板书)

    (4)根式运算的依据(板书)

    由于是个数值,数值自然要进行运算,运算就要有根据,因此下面有必要进一步研究根式运算的依据.但我们并不过分展开,只研究一些最基本的最简单的依据.

    如应该得什么?有学生讲出理由,根据次方根的定义,可得Ⅰ=.(板书)

    再问:应该得什么?也得吗?

    若学生想不清楚,可用具体例子提示学生,如吗?吗?让学生能发现结果与有关,从而得到Ⅱ=.(板书)

    为进一步熟悉这个运算依据,下面通过练习来体会一下.

    三.巩固练习

    例1.求值

    (1).(2).

    (3).(4).

    (5).(

    要求学生口答,并说出简要步骤.

    四.小结

    1.次方根与次根式的概念

    2.二者的区别

    3.运算依据

    五.作业略

    六.板书设计

    2.5(2)取值规律(4)运算依据

    1.复习

    2.根式(3)符号表示例1

    (1)定义

    涡流 万能通用篇


    教学目标

    知识目标

    1、知道是如何产生的;

    2、知道对我们的不利和有利的两个方面,以及如何防止和利用;

    情感目标

    通过分析事例,培养学生全面认识和对待事物的科学态度.

    教学建议

    本节是选学的内容,它又是一种特殊的电磁感应现象,在实际中有很多应用,比如:发电机、电动机和变压器等等.所以可以根据实际情况选讲,或者知道学生阅读.什么是是本节课的重点内容.

    和自感一样,也有利和弊两个方面.教学中应该充分应用这些实例,培养学生全面认识和对待事物的科学态度.

    教学设计方案

    一、引入:引导学生观察发电机、电动机和变压器(可用事物或图片)

    提出问题:为什么它们的铁芯都不是整块金属,而是由许多相互绝缘的薄硅钢片叠合而成?

    引导学生看书回答,从而引出的概念:什么是?

    把块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内将产生感应电流,这种电流在金属块内自成闭合回路,很象水的旋涡,因此叫做.

    整块金属的电阻很小,所以常常很大.

    (使学生明确:是整块导体发生的电磁感应现象,同样遵守电磁感应定律.)

    二、在实际中的意义是什么?

    ⑴为什么电机和变压器通常用相互绝缘的薄硅钢片叠合而成,就可以减少在造成的损失?

    ⑵利用原理制成的冶炼金属的高频感应炉有什么优点?

    电学测量仪表如何利用原理,方便观察?

    提出上述问题后,让学生看书、讨论回答

    三、作业:让学生业余时间到物理实验室观察电度表如何利用,写出小文章进行阐述.

    【计算教学应关注什么 万能通用篇】相关推荐
    关于化学反应中的能量变化的高中教案推荐

    教学目标知识目标使学生了解化学反应中的能量变化,理解放热反应和吸热反应;介绍燃料充分燃烧的条件,培养学生节约能源和保护环境意识;通过学习和查阅资料,使学生了解我国及世界能源储备和开发;通过布置研究性课...

    关于电流教案示例的高中教案推荐

    (-)教学目的1.知道电荷的定向移动形成电流;2.知道电流方向的规定;3.知道什么叫电源和电源的作用。(二)教具验电器两个,带绝缘柄的金属棒一根,橡胶棒一根,毛皮一块,带座小灯泡一个,开关一个,干电池...