圆柱体积计算公式的应用 优秀小学教案 教案精选
发表时间:2022-03-11探究目标:
1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:
学生会应用圆柱体积公式解决实际问题。
探究过程:
一、迁移引入
提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?
二、自主探究
1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?
怎样求这个长方体的容积呢?
2、出示圆柱形鱼缸。
⑴估测。这个圆柱形鱼缸的容积大约是多少?
⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:
生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)
生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米)
⑷评价。
组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。
⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?
3、自学例题。
组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。
三、巩固练习
做教科书第80页“做一做”中的第2题、练习二十一的第5题。
学生独立完成,指名板演,集体评讲。
四、创意作业
学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。
在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?
jK251.COm精选阅读
圆柱体的表面积 教案精选
教学内容课本第13页的例3,练习2的第5~8题。
教学目标1、使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确计算圆柱体侧面积和表面积。
2、使学生在数学学习活动中获得成功的体验,建立自信心。
教学重点表面积的计算。
教学难点侧面积的含义与计算方法。
教学关键利用教具,弄清侧面积与圆的关系。
教具准备圆柱侧面展开教具。
教学方法操作法。
教学过程
旧知铺垫1、口算。
3.14×34100.5670.820
2、长方体表面积。12㎝
(1)长方体的表面积指的是什么?8㎝
(2)怎样计算长方体的表面积?20㎝
探索新知1、揭示并板书课题。
2、教学例3.
(1)你们知道圆柱体的表面积指的是什么吗?
(说一说、摸一摸)
(2)你们想应该怎样计算圆柱体的表面积?
(学生说明、教师演示)
板书结论:圆柱体的表面积=圆柱体的侧面积+2个底面的面积
(3)圆柱体的底面积和侧面积会计算吗?
(学生说明、教师演示)
板书推导过程。
3、尝试练习。
(1)求侧面积。
a、c=2.5dm,h=0.6dm。
b、d=8cm,h=12cm。
(2)求表面积。
a、s底=40c㎡,s侧=25c㎡。
b、r=2dm,h=5dm。
4、课堂小结。
巩固练习完成练习2的第5、6题。
布置作业完成练习2的第7、8题。
板书设计
圆柱的体积⑵ 教案精选篇
【教学内容】p33,例5练一练,练习七4-9【教学目的】使学生进一步掌握圆柱体积的计算方法,并能运用这个方法计算圆柱体容器的容积。【教学重点、难点】掌握方法,正确计算。【教学过程】一、复习。1、说出圆柱体体积的计算公式。2、计算下列各圆柱的体积。①底面积6平方厘米,高4厘米。②底面半径10厘米,高20厘米。③底面直径和高都是4分米。④底面周长6.28米,高2米。二、新课。1、揭示课题,圆柱体的容积。①说明圆柱体容积的意义。②用什么方法计算圆柱体的容积呢?(用计算圆柱体体积的方法来计算圆柱的容积,应测量圆柱容器里面的有关部位的长度)2、教学例5。⑴出示例5,指名读题。⑵讨论:①题目里要我们计算的是什么?用什么方法计算?②题目里告诉我们哪些条件?是否符合容积的要求?⑶学生试做,阅读课本。⑷集体评讲。①列式是否正确。②书写是否规范。③单位名称是否统一。④取近似值是否符合要求?三、巩固练习。1、“练一练”2、一个圆柱的体积是90平方厘米,底面积是15平方厘米,这个圆柱的高是多少?3、一个底面直径为20厘米,高为1米的圆木。①如果沿着它的底面直径割开成两个同样的半圆柱,表面积增加()平方厘米。②如果把它截成三个小圆柱体,表面积增加()平方厘米。③如果把它的底面分成若干等份,然后沿高切开拼成一个近似的长方体,表面积增加()平方厘米。四、总结、质疑。这节课里我们学到了哪些知识?根据学生回答教师总结。五、作业:练习七5、6、9。
圆柱的体积教学优秀模板
一、创设情景、感知圆柱体积的概念。
教师拿出一个装了半杯水的烧杯,拿出一个圆柱形的物体,准备投入烧杯中。
师:同学们想一想会发生什么情况?(教师将圆柱形的物体投入水中。)请仔细观察后,说一说你有什么发现?
生:水面上升一些。
生:圆柱形的物体挤掉了原来水占有的空间。
生:圆柱体占有一定空间。
师:我们通常把这个空间叫体积。
生:我发现上升的水的体积和圆柱的体积是相等的。
师:同学们发现得都很精彩,谁来说一说什么叫圆柱的体积。
生:圆柱所占空间的大小就叫圆柱的体积。
二、比较大小、创设求圆柱体积的情景。
教师又拿出一个圆柱。(底面略小而高长一些,体积相差不多)
师:这两个圆柱的体积,哪个比较大一些?
生:第一个比较大,因为它高一些。
生:第二个比较大,因为它粗一些。
生:他们都是猜的。第一个圆柱它虽然高一些,但底面积小一些;第二个圆柱虽然底面大一些,它是的高少了一些。无法准确地比较它们的大小。
师:有什么办法能比较它们的大小呢?(小组讨论)
生:准备半杯水,将第一具圆柱浸没水中,作好标志,再把第二个圆柱浸没水中,作个标志,哪个水面上升的高一些,哪个圆柱的体积就比较大。
师:这个方法好。如果要准确地知道哪个圆柱的体积大,大多少,你有什么好办法?(小组讨论)
生:要学会计算圆柱的体积后就好解决了。
三、大胆猜想,感知圆柱体积公式。
师:你觉得圆柱体积的大小和什么有关?
生:和圆柱的高有关,一个圆柱它的高增加,它的体积也会变大些。
生:和圆柱的底面大小有关,一个圆柱它的底面增加,它的体积也会变大些。
师:很好!大胆地推想一下圆柱的体积应如何计算?(小组讨论)
生:我猜想用圆柱的底面积乘以它的高就可以求出体积。
师:你同意他的猜想吗?说说你的理由。
生:我们小组觉得他的想法很有道理,因为圆柱体可以看作是有很多个相同的圆叠加起来的。
生:我们小组也觉得的有道理,因为以前长方体和正方体的体积公式也是底面积乘以高。
四、小心求证,论证圆柱体积公式。
师:同学们都很会大胆猜想,但还要小心地论证猜想的科学性。
教师拿出一具圆柱体体积教具,把它藏在衣服里,只露出一具底面。
师:你看到了什么?
生:圆形。
师:你还记得圆面积转化什么图形的面积来求它的公式的吗?
生:把圆的面积转化成长方形的面积。
教师把整个圆柱拿出来,问:怎么求这个圆柱的体积呢?(小组讨论)
生:可以把这个圆柱转化成我们已经会求的长方体的体积来求体积。
师:说说你们小组是如何转化的。
生上台操作展示。生:我们把圆柱平均分成16分,可以拼成一个近似的长方体,这个长方体的高就是圆柱的高,这个长方体的底面积和圆柱的底面积相等。所以,圆柱的体积可以用底面积乘高来求。
师:你同意吗?照这样做一遍,然后说一说如何求圆柱的体积。
教师课件出示将圆柱分成32份和64份后拼成长方体的过程。然后总结如果分的份数越多就越接近长方体。
最后学生自主得出圆柱的体积公式。
圆柱体侧面积表面积练习题优秀模板
1、一个圆柱形铁皮盒,底面半径2分米,高5分米。
(1)沿着这个铁皮盒的侧面贴一圈商标纸,需要多少平方分米的纸?
(2)某工厂做这样的铁皮盒100个,需要多少铁皮?
2、一个圆柱形蓄水池,底面周长25.15米,高4米,沿着这个蓄水池的四周及底部抹水泥。如果平方米用水泥20千克,一共需多少千克水泥?
3、一个压路机的滚筒的横截面直径是1米,它的长是1.8米。,如果滚筒每分钟转动8周,5分钟能压路多少平方米?
4。一个圆柱形的游泳池,底面直径是10米,高是4米在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?
5、一个圆柱的侧面积是37.68平方分米,底面半径3分米,它的高是多少分米?
6、一节铁皮烟囱长1.5米,直径是0.2米,做这样的烟囱500节,至少要用铁皮多少平方米?
7、一个没有盖的圆柱形铁皮桶,底面周长是18.84分米,高是12分米,做这个水桶大约需要多少平方分米的铁皮?(用进一法保留整十数)
圆锥的体积 优秀小学教案 教案精选
第一课时【教学内容】p37—38页例1。【教学目的】1、使学生认识圆锥,并掌握高的特征,知道测量高的方法。2、使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。3、培养学生初步的空间观念,发展学生的思维能力。【教学重点】圆锥特征,体积计算公式。【教学过程】一、复习并导入新课。1、说说圆柱的体积计算公式。2、我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形),在日常生活和生产中,我们还常常看到下面一些物体(出示p37教材插图),这些物体的形状都是圆锥体,简称圆锥(板书课题),指出本书中所讲的圆锥,都是直圆锥。二、新授。1、认识圆锥。我们在日常生活中还见过哪些物体是圆锥体,谁能举出一些例子?2、利用学生课前做好的圆锥体联系立体图,通过观察、手摸,认识圆锥的特点。⑴圆锥的底面是个圆,圆锥的侧面是一个曲面。⑵认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。3、探讨圆锥的高的测量方法和圆锥体积的转化。4、实际操作。⑴根据讨论情况,测量圆锥的高。⑵推导圆锥的体积公式。圆锥的体积=等底等高的圆柱的体积×—=底面积×高×—用字母表示:v=—sh4、小结。要求圆锥体体积,必须知道哪些条件?公式中的底面积乘以高,求的是什么?为什么要乘以—?6、教学例1。⑴尝试练习。⑵规范格式,强调公式中的—不能遗漏。三、巩固练习。p40页1—5。四、课堂作业。p38页练一练。
第二课时【教学内容】p39页例2。【教学目的】使学生进一步掌握圆锥体积的计算公式,会应用这个公式解决简单的实际问题。【教学过程】一、复习。1、填空。⑴一个圆柱和一个圆锥等底等高,圆柱体积是圆锥体积的()倍。⑵一个圆柱和一个圆锥等底等高,圆锥的体积是圆柱体积的(),比圆柱体积小——。2、指名板演,其余座练。⑴已知一个圆柱的底面半径是8厘米,高是15厘米,这个圆柱的体积是多少?和它等底等高的圆锥体积是多少?⑵已知一个圆锥的底面周长是6.28分米,高是3分米,这个圆锥的体积是多少?和它等底等高的圆柱体积是多少?二、新授。1、揭题。2、教学例2。⑴出示例2,自由读题。⑵讨论,回答。①这道题目要求什么?必须先求什么?②怎样求沙堆体积?③学生试做,指名板演。④评讲板演,小结解题注意点。⑤阅读课本。三、巩固练习。1、p39页练一练。2、填空。⑴一个圆锥的底面周长是25.12米,高6米,它的体积是()。⑵一个圆锥的体积是84立方分米,底面积是12平方分米,这个圆锥的高是()。⑶一个圆锥和一个圆柱等底等高,它们的体积一定是96立方厘米,那么圆柱的体积是(),圆柱比圆锥的体积大()。⑷一个圆柱形木块的体积是180立方厘米,把它削成一个最大的圆锥,要削去()立方厘米木块。四、总结。说说本课学习收获。五、作业。练习八8、10。
长方体正方体体积统的计算教案 优秀小学教案 教案精选
第三课长方体和正方体体积统一的计算
教学内容教材第43页的内容
教学目标
知识与技能
(1)在理解底面积的基础上,使学生掌握长方体和正方体体积统一计算公式
(2)提高学生综合运用知识的能力,发展学生的空间观念。
过程与方法
(1)通过探索研究将长方体和正方体体积的计算公式统一起来。
(2)通过解决实际问题加深对所学知识的理解。
情感态度与价值观
(1)体验合作探究的乐趣。
(2)感受数学与现实生活的密切联系,发展学生的思维。
教学重点理解底面积的含义,统一公式的推导。
教学难点对长方体和正方体统一的体积公式的理解和运用。
教学准备课件
教学过程
一、创设情境
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)
结论:长方体的体积=底面积×高
正方体的体积=底面积×棱长
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:
v=sh
三、课堂实践
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结
学生小结今天学习的内容
五、课后实践
做练习七的第10、11、12题。
旁批:
后记:
比的应用 优秀小学教案 教案精选
(3)比的应用教学目标:1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。教学重点:进一步掌握按比例分配应用题的结构特点和解题思路。教学难点:正确分析解答比例分配应用题。教学过程:一、复习。1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)二、新授。1、教学例2。(1)出示例2:(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)①稀释液平均分成的份数:1+4=5②11+4浓缩液的体积:500×=100(ml)③1+44水的体积:500×=400(ml)答:稀释液100ml,水400ml。(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)2、补充练习(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)(4)怎样分别算出各班应种的棵数?引导学生解答:①三个班的总人数:47+45+48=140(人)②一班应栽的棵数:280×=94(人)③二班应栽的棵数:280×=90(人)④三班应栽的棵数:280×=96(人)答:一班栽树94棵,二班栽树90棵,三班栽树96棵。(5)学生进行检验。(6)学生试做“做一做”中的第2题。三、巩固练习。练习十二的第1、3题。四、布置作业。练习十二第2、4、5、6、7题。教学追记:本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。
乘法中的简便计算 优秀小学教案 教案精选
教学内容:
p44/例4(两个数相乘的乘法中的简便计算)
教学目标:
1.使学生理解和掌握把一个数乘两位数,改成连续乘两个一位数的简便算法。
2.培养学生分析、判断、推理的能力,增强使用简便算法的择优意识。
教学重点:
简便算法的算理。
教学难点:
把一个两位数改成两个合适的一位数相乘的方法。
教学过程:
一、复习准备
口算
12×3018×20
24×4015×40
15=()×()
24=()×()
30=()×()
36=()×()
二、新授
出示例4主题图
什么是“一打”?
引导学生观察主题图。
“一打”表示12个。
观察主题图,独立解决题目中的问题。
找三个代表性的解题方法进行板演。
板演:
(1)25×12=300(元)
(2)25×12
=25×(3×4)
=(25×4)×3
=100×3
=300(元)
(3)12×25
=12×(100÷4)
=12×100÷4
=1200÷4
=300(元)
第1种直接计算。
第2种把其中的一个两位数的因数改成了两个一位数相乘的形式。
引导学生观察三个算式及解决方法。
你喜欢哪种方法?在以后的解题过程中,你能应用自己喜欢的方法解决问题吗?
第三种把其中的一个因数改成了两个数相除的形式,然后变成乘除混合运算,可以任意交换位置进行简便计算。
根据主题图,你还能提出什么问题?
教师选择性地板书。
小组合作分工完成黑板上的题目。
小组内交流。
全班交流。
教师要注意学生在简算过程中,是否正确地采用了简便计算的方法。
三、小结
学生谈收获,小结重点及应该注意的问题。
教师完善板书。
四、巩固练习
p47/4、5
板书设计:
乘法中的简便计算
12×25=300(元)12×2512×25
=(3×4)×25=12×(100÷4)
=3×(4×25)=12×100÷4
=3×100=1200÷4
=300(元)=300(元)
课后小结:
梯形面积的计算练习 优秀小学教案 教案精选
第六课时:梯形面积的计算练习课
教学内容:完成第21页练习四
教学目标:
使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。
教学过程:
练习四
一、第2题让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。
二、第3题右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。
三、第5题要注意两个问题:1、统一面积单位;2、讲清楚数量关系。
四、第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。
五、针对学生在学习过程中出现的问题适当的进行补充和强化。