平行四边形梯形画高数学教学反思
发表时间:2022-03-26《平行四边形和梯形画高》数学教学反思
今天执教《平行四边形和梯形画高》时,我还是采用了先前我一直采用的方法,那就是让学生先预习,然后再汇报预习的情况。大部分学生能基本上理解本次学习的知识。在让学生画的过程中,学生自认为学得好,我自己本以为在画垂线的基础上,学生是很容易掌握平行四边形和梯形画高的方法的,可事实并非如此。在教学过程中,学生还是会出现各种错误:
(1)学生画高时,随意性较强。
学生在给平行四边形和梯形画高时,画的高与底并不是完全垂直,许多学生为图简便,用肉眼看觉得垂直了就用直尺随意一画;
(2)不能灵活地给指定的底画高。在上完了给平行四边形和梯形画高时,我出了一道变式题:给指定的边画高,学生已经习惯给下底画高,当我变了一个底的方向时,有的学生就不知道找点和对应的边了。还好许多学生很聪明,想到可以把书转一下在画,当然这种方法在现学习阶段也是值得借鉴推广的;
(3)学生会出现把垂足标错的情况,我想原因就是没能区分谁是底,经过纠正画的是那条边的垂线段,谁就是底,学生基本已经纠正过来了。在教学过程中,我特别强调把画高抽象成过直线外一点画已知直线的垂线,这样当平行四边形和梯形变化方位时,学生不会出现不会画的情况。
(4)碰到与生活有关的题时还不能与生活联系起来。
课本中出现了一道题:工人叔叔想修水管,问怎样才能用的水管最少?学生刚接触这题时不知该如何画。我适时加以引导。如在教学过直线外一点向直线多画的垂线段最短这一知识点时,我改变课本上的问题为小鸡找水喝:有一只小鸡,旅行渴了,它想到附近的河流边去喝水,你们能不能帮小鸡设计一条最近的路线呢?这样学生课堂积极性就调动起来了,学生反应很快直着走,基于已有的生活经验,这个问题比单纯的问学生怎样经过直线外一点画一条与已知直线距离最短的线段要简单明了的多。
对于学生的回答,我及时加以延伸你的直着走实际上是过点向直线画的一条怎样的线?这时垂线段的答案昭然如揭。这样,学生不仅掌握了知识,也学会解决了实际问题,以后在碰到类似的修路等问题就得心应手了。
jk251.coM小编推荐
平行四边形的性质
平行四边形的性质(2)
教学目标:
1、知识与技能:探索并掌握平行四边形对角线互相平分的性质,掌握平行线之间的距离的功概念。
2、过程与方法:
利用平行四边形的对边相等的性质,借助三角形全等的知识,通过合理推理,探索平行四边形的对角线互相平分的性质。
3、情感态度与价值观:
在探索平行四边形的性质活动中,培养学生的探究、合作精神,增强推理的能力。
教学重点:
史学史掌握平行四边形的对角线互相平分的性质。
教学难点:
平行四边形性质的综合运用。
教学互动设计:
一、回顾、思考
1、定义与性质——
2、利用定义与性质解题————
①、已知平行四边形的一角,可求;
②、已知平行四边形的两邻边,可求;
3、练一练
略
二、情境导课
如图4—3,□abcd的两条对角线ac、bd相交于点o。
(1)图中有哪些三角形是全等的?
(2)能设法验证你的结论吗?
想一想
由本题你又能得出平行四边形怎样的性质?
平行四边形的性质:
a
b
d
c
o
平行四边形的对角线互相平分。
三、利用定义、性质解题
1、例1如图,四边形abcd是平行四边形,
db^ad,求bc,cd及ob的长.。
分析:(1)在□abcd中,bc是的对边;
cd是的对边;
因为ad、ab已知,
所以,利用平行四边形的性质“”可求出它们;
(2)点o是,
利用平行四边形的性质“”可知ob是bd的一半。
(3)求bd的长应摆在△中用定理来计算。
2、想一想
在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?(见p101图)
a
b
a
b
c
d
例2已知直线a∥b,过直线a上任意两点a、b分别向直线b作垂线,
交直线b于点c、点d.
(1)线段ac、bd所在的直线有怎样的位置关系?
(2)比较线段ac、bd的长短.
在例2中,线段ac的长是点a到直线b的距离;同样,线段bd的长是点b到直线b的距离,且ac=bd.
如果两条直线平行,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离..
平行线间的距离处处相等.
3、议一议
举出生活中的几个实例,反映“平行线之间的垂线段处处相等”的几何事实.
四、随堂练习
□abcd的两条对角线相交o,oa,ob,ab的长度分别为3厘米,4厘米,5厘米,求其他各边以及两条对角线的长度.
a
b
d
c
o
abdcoabdco
五、作业
p102习题4.21、2、3
平行四边形及其性质
七、教学步骤
【复习提问】
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1,,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
【引入新课】
在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.
【讲解新课】
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明.
(2)平行四边形性质,定理的综合应用:
同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.
图3
例2已知:如图3的对角线、相交于点,过点与、分别相交于点、.
求证:.
证明比较容易,只须证出△≌△,或△≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势.如这里可直接由定理3得出,而不再重复定理的推导过程证出.
图4
例3已知,如图4,,,.求的面积.
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式:.
(2)讲清楚何为平行四边形的高.在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度.
(3)平行四边形面积的表示法,如图5表示为.
(4)学生自己完成解答.
图5
【总结、扩展】
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化.
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义
性
质
边
角
对角线
2.思考题:教材P144中B.4
八、布置作业
教材P141中2(4);P142中3(2)、4、5、6.
九、板书设计
标题例2
小结(表格)
平行四边形性质3例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛.1985年7月我国首次派代表参加第26届.中国队获金牌数为各队之首.
十、随堂练习
教材P.134中1、2
补充:1.若平行四边形一边长为,一对角线长为,则另一对角线的取值范围是_____________.
2.在中,,,,则.
3.已知是的边上任一点,则:的值为____.
A.B.C.D.不确定