事物的正确答案不止一个教案
发表时间:2022-01-1313事物的正确答案不止一个
教学目标:
1.学习做一个富有创造性的人。
2.理解本文的中心论点和分论点。
3.理解并运用事实论据。
重点难点
1.重点:理解本文的中心论点和分论点。
2、难点:理解并运用事实论据。
教学时间:一课时
教学过程
一、导入
前两年高考作文题,就是以本文的开头的图形为题,它告诉我们什么道理呢?
二、阅读课文思考问题:
1.事物的正确答案为什么不止一个?
因为事物是丰富复杂的,生活中解决问题的方法并非只有一个,而是多种多样。
2、为什么要确立“事物的正确答案不止一个”的思维方式?是用了怎样的论证方法阐明这一事理的?运用这一论证方法的好处是什么?
作者运用了正反对比的论证方法阐述这一道理。先从反面说,“如果你认为正确答案只有一个的话,当你找到某个答案以后,就会止步不前。”;再从正面说。“不满足于一个答案,不放弃探求这一点非常重要。”正反对比,使说理全面,而双透彻,增强了说服力。
3、产生创造性思维必须具备哪些条件?又用了怎样的论证方法论证的?
(1)富有创造性的人总是孜孜不倦地汲取知识,使自己学识渊博。
(2)必须有探求新事物,并为此而活用知识的态度和意识。
(3)持之以恒地进行各种尝试。
作者采用了举例论证的方法,具体而又确凿地阐明了事理。
4、区分一个人是否拥有创造力,关键看什么?
拥有创造力的人留意自己细小的想法。即使他们不知道将来会产生怎样的结果,但他们很清楚,小的创意会打开大的突破口,并坚信自己一定能使之变为现实。
5、如何才能成为一个富有创造性的人?
1关键是要经常保持好奇心,不断积累知识;2不满足于一个答案,而去探求新思路,去运用所得的知识3一旦产生小的灵感,相信它的价值,并楔而不舍地把它发展下去。
三、阅读3-6段,回答问题。
1、第五段中的“这种情况”、“当事人”“它”分别指什么?
这种情况:知识随时都可能进行组合,形成新的创意。当事人:富有创造性的人。它:新的创意。
2、认为正确答案只有一个有什么危害性?
当你找到某个答案以后,就会止步不前。
3、选文中,有一个非常重要的过渡段,请指出是哪一段?并说说其作用?
第四段,承上启下,使文章层次分明,又结构严谨。
4、根据选文内容,概括“创造性的思维”所必需的“要素”。
(1)富有创造性的人总是孜孜不倦地汲取知识,使自己学识渊博。
(2)必须有探求新事物,并为此而活用知识的态度和意识。
(3)持之以恒地进行各种尝试。
5、为什么说“不满足于一个答案,不放弃探求这一点非常重要”?
因为生活中解决问题的方法并非只有一个,而是多种多样。如果你认为正确答案只有一个的话,当你找到某个答案以后,就会止步不前。
四、小结
本文按照逐层递进的逻辑顺序论证了怎样做一个富有创造性的人这个中心论点。
五、作业:完成课后练习
jk251.cOm扩展阅读
经典初中教案制作一个多媒体贺卡
现在,很多初中教学都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,怎样才能写好初中教案?可以看看本站收集的《经典初中教案制作一个多媒体贺卡》,希望能够为您提供参考。
【课题】【课时】1课时【教法】任务驱动、小组合作【教学环境】多媒体网络教室【教材分析】本课以任务驱动的形式介绍了制作多媒体贺卡的全过程。本课综合了第3单元和第4单元的内容,将文字、声音、图片等多种媒体融合倒word2000文件中,是对所学知识的总结和应用。【教学思路】教师向学生展示多种贺卡(实际中用纸张制作的贺卡――网络中用flash制作的贺卡――网络用word制作的贺卡),激发学生的学习兴趣,提出本节课的学习目标和问题。学生带着问题来学习教室课前准备的“‘多媒体贺卡的制作’学习网站”,最后。【教学设计:】一、教学目标1.认知目标;(1)、掌握如何在word2000中插入声音。(2)、掌握艺术字的其他修改方法。(3)、了解如何在word2000中加入页面边框。2.能力目标(1)、培养学生的综合应用能力、小组协作学习能力(2)、培养学生一定的审美能力。3.情感目标(1)通过知道学生利用所学的知识解决实际问题,激发学生的学习兴趣。(2)培养学生互相帮助、协作探究的团队精神。二、教学重难点多媒体贺卡中声音的插入,艺术字颜色形状的制作。三、教学过程导入新课:(4分钟)教师说:“这个周末是母亲节,同学们准备给自己的妈妈准备什么样的礼物呢?”学生说,鲜花、书……教师说:“鲜花,书固然好,可是为什么不利用学过的知识亲手制作一个贺卡送给自己的母亲呢?这样的礼物会更有意义。”教师向学生展示自己用word制作的贺卡。同时向学生布置学习任务,用word制作贺卡需要的知识点,老师已经列出来了,每个小组学生相应的知识点,6分钟后每组派一名代表上来解答老师的提问,其他组的同学学习其解决方法。讲授新课:(30分钟)1.学生打开教师课前制作的“‘多媒体贺卡的制作’学习网站”学习相应的知识点,不会的地方,组内成员可以相互讨论,并且学生可以相互操作给学生看,教师在教室里巡视,解答学生提出的问题。(5分钟)附学习网站知识点:1)贺卡背景的制作2)贺卡中图形图片的个性化设置3)文字的动态效果4)贺卡中声音的加入5)贺卡边框的制作6)艺术字颜色形状等的制作2.学生学习完后,教师向学生展示问题,每组派一名学生上来操作解答,6组完成后,一个用word制作的多媒体贺卡出现在学生面前,这样学生即可以学到其他的知识点,又可以掌握多媒体贺卡的制作过程(5分钟)教师说,刚才我让同学上来解答的问题过程,就是多媒体贺卡的制作过程,这个过程的顺序是可以打乱的,下面同学们就利用你们刚才学到的知识点,参照刚才制作贺卡的步骤,制作一个以母亲节为主要内容的贺卡。同学们需要的素材在teacher\素材文件夹里。3.学生以小组为单位,制作贺卡。教师在教室中巡视,解答学生提出的问题。(20分钟)学生作品展示:(6分钟)每组将自己制作的作品在教师机上展示给全班同学看,同时需要进行一定的讲解,同时如果下面同学有疑问,本组同学需进行解答。教学评价:(3分钟)学生分别给除本组外的其他5组打分,然后汇总,评出本节课的优胜组教师总结:(2分钟)通过本次多媒体贺卡的设计制作,一方面巩固掌握了word2000的知识,另一方面锻炼了学生将书本知识应用于实际生活的能力,同时还加强了学生的互相帮助、协作探究的团队精神。
数学教案-由一个二元二次方程一个可以分解为两个二元一次方程的方的教学方案
第一课时
一、教学目标
1.使学生掌握由一个二元二次方程和一个可以分解为两个二元一次方程组成的方程组的解法.
2.通过例题的分析讲解,进一步提高学生的分析问题和解决问题的能力;
3.通过一个二元二次方程解法的分析,使学生进一步体会“消元”和“降次”的数学思想方法,继续向学生渗透“转化”的辨证唯物主义观点.
二、重点难点疑点及解决办法
1.教学重点:通过把一个二元二次方程分解为两个二元一次方程来解由两个二元二次方程组成的方程组.
2.教学难点:正确地判断出可以分解的二元二次方程.
3.教学疑点:降次后的二元一次方程与哪个方程重新组成方程组,一定要分清楚.
4.解决办法:(1)看好哪个二元二次方程能分成两个二元一次方程,它们之间是“或”的关系,不能联立成方程组.(2)分解好的二元一次方程应与另一个二元二次方程组成两个二元二次方程组.
三、教学过程
1.复习提问
(1)我们所学习的二元二次方程组有哪几种类型?
(2)解二元二次方程组的基本思想是什么?
(3)解由一个二元一次方程和一个二元二次方程组成的方程组的基本方法是什么?其主要步骤是什么?
(4)解方程组:.
(5)把下列各式分解因式:
①;②;③.
关于问题设计的说明:
由于二元二次方程组的第一节课已经向学生阐明了我们所研究的二元二次方程组有两种类型.其一是由一个二元一次方程和一个二元二次方程组成的二元二次方程组;其二是由
两个二元二次方程所组成的方程组.由于第一种类型我们已经研究完,使学生自然而然地接
受了第二种类型研究的要求.关于问题(2)的提出,由于两种类型的二元二次方程组的解题思想均为“消元”和“降次”,所以问题(2)让学生懂得“消元”和“降次”的数学思想,贯穿于解二元二次方程组的始终.问题(3)、(4)是对上两节课内容的复习,以便学生对已学过的知识得到进一步的巩固.由于本节课的学习内容是由两个二元二次方程组成的二元二次方程组的解法,其中有一个二元二次方程可以分解,因此,问题(5)的设计是为本节课的学习内容做准备的.
2.例题讲解
例1解方程组
分析:这是一个由两个二元二次方程组成的二元二次方程组,其解题的基本思路仍为“消元”、“降次”,使之转化为我们已经学过的方程组或方程的解法.那么如何转化呢?关于转
化的形式有两种,要么降二次为一次,要么化二元为一元我们通过观察方程组中的两个方程有什么特点,可以发现:方程组(2)的右边是0,左边是一个二次齐次式,并且可以分解为,因此方程(2)可转化为,即或,从而可分别和方程(1)组成两个由一个二元一次方程和一个二元二次方程组成的二元二次方程组,从而解出这两个方程组,得到原方程组的解.
解:由(2)得
因此,原方程组可化为两个方程组
解方程组,得原方程组的解为
说明:本题可由教师引导学生独立完成,教师应对学生的解题格式给予强调.
例2解方程组
分析:这个方程组也是由两个二元二次方程组成的方程组,通过认真的观察与分析可以
发现方程(2)的左边是一个完全平方式,而右边是完全平方米,因此将右边16移到左边后可利用平方差公式进行分解,,即或,从而可仿例1的解法进行.
解:由(2)得
.
即,或.
因此,原方程组可转化为两个方程组
解这两个方程组,得原方程组的解为
巩固练习:
1.教材P60中1.此练习可让学生口答.
2.教材P60中2.此题让学生独立完成.
四、总结扩展
本节小结,内容较为集中并且比较简单,可引导学生从两个方面进行总结:(1)本节课学习了哪种类型的方程组的解法;(2)这种类型的方程组的解题步骤如何?
这节课我们学习了由两个二元二次方程组成的并且有一个方程是可以分解成两个二元一次方程的方程组的解法,解这种类型的方程组的步骤是将原二元二次方程组转化为两个已学习过的二元二次方程组,从而求出原方程组的解.
关于比较特殊的二元二次方程组的解法,教师可以利用辅导课的时间补充两个二元二次方程都可以分解的二元二次方程组的解法.
五、布置作业
1.教材P61A1,2,3.
六、板书设计
探究活动
若关于的方程只有一个解,试求出值与方程的解.
解:化简原方程,得(1)
当时,原方程有惟一解,符合题意.
当时,方程(1)根据的判别式
∵
∴,故方程(1)总有两个不同的实数解,按题意其中必有一根是原方程的增根,原方程可能产生的增根只是0或1.
把代入(1),方程不成立,不合题,故增根只能是,把代入(1)得,此时方程为,
∴当时,分式方程的解为;当时,分式方程的解为.
一个好汉三个帮——论学习中的互助相关教学方案
提起教案,我相信大家都不陌生,我们可以通过教案来进行更好的教学,可以通过编写教案认识自己教学的优点和不足。初中教案应该从哪方面来写呢?本站收集了《一个好汉三个帮——论学习中的互助相关教学方案》,供您参考。
一、“人无完人,金无足赤”,任何人都有自己擅长的技能,也有难以克服的缺陷或不足,因此学习和工作中我们都应该互助合作,互惠互利,共同进步。下面先请同学们听这么一个故事。
附:天堂和地狱
有一个天真的孩子不知天堂和地狱为何物,便去请教一位哲学家。于尽,哲学家把孩子领到一个地方,小孩看到,在很大很深的池子旁坐着一群老者,他们在用很长很长的勺子十分费力地从池子中舀汤喝,尽管空气中飘荡着汤的鲜美味道,这些老者却长得瘦骨嶙峋。哲学家告诉孩子,这就是地狱。
紧接着,孩子又跟着哲学家来到另一个地方。同样阔大的池子,同样的汤,同样长长的勺子,不同的是这些老者,在用长勺给对面的老者舀汤喝的同时,也喝到了对方送过来的汤。小孩子发现这些老者们,个个红光满面,神采飞扬。小孩子若有所恩地说,“我知道了,这里就是天堂o’
同样的池子,同样的汤,同样的人,但天皇与地狱中的景象却形成了天壤之别,这二者究竟不同在哪里呢?请同学们认真思考后回答。
二、请同学们再看以下一个材料,看完后请说说你的读后感。
附:小材料
著名的电器镇温州柳市占有全国低压电器的一半产量。这里共生着一个庞大的低压电器企业群,正泰电器、德力西等几家大企业位于金字塔的顶端,在这个金字塔的下面,是1200个私营或家庭协作厂。媒体评价:“与其说是正泰成就了1200个协作厂,不如说是那1200个协作厂成就了正泰。”正是这1200个企业群,在整体上形成专业化分工和大生产的格局,大幅度节约了制造成本及交易成本。这种模式受到国内外经济学家高度评价。
据了解,正泰95%以上的零部件在本地采购,与上游企业形成非常安全稳定的信用关系,流动资金占用量达到最小。近几年,正泰每年以60%增长率高速增长,去年产值
60个亿。2002年,正泰董事长南存辉说,放慢点速度,增长30%。
三、好,现在我们来谈谈发生在自己身边的一些事,各抒已见:
(1)“作业抄袭”,“考试合作”,你怎样看?
(2)怎样认识和处理帮助别人和自我学习的矛盾?
四、互帮互学
请你和其他同学自愿结成互助学习的对子或小组,确定互助活动的时间、地点、内容和方式,写在各自的书本上。
互助组成员:
活动时间:
活动地点:
活动内容:
活动方式:
五、心理链接
有些同学可能觉得自己在某些方面有某些独特的见解,因而不愿和别人交流,生怕被别人学去,超过了自己:殊不知封锁和保守只能作茧自缚。古人云:独学而无友,则孤陋而寡闻”。自己的见解是否都正确,见解的丰富和发展,都能在“集思”中得到验证和实现。互相探讨的过程就是提高和再创造的过程。“集思”会使每一个参加者都受益不浅。“控制论’的奠基人维纳十分重视“集思”。参加他们聚会的人中除维纳创立了控制论外,冯·诺意曼成为“博弈论”奠基人、二进制计算机的创始人之一,别格罗和戈德斯汀是计算机设计的最早参与者,麦克卡洛和匹茨成了“神经控制论”和“人工智能”的奠基人,罗森勃吕特也是控制论的开拓者之一……。这些学科,都是现代科学技术史上闪闪发光的明珠:“集思”对人对己都大有裨益。
六、提倡互补与互助
什么是互补?就是取人之长、补己之短。比如,你擅长文,我擅长理,我们可以互补;你思维活跃,我思考深刻,我们也可以互补。彼此的互补使人在横向得以发展,走向全面。
什么是互动?就是互相推动。这通常是兴趣相投、专长相近的那种情况。这种情况的交流,给人以“够层次”的感觉,正如棋逢对手,将遇良才。彼此的互动使人在纵向得以发展,实现提高。
一句话,互补使人全面,互动使人深刻。,
最后,送同学们一句话:独学而无友,则孤陋而寡闻。
一个数乘以小数相关教学方案
教学目的:
1.使学生理解、掌握一个数乘以小数的意义;
2.掌握小数乘法的计算方法,并能正确进行小数乘法的计算;
3.培养学生迁移、类推能力,初步了解数学中的转化思想。
教学准备:投影仪,例2线段图的灯片。
教学过程:
一、复习
1.口述下面各数的意义。
0.50.820.325
2.填空。
(1)一个因数不变,另一个因数扩大10倍,积()
(2)一个因数扩大10倍,另一个因数扩大100倍,积()。
3.花布每米6.5元,买5米要用多少元?
学生独立完成,同时指名演板。订正的提问:
(1)列式时依据的数量关系是什么?
(2)"6.55"表示的意义是什么?
(3)你是怎样小数乘以整数的?
二、新课教学
1.教学一个数乘以小数的意义。
(1)出示例2花布每米6.5元,买0.5米和0.82米各用多少元?
(2)指名读题后提问:根据求总价的数量关系式你会列式吗?
0.5米的总价:6.50.5
0.82米的总价:6.50.82
(3)投影例2的线段图,教师结合图示讲解:0.5米是1米的十分之五,所以"6.50.5"表示求6.5的十分之五。
提问:你能说?quot;6.50.82"表示什么吗?"800.125"又表示什么呢?
(4)概括一个数乘以小数的意义。
提问:①上面三个算式的乘数有什么特点?
②概括地说一个数乘以小数表示的意义是什么?
教师小结:一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几……
③省略号的意思是什么?你能举一例加以说明吗?
(5)说出下面算式所表示的意义。
8.750.087500.2
2.教学小数乘法的计算。
(1)提问:你能把"6.50.5"转化为学过的旧知识来计算吗?说说你是怎样想的。
(2)学生试算,指名演板。
(3)集体讲解。要求学生说明积中为什么有两位小数。
(4)放手让学生计算"6.50.82"。
订正时重点强调怎样确定积的小数位数。并向学生说明积里小数末尾的"0"应划去。
(5)小结计算法则。
提问:①计算小数乘法,先按什么方法算积?
②积里的小数位数与因数中小数位数有什么关系?
③你能总结出小数乘法的计算法则吗?
学生回答后教师小结,学生齐说一遍。
(6)做一做。
670.32.146.2
3.新课小结。
提问:(1)这节课学习了哪些内容?
(2)一个数乘以小数的意义是什么?怎样计算小数乘法?
三、巩固练习
完成练习一的第5、6、8、9题。
练习第5题时注重加强小数乘以整数与一个数乘以小数的意义的比较。
四、课堂作业
完成练习一的第7题。
五、指导学生看书质疑
由一个二元二次方程一个可以分解为两个二元一次方程的方程组成的方程组教案模板
第一课时
一、教学目标
1.使学生掌握由一个二元二次方程和一个可以分解为两个二元一次方程组成的方程组的解法.
2.通过例题的分析讲解,进一步提高学生的分析问题和解决问题的能力;
3.通过一个二元二次方程解法的分析,使学生进一步体会“消元”和“降次”的数学思想方法,继续向学生渗透“转化”的辨证唯物主义观点.
二、重点·难点·疑点及解决办法
1.教学重点:通过把一个二元二次方程分解为两个二元一次方程来解由两个二元二次方程组成的方程组.
2.教学难点:正确地判断出可以分解的二元二次方程.
3.教学疑点:降次后的二元一次方程与哪个方程重新组成方程组,一定要分清楚.
4.解决办法:(1)看好哪个二元二次方程能分成两个二元一次方程,它们之间是“或”的关系,不能联立成方程组.(2)分解好的二元一次方程应与另一个二元二次方程组成两个二元二次方程组.
三、教学过程
1.复习提问
(1)我们所学习的二元二次方程组有哪几种类型?
(2)解二元二次方程组的基本思想是什么?
(3)解由一个二元一次方程和一个二元二次方程组成的方程组的基本方法是什么?其主要步骤是什么?
(4)解方程组:.
(5)把下列各式分解因式:
①;②;③.
关于问题设计的说明:
由于二元二次方程组的第一节课已经向学生阐明了我们所研究的二元二次方程组有两种类型.其一是由一个二元一次方程和一个二元二次方程组成的二元二次方程组;其二是由
两个二元二次方程所组成的方程组.由于第一种类型我们已经研究完,使学生自然而然地接
受了第二种类型研究的要求.关于问题(2)的提出,由于两种类型的二元二次方程组的解题思想均为“消元”和“降次”,所以问题(2)让学生懂得“消元”和“降次”的数学思想,贯穿于解二元二次方程组的始终.问题(3)、(4)是对上两节课内容的复习,以便学生对已学过的知识得到进一步的巩固.由于本节课的学习内容是由两个二元二次方程组成的二元二次方程组的解法,其中有一个二元二次方程可以分解,因此,问题(5)的设计是为本节课的学习内容做准备的.
2.例题讲解
例1解方程组
分析:这是一个由两个二元二次方程组成的二元二次方程组,其解题的基本思路仍为“消元”、“降次”,使之转化为我们已经学过的方程组或方程的解法.那么如何转化呢?关于转
化的形式有两种,要么降二次为一次,要么化二元为一元我们通过观察方程组中的两个方程有什么特点,可以发现:方程组(2)的右边是0,左边是一个二次齐次式,并且可以分解为,因此方程(2)可转化为,即或,从而可分别和方程(1)组成两个由一个二元一次方程和一个二元二次方程组成的二元二次方程组,从而解出这两个方程组,得到原方程组的解.
解:由(2)得
因此,原方程组可化为两个方程组
解方程组,得原方程组的解为
说明:本题可由教师引导学生独立完成,教师应对学生的解题格式给予强调.
第12页
经典初中教案由一个二元一次方程一个二元二次方程组成的方程组
第一课时
一、教学目标
1.使学生知道二元二次方程的概念、二元二次方程组的概念;
2.使学生掌握由代入法解.
3.通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;
4.通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;
5.通过方程组的学习,渗透方程组解的对称美.
二、重点·难点·疑点及解决办法
1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.
2.教学难点:理解解二元二次方程组的基本思想.
3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.
4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.
三、教学过程
1.复习提问
(1)举例说明什么是二元一次方程、什么是二元一次方程组?
(2)解二元一次方程组的基本思路是什么?
(3)解二元一次方程组有哪几种方法?
问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.
2.新课讲解
我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.
关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.
(1)二元二次方程及二元二次方程组
观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.
定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.
二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项.
定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:
都是二元二次方程组.
(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.
我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.
解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.
对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.
例1解方程组
分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得再代入①可以求出的值,从而得到方程组的解.
解:由②,得
把③代入①,整理,得
解这个方程,得
.
把代入③,得;
把代入③,得.
所以原方程的解是
说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.
巩固练习:教材P571、2
四、总结、扩展
关于本节的小结,教师引导学生共同总结.
本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.
学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:
1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.
2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.
3.解一元二次方程或一元一次方程.
4.将所求的值代入由1所得的式子求出另一未知数.
5.写出方程组的解.
五、布置作业
教材P581,2.
六、板书设计
由一个二元一次方程一个二元二次方程组成的方程组初中教案精选
第一课时
一、教学目标
1.使学生知道二元二次方程的概念、二元二次方程组的概念;
2.使学生掌握由代入法解.
3.通过二元二次方程组解法的教学,向学生渗透“消元”、“降次”的数学思想方法,从而提高分析问题和解决问题的能力;
4.通过二元二次方程组解法的剖析,对学生进行事物间可以相互转化的辨证唯物主义思想的教育;
5.通过方程组的学习,渗透方程组解的对称美.
二、重点·难点·疑点及解决办法
1.教学重点:了解二元二次方程、二元二次方程组的概念,会用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组.
2.教学难点:理解解二元二次方程组的基本思想.
3.教学疑点:关于学生对二元二次方程组概念的理解.由于教材中关于二元二次方程组的概念的给出,是通过具体实例的形象定义,因此,部分学生可能认为只有由一个二元一次方程和一个二元二次方程组成的或由两个二元二次方程组成的方程组才叫二元二次方程组,其实不然.关于这一点,可利用课后辅导向学生做一简单的说明.
4.解决办法:关键是消元,化二元为一元,本节主要是用代入消元.
三、教学过程
1.复习提问
(1)举例说明什么是二元一次方程、什么是二元一次方程组?
(2)解二元一次方程组的基本思路是什么?
(3)解二元一次方程组有哪几种方法?
问题1、2的设计是为了学生能用类比的方法学习二元二次方程、二元二次方程组的概念和二元二次方程组的解法.
2.新课讲解
我们已经学过二元一次方程和二元一次方程组,会用代入消元法或加减消元法解二元一次方程组,这节课,我们将学习二元二次方程及二元二次方程组的概念和二元二次方程组的解法.
关于新课的导入,使学生对于本课所要学习的知识一目了解,并且能使学生懂得通过哪些旧知识来学习新内容.
(1)二元二次方程及二元二次方程组
观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2.
定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.
二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项.
定义②:由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组.例如:
都是二元二次方程组.
(2)由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.
我们已经学过二元一次方程组的解法,所谓解二元一次方程组就是求方程组中两个方程的公共解,同样,解二元二次方程组也就是求方程组中两个方程的公共解.
解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程.
对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法.
例1解方程组
分析:由于方程组是由一个二元一次方程和二元二次方程组成的,所以通过代入可以达到消元的目的,通过②得再代入①可以求出的值,从而得到方程组的解.
解:由②,得
把③代入①,整理,得
解这个方程,得
.
把代入③,得;
把代入③,得.
所以原方程的解是
说明:本题在师生共同分析后,让学生独立完成,教师指导学生解题过程.
巩固练习:教材P571、2
四、总结、扩展
关于本节的小结,教师引导学生共同总结.
本节课我们学习了二元二次方程、二元二次方程组的定义及常见的二元二次方程组的两种类型,理解了解二元二次方程组的基本思想是消元和降次,使之转化为二元一次方程或一元一次方程;对于一个二元一次方程组和一个二元二次方程组成的二元二次方程组,一般采用代入消元法解.
学生学完了用代入法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组后,教师和学生可以共同总结这种类型方程组的解题步骤:
1.将方程组中的二元一次方程变形为一个未知数用另一个未知数表示的代数式.
2.将所得的代数式代入二元二次方程中得到一个一元二次方程或一元一次方程.
3.解一元二次方程或一元一次方程.
4.将所求的值代入由1所得的式子求出另一未知数.
5.写出方程组的解.
五、布置作业
教材P581,2.
六、板书设计