[课件分享] 高中数学说课稿一篇
发表时间:2022-11-11学习数年,我们读过很多范文,不少优秀范文是学生写出来的, 阅读范文可以帮助我们平复心情,让自己冷静思考。高质量的范文能供更多人参考,你有没有看过的优秀范文的参考范文呢?下面是小编帮大家编辑的《[课件分享] 高中数学说课稿一篇》,希望能为您提供更多的参考。
抛物线焦点性质的探索(说课)
一、教材分析
1 教材的地位与作用 “抛物线焦点的性质”是抛物线的重要性质之一,它是在学生学习抛物线的一般性质的基础上,学习和研究的抛物线有关问题的基本工具之一;本节教材对于培养学生观察、猜想、概括能力和逻辑推理能力具有重要的意义。
2 教学目的 全日制普通高级中学《数学教学大纲》第22页“重视现代教育技术的运用”中明确提出:在数学教学过程中,应有意识地利用计算机网络等现代信息技术,认识计算机的智能图形、快速计算、机器证明、自动求解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的教学方法、教学模式。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。因此本人在现行高中新教材(试验修订本·必修)数学第二册(上)抛物线这一节内容为背景材料,以多媒体网络教室为场地,以《几何画板》为教学工具与学习工具,设计了一堂《抛物线焦点性质的探索》,具体目标如下:jk251.com
(1) 知识目标:了解焦点的有关性质;并掌握这些性质的证明方法;体会数形结合思想与分类讨论思想在解决解析几何题中的指导作用
(2) 能力目标:使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型;培养辩证唯物主义思想和辩证思维能力(主要包括量变与质变,常量与变量,运动与静止)培养学生通过计算机来自主学习的能力与创新的能力。
(3) 情感目标:培养学生不畏困难,勇于钻研、探索、大胆创新的精神,在挫折中成长锻炼,培养学生良好的心理素质和抗挫折能力,通过抛物线焦点性质的探索及证明,使学生得到数学美和创造美的享受。
3 教学内容、重点、难点及关键 本节安排两节课,
第一节课:主要内容是利用《几何画板》探索抛物线的有关性质;
第二节课:证明第一节所得到的有关性质。
重点:
(1)如何利用《几何画板》探索、发现抛物线焦点的性质;
(2)如何证明这些性质。
难点;
(1)如何利用《几何画板》探索、发现抛物线焦点的性质;
(2)如何证明这些性质。
二、教学策略及教法设计
学生在网络教室(每人一机),其中装有《几何画板》软件及上课系统,每个学生的窗口,其他学生及教师都可以通过教师机切换,从而和其他学生交流,也可以通过网上论坛交流研究结果。
三、网络教学环境设计
学生在网络教室(每人一机)中有几何画板软件,学生通过教师提供的网络,自已阅读,下载有关,利用《几何画板》的操作、试验、猜想,通过自已的研究获得结论,并互相讨论观察到的现象、交流研究结果。
四、教学过程设计
4.1 使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型 问题1 回顾一下抛物线的定义,并根据抛物线的定义思考用《几何画板》如何作出焦点在x轴上的抛物线图象。 由于创设了一个创作的《几何画板》的窗口及网络窗口,学生通过网络学习,得到以上问题的多种作法,以下就其中的一种作法作为探索、研究抛物线焦点性质的基本图形。
Jk251.com相关文章推荐
高中数学课件九篇
从小到大,我们看过不少的范文,优秀的范文可以让我们积累相关的知识,阅读范文可以锻炼文笔,提高写作能力。高质量的范文能供更多人参考,您是否正在考虑怎么样才能写好优秀范文呢?教师范文网(jk251.com)小编特地为大家精心收集和整理了“高中数学课件九篇”,欢迎大家阅读,希望对大家有所帮助。
高中数学课件【篇1】
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力。
教学重点和难点
重点:四种命题之间的关系;
难点:反证法的运用。
教学过程设计
一、导入新课
【练习】
1、把下列命题改写成“若p则q”的形式:
(1)同位角相等,两直线平行;
(2)正方形的四条边相等。
2、什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论。
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题。
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”。
值得指出的是原命题和逆命题是相对的。我们也可以把逆命题当成原命题,去求它的逆命题。
3、原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等。
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础。
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题。
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定。
【板书】原命题:若p则q;
否命题:若┐p则q┐。
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。
由此可以得原命题真,它的否命题不一定真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的`真假,调动学生学习的积极性。
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题。
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。
原命题是“若p则q”,则逆否命题为“若┐q则┐p。
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真。
原命题真,逆否命题也真。
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】
1、原命题为真,它的逆命题不一定为真。
2、原命题为真,它的否命题不一定为真。
3、原命题为真,它的逆否命题一定为真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性。
教师活动总结。
PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。
3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。
4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。
x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM平面bcd。
变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)
变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。
[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef
高中数学课件【篇2】
合理制定三维目标,明确重点与难点。
《普通高中数学课程标准》提出的三维教学目标是:知识与技能,过程与方法,情感态度与价值观。知识与技能目标包括学生要知道、了解、理解的基础知识、基本原理目标和学生必须达到的基本技能目标;过程与方法目标包括实现数学科学中的探究过程和探究方法、优化学生的学习过程,强调学生探索新知识的经历和获得新知识的体验;情感态度与价值观目标中包括学生的学习兴趣与热情、战胜困难的精神、认识数学之美感和塑造学生的人格。三维目标之间的关系是“在实现知识与技能的过程中有机地融合、渗透过程与方法目标、情感态度与价值观目标的达成。”三维目标是课堂教学活动的出发点与归宿。
教学设计时教师要依据教材的具体内容,结合学生的学习实际,以促进每一个学生的发展为本,合理地制订三维目标,注意体现三维目标的整体性,相辅相成。所谓重点,指一节课中最重要的新知识,即联动全局,带动全面的重要之点,是学生认知发生转折与质变的地方,是教学的重心所在,是课堂教学中需要解决的主要矛盾。所谓难点是一节课中学习起来最困难的地方,是学生的认知能力与知识要求之间存在较大矛盾、知识跨越最大的地方,是学生难于理解和掌握的内容。例如“等差数列前n项和”这节课中的重点是“等差数列前n项和公式”,难点是“等差数列前n项和公式的推导——倒序相加法”。只有合理制订三维目标和确定好重点与难点,才能围绕三维目标和重点与难点的突破,制定出出色的教学设计。
为学生提供充分从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学体验,将数学应用于生活,提高自主探究数学知识的能力和学生学习数学能力。
认知最牢靠和最根深蒂固的部分就是生活中经常接触和经常使用的知识,有些已经进入了他们的潜意识。如果能把新知识巧妙地溶于生活情境中,那将会是学生非常欢迎的,一旦接受也会被牢固掌握。而现代教学手段比以往更容易让现实生活中的现象再现或模拟于课堂。因此,从学生的生活经验和知识背景出发,提供学生充分进行数学实践活动和交流的机会课堂效果一定会很好。用与学生年龄特征相适应的大众化、生活化的方式呈现数学内容,也是数学课程改革的一个基本思路。教师要敢于走出教材,走出课堂,走进丰富多彩的生活。比如在引入两个平面垂直的判定定理时,教师提出:建造一座大楼,怎样才能使墙面与地面垂直呢?学生很快会联想到建筑工人常常用一端系着铅锤的细绳让其垂直地面,并以这根绳子为参照,看看所砌的墙是否经过这条细绳。然后问:为什么若墙面经过这条绳子,所砌的墙就与地面垂直呢?还可以引导学生观察教室门板与地面的位置关系,它们是否垂直?转动门扇是否还与地面保持垂直,奇怪吗?为什么?到底隐藏着数学上的什么奥秘?由这些亲切真实情景,导出两个平面垂直的判定定理就水到渠成了。
高中数学课件【篇3】
教学目标:
1.掌握基本事件的概念;
等可能性;
3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.
教学重点:
掌握古典概型这一模型.
教学难点:
如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.
教学方法:
问题教学、合作学习、讲解法、多媒体辅助教学.
教学过程:
一、问题情境
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?
二、学生活动
1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;
共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;
(““““5点”和“6点”,
这6种情况的可能性都相等;
三、建构数学
1.介绍基本事件的概念,等可能基本事件的概念;
、(等可能性);
3.得出随机事件发生的概率公式:
四、数学运用
1.例题.
例1
有红心
探究(
探究(、(正,正)、(反,反)3个基本事件,对吗?
学生活动:探究(一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.
探究(、(正,反)、(反,正)、(反,反)四个基本事件.
(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)
例2
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中
一次摸出2只球,则摸到的两只球都是白球的概率是多少?
问题:在运用古典概型计算事件的概率时应当注意什么?
①判断概率模型是否为古典概型
②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.
教师示范并总结用古典概型计算随机事件的概率的步骤
例3
同时抛两颗骰子,观察向上的点数,问:
(1)共有多少个不同的可能结果?
(2)点数之和是6的可能结果有多少种?
(3)点数之和是6的概率是多少?
问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?
学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.
问题:点数之和是3的倍数的可能结果有多少种?
(介绍图表法)
例4
甲、乙两人作出拳游戏(锤子、剪刀、布),求:
(甲赢的概率;(3)乙赢的概率.
设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.
2.练习.
(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.
(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..
(3)第103页练习1,2.
(4)从1,2,3,…,9这9个数字中任取2个数字,
①2个数字都是奇数的概率为_________;
②2个数字之和为偶数的概率为_________.
五、要点归纳与方法小结
本节课学习了以下内容:
1.基本事件,古典概型的概念和特点;
2.古典概型概率计算公式以及注意事项;
图表法.
高中数学课件【篇4】
一、教学背景分析
(一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.
(二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略.
(三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.
二、教学目标设计
(一)知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法.
(二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力.
(三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神.
三、教法学法设计
(一)教学方法设计:为了更好地培养学生自主学习能力,提高学生的综合素质,我主要采用探究式教学方法.一方面我通过设置情境、问题诱导充分发挥主导作用;另一方面学生通过对我提供的素材进行直观观察→动手操作→讨论探究→归纳抽象→总结规律的过程充分体现主体地位.
使用多媒体辅助教学与自制教具相结合的设计方案,实现多媒体快捷、形象、大容量的优势与自制教具直观、实用的优势的结合,既突出了知识的产生过程,又增加了课堂的趣味性.
1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;
2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;
3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;
4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;
5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.
四、教学建议
教材分析
1.知识结构
2.重点难点分析
重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.
椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.
(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.
另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.
(2)根据椭圆的定义求标准方程,应注意下面几点:
①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.
②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.
③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.
④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.
(3)两种标准方程的椭圆异同点
中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.
椭圆的焦点在轴上标准方程中项的分母较大;
椭圆的焦点在轴上标准方程中项的分母较大.
另外,形如中,只要,,同号,就是椭圆方程,它可以化为.
(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.
高中数学课件【篇5】
一、教学目标
(一)知识与技能
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
(二)过程与方法
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的方法,领会方程、数形结合等思想。
(三)情感态度价值观
1、感受动点轨迹的动态美、和谐美、对称美
2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气
二、教学重点与难点
教学重点:运用类比、联想的方法探究不同条件下的轨迹
教学难点:图形、文字、符号三种语言之间的过渡
三、、教学方法和手段
【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。
高中数学课件【篇6】
我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:
一、教材分析
教材的地位和作用
“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!
根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。
二、教学目标
根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:
知识目标:
1、了解曲线上的点与方程的解之间的一一对应关系;
2、初步领会“曲线的方程”与“方程的曲线”的概念;
3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;
4、强化“形”与“数”一致并相互转化的思想方法。
能力目标:
1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;
2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;
3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。
情感目标:
1、通过概念的引入,让学生感受从特殊到一般的认知规律;
2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。
三、重难点突破
“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。
怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。
四、学情分析
此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。
高中数学课件【篇7】
高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。最好的方式就是用多媒体电脑和诸如《几何画板》、《几何画王》、《几何专家》等工具软件,为学生创设数学实验情境。例如,在上“棱柱和异面直线”课时,我们指导学生用硬纸制作“长方体”和“正三棱柱”等模型。教师用《几何画板》设计并创作“长方体中的异面直线”课件,引导学生利用自己制作的“长方体”模型和上述课件,思考以下问题:“长方体中所有体对角线(4条)与所有面对角线(12条)共组成多少对异面直线?”、“长方体中所有体对角线(4条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有棱(12条)之间相互组成多少对异面直线?”、“长方体所有面对角线(12条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有面对角线(12条)之间相互组成多少对异面直线?”。然后由学生独立进行数学实验,探讨上述问题。
此外,教师还要根据数学思想发展脉络,充分利用实验手段尤其是运用现代教育技术,创设教学实验情景、设计系列问题、增加辅助环节,有助于引导学生通过操作、实践,探索数学定理的证明和数学问题的解决方法,让学生亲自体验数学建模过程,培养学生的数学创新能力和实践能力,提高数学素养。
为了构建生动活泼富有个性的数学课堂,我把创设情境,激发学生的学习兴趣当成数学教学的重头戏,使之成为数学课的一道亮丽的风景。 《数学课程标准》强调数学课堂教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学,理解数学,让学生感受到数学就在他们周围。因此,我从学生已有的生活经验出发,创设有趣的教学情境,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,感受数学与日常生活的密切联系,感受数学在生活中的作用,加深对数学的理解,并运用数学知识解决现实生活中的问题。如《课程标准》在综合实践的教学建议部分提供了这样一个案例:
要求学生统计自己家庭一周内丢弃的塑料袋个数,并依据所收集的数据展开讨论。其程序是:(1)作为家庭作业提出此问题;(2)学生自主进行统计活动;(3)请某学生在课堂上对结果做现场统计(列出统计表,老师也把自己的统计结果融入其中);(4)统计分析(引导学生根据数据对全班一周丢弃塑料袋情况用不同的算法进行描述和评价);(5)结合问题情境深入领会有关概念(如平均数、中位数、众数等)的含义,并通过问题的层层深入让学生进一步感受不同统计量来表示同一问题的必要性;(6)问题自然延伸(计算这些袋对土地造成的污染,先估计一个袋的污染,然后通过多种方式计算推及到一周呢?一年呢?全校同学的家庭呢?照此速度要多久就会污染整个学校呢?)。由此例可以看出,这种模式的一个关键点就是围绕着学生日常生活来展开的,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐关系,朴素的问题情境自然让学生产生一种情感上的亲和力和感召力,可以让他们真正应用数学,并引导他们学会做事。
高中数学课件【篇8】
高中数学《等差数列》试讲答辩
为帮助各位考生备战教师资格面试,中公教师网整理了各学科教师资格面试试讲答辩语音示范,以下是高中数学《等差数列》试讲答辩,希望对各位考生有所帮助!【面试备课纸】
3.基本要求: (1)要有板书;(2)试讲十分钟左右;(3)条理清晰,重点突出;
(4)学生掌握等差数列的特点与性质。【教学设计】
一、教学目标 【知识与技能】能够复述等差数列的概念,能够学会等差数列的通项公式的推导过程及蕴含的数学思想。
【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,提高知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。
【情感态度与价值观】通过对等差数列的研究,具备主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
二、教学重难点 【教学重点】
等差数列的概念、等差数列的通项公式的推导过程及应用。【教学难点】
等差数列通项公式的推导。
三、教学过程 环节一:导入新课 教师PPT展示几道题目:
1.我们经常这样数数,从0开始,每隔5一个数,可以得到数列:0,5,15,20,25 2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92。
年,在澳大利亚悉尼举行的奥运会上,女子举重正式列为比赛项目,该项目共设置了7个级别,其中交情的4个级别体重组成数列(单位:kg):48,53,58,63。
教师提问学生这几组数有什么特点?学生回答从第二项开始,每一项与前一项的差都等于一个常数,教师引出等差数列。
环节二:探索新知 1.等差数列的概念
学生阅读教材,同桌讨论,类比等比数列总结出等差数列的概念
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
问题1:等差数列的概念中,我们应该注意哪些细节呢?
环节三:课堂练习
抢答:下列数列是否为等差数列?(1)1,2,4,6,8,10,12,……(2)0,1,2,3,4,5,6,……(3)3,3,3,3,3,3,3,……(4)-8,-6,-4,-2,0,2,4,……(5)3,0,-3,-6,-9,…… 环节四:小结作业
小结:1.等差数列的概念及数学表达式。
关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。
高中数学课件【篇9】
一、教学内容分析:
本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析:
任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想
本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标
通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点
重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
六、教学过程设计
(一)知识准备、新课引入
提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示)
提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]
(二)判定定理的'探求过程
1、直观感知
提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?
生1:例举日光灯与天花板,树立的电线杆与墙面。
生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。
[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]
2、动手实践
教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。
[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]
3、探究思考
(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行
(2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?
4、归纳确认:(多媒体幻灯片演示)
直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。
简单概括:(内外)线线平行?线面平行a符号表示:ba
高中数学教师心得感悟一篇
我们经常会在阅读时读到一些优秀的范文,这些优秀的范文里有很多值得借鉴的地方,阅读范文可以锻炼文笔,提高写作能力。看一些范文能够帮助自己了解更多的知识,那么,您看过哪些值得借鉴的教师相关优秀范文吗?下面是小编帮大家编辑的《高中数学教师心得感悟一篇》,希望能为您提供更多的参考。
为了提高教学水平,学校都会组织各科老师出去旁听他人授课的活动。活动结束后再写一篇听课心得体会总结一二。这里以数学为例,准备了一篇高中数学教师听课心得体会范文供参考。
高中数学听课心得体会范文
xxxx年xx月xx日,xx市高中数学教研室组织全市各高中骨干教师在xx三中观摩了两节数学公开课。一节是柳老师所讲的.“直线与圆的位置关系”;一节是董老师所讲的“直线与平面平行的判定”。
两位老师都有很扎实的教学功底,在提高学生课堂上的参与程度以及主动探究知识的积极性、引导等方面都有上佳表现。师生配合默契,学生的情绪高涨,两节课都在和谐、紧张的气氛下,既让学生获取了知识,又提升了学生思考问题、解决问题的能力。其中很多方法与细节的处理,值得我学习和回味。专家老师们的精彩点评也给我留下了深刻的印象。将各位老师们的观点与自己在教学中的实际情况进行对照,使我感受颇多,受益匪浅。
学案分三部分:预习案、课堂案和巩固案。教师于每节课后布置本节课的巩固案和下节课的预习案;上课时,根据学生自学时提出的问题或教师上课前利用自学检测收集的信息,结合本节课的重点、难点进行精讲答疑,课堂上采用“学生为主体,教师为主导”的探究性学习模式。
长期以来,在实际教学过程中,教师的主导地位一直在挤压着学生的主体性,不足以保证学生在学习过程中真正获得主体地位。所以,人们过多地重视、强调-教师的教学技巧,过多地依靠教师的能力而缺乏有效的、容易仿效的机制。学案的提出,在很大程度上弥补这些缺陷,使学生主体性和自主性的培养得到教学过程结构的保证,也使教师的教学主导作用得到了有效(而且有形的体现。“学案导学”以学案教案为载体,以突出学生学习的主体性,培养学生学习能力、情感态度,提高课堂教学效率为目的,以“导学、诱思”为特点的学法指导教学策略体系。与传统的教学方式相比较,其突出优点是发挥学生的主体作用,突出学生的自学行为,注重学法指导,强化能力培养,并注重学生间的互助交流,把学生由观众席彻底推向表演舞台。通过观摩与讨论,我对“学案导学式”教学模式的理论有了更深的理解,对其实现方式有了切身的体会。
这篇高中数学教师听课心得体会总结范文中可以看出数学授课并不是一成不变的,辛勤的园丁们不辞辛苦从一代代的经验中不断总结、提升教学质量,增强学生学习的主动性。
高中数学必修一课件
您的需求是我们最大的关注点所以我们编辑了“高中数学必修一课件”。教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师都要用心的考虑自己的教案课件。教案是教师教学表现的直接体现。希望你喜欢我的分享别忘了把它收藏起来哦!
高中数学必修一课件 篇1
一、创设情境,激趣导入
师:前段时间老师去了黄河附近旅游,祖国山川的美景,让我留连忘返。给我留下印象最深的是黄河边上一个以摆渡为生的老人。他生活在黄河边,工作在黄河边,他那勤劳勇敢的精神,让我难以忘怀。同学们,知道什么是“摆渡”吗?(生看课件,理解“摆渡”一词。)
(做“你说我猜”的游戏,摆渡船开始状态在南岸。学生说数,教师猜测船在哪一岸?)
师:其实老师掌握了数的奇偶性的规律。(师板书:数的奇偶性。)这节课我们就来研究数的奇偶性的规律,等你们把它的规律找出来了,你猜得会比我还要准、还要快!
【设计意图:通过试讲发现:学生虽然已经上5年级了,但对“摆渡”一词还是理解不透。为了解决这个问题,创设了去黄河旅游的情境,使学生在不知不觉中理解了“摆渡”一词的词义,也为继续学习扫清了障碍。从学生熟悉的生活情境中提出数学问题,在学生理解“摆渡”一词后,教师引导学生做“你说我猜”的游戏,学生由此产生疑问。这大大地激发了他们的学习兴趣,为后面的学习探究奠定了坚实的基础。】
二、观察思考,发现规律
(同桌研讨:用什么方法可以知道船在哪岸呢?)
【设计意图:根据学生的年龄特征以及学生的需要,应着重引导学生掌握学习方法,会运用恰当的方法解决数学问题。】
学生汇报:1.数数的方法。随着学生的回答,师适时演示课件。2.列表方法。师演示列表方法,生完成手中的表。
让学生观察“画示意图”、“列表”两种解题方法,引导他们从中发现规律。
学生总结:船摆渡奇数次,船在北岸。船摆渡偶数次,船在南岸。
师:老师就是用这个规律,很快判断出小船在哪侧岸边。现在你们也想试一试吗?(教师说数,学生猜船在哪侧的岸边。)
师:你们猜得可真快,如果有人说小船开始状态在南岸,摆渡100次,小船在北岸,这种说法对吗?为什么?(指生说理由。)
师:通过解决这些问题,观察板书,你有什么发现?
(学生尝试总结出规律:开始状态在南岸,奇数次与开始状态相反,偶数次与开始状态相同。)
师:像这样的规律在我们生活中随处可见。下面我们来看翻杯子游戏。请看大屏幕:有一个杯子开始状态是杯口朝上,那么翻动1次杯口朝下,翻动2次杯口朝上,用你自己喜欢的方法,想一想、做一做,翻动10次后,杯口的方向朝哪个地方?19次呢?(生回答并说明理由。)
师:你还能提出其他问题吗?(生提问题并互相解决。)
【设计意图:在此环节,只让学生看演示并没有动手去翻杯子。目的在于让学生内化体会,学会运用解决问题的方法。5年级学生不应只停留在动手操作上,更多的应该是训练思维的发展。另外,在此环节设计提问题,目的为下一环节的提问作铺垫。】
师:生活中有许多这样具有奇偶性规律的事物,你能举几个例子吗?你还能提出类似的数学问题吗?
【设计意图:在有趣的互动活动中反馈所学知识,让学生明白数学是服务于生活的。学生兴趣盎然,积极参与探究活动。在数学活动中探索数的特征,体验研究方法,提高学生的推理能力。】
师:我们今天利用数的奇偶解决了身边的许多问题,老师很高兴,所以,想送给你们一些礼物。不过,这些礼物需要你们用智慧才能获得,大家有信心获得礼物吗?
(师出示两个盒子,让学生观察两个盒子里的数有什么特点。)
师:从两个盒子里各抽一张卡片,然后把它们加起来,结果是多少,礼物图中相应数字的礼物就是你的。(礼物兑奖表略。)
(在抽奖过程中学生发现:偶数加奇数都得奇数,奖品都在偶数上,所以怎么抽也抽不到奖品。)
师:是不是所有的偶数加奇数都得奇数,大家来验证一下。(小组讨论,并交流。)
(生寻找原因,总结发现:奇数+偶数=奇数。)
师:老师,现在想让每个前来抽奖的同学都能获得奖品,让你们改变规则,会怎样改?
(学生积极想办法,得出结论:偶数+偶数=偶数、奇数+奇数=偶数。)
【设计意图:通过此游戏激发学生的学习兴趣,让学生带着愉悦的心情探索新知,使枯燥的数学课注入了新鲜的活力,调动了学生兴奋的神经,数学探究将事半功倍。】
三、运用规律,拓展延伸
(课件出示:不用计算,判断算式的结果是奇数还是偶数?)
10389+20__11387+131
268+1024 38946+3405
学生判断算式的结果是奇数还是偶数?说明理由。
(课件出示:不用计算,判断算式的结果是奇数还是偶数?)
3721-20__22280-10238800-345
学生先判断结果是奇数还是偶数,再根据上面减法算式找出减法中数的奇偶性的变化规律。(小组研讨,寻找规律。)
学生汇报后,课件出示:
奇数-奇数=偶数偶数-偶数=偶数
奇数-偶数=奇数偶数-奇数=奇数
【设计意图:在已有知识的基础上,根据学生的实际情况,进行拓展。目的在于开发学生的潜能,提高和训练学生的思维能力。】
高中数学必修一课件 篇2
1.知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积的求法.
2.能运用公式求解柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
通过学习空间几何体的结构特征,空间几何体的三视图和直观图,了解了空间几何体和平面图形之间的关系,从中反映出一个思想方法,即平面图形和空间几何体的互化,尤其是空间几何问题向平面问题的转化。该部分内容中有些是学生已经熟悉的,在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想——化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用。
重点:知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积公式。
难点:会求柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
4教学过程 4.1 第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积S表=S侧+S上底+S下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.
例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )
(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )
A.B.2 C. D.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
1.(·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )
2.(·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )
1第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积S表=S侧+S上底+S下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.
例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )
(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )
A.B.2 C. D.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )
2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )
高中数学必修一课件 篇3
讲义1: 空 间 几 何 体
一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、
锥体、台体、球体及简单组合体的结构特征,并
能运用这些特征描述现实生活中简单物体的结
构.
二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.
三、教学难点:柱、锥、台、球的结构特征的概括.
四、教学过程:
(一)、新课导入:
1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.
(二)、讲授新课:
1. 教学棱柱、棱锥的结构特征:
①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力
推斜后,仍然有哪些公共特征?
②、定义:有两个面互相平行,其余各面都是四边形,且
每相邻两个四边形的公共边都互相平行,由这些面所围成
的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).
结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.
③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.
表示:棱柱ABCDE-A’B’C’D’E’
④、讨论:埃及金字塔具有什么几何特征?
⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.
结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?
⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?
★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都
是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形
★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
2. 教学圆柱、圆锥的结构特征:
① 讨论:圆柱、圆锥如何形成?
② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.
→结合图形认识:底面、轴、侧面、母线、高. → 表示方法 ③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体.
④ 观察书P2若干图形,找出相应几何体;
三、巩固练习:
1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.
2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.
3.正四棱锥的底面积为46cm,侧面等腰三角形面积为6cm,求正四棱锥侧棱.
(四)、 教学棱台与圆台的结构特征:
① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?
② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.
结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得?
③ 讨论:棱台、圆台分别具有一些什么几何性质? 22
★ 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.
★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.
④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? (以台体的上底面变化为线索)
2.教学球体的结构特征:
① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→ 球的表示.
② 讨论:球有一些什么几何性质?
③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)
3. 教学简单组合体的结构特征:
① 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?
② 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.
4. 练习:圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)
(五)、巩固练习:
1. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?
2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高
3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.
★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。
●解:考查其截面图,利用平行线的成比例,可得所求为9厘米。
★ 例题2:已知三棱台ABC—A′B′C′ 的上、下两底均为正三角形,边长分别为3和6,平行于底面的截面将侧棱分为1:2两部分,求截面的面积。(4)
★ 圆台的上、下度面半径分别为6和12,平行于底面的截面分高为2:1两部分,求截面的面积。(100π)
▲ 解决台体的平行于底面的截面问题,还台为锥是行之有效的一种方法。
讲义2、空间几何体的三视图和直视图
一、教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体. 掌握斜二测画法;能用斜二测
画法画空间几何体的直观图.
二、教学重点:画出三视图、识别三视图.
三、教学难点:识别三视图所表示的空间几何体.
四、教学过程:
(一)、新课导入:
1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2. 引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远
近高低各不同。不识庐山真面目,只缘身在此山中。” 对
于我们所学几何体,常用三视图和直观图来画在纸上.
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形. 用途:工程建设、机械制造、日常生活.
(二)、讲授新课:
1. 教学中心投影与平行投影:
① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上
产生影子。人们将这种自然现象加以的抽象,总结其
中的规律,提出了投影的方法。
② 中心投影:光由一点向外散射形成的投影。其投影的大小随
物体与投影中心间距离的变化而变化,所以其投影不
能反映物体的实形.
③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.
→讨论:点、线、三角形在平行投影后的结果.
2. 教学柱、锥、台、球的三视图:
① 定义三视图:正视图(光线从几何体的前面向后面正投影);
侧视图(从左向右)、俯视图
② 讨论:三视图与平面图形的关系? → 画出长方体的三视图,
并讨论所反应的长、宽、高
③ 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自
左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. → 正视图、侧视图、俯视图
③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (
④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的`位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.(试变化以上的三视图,说出相应几何体的摆放)
3. 教学简单组合体的三视图:
① 画出教材P16 图(2)、(3)、(4)的
三视图.
② 从教材P16思考中三视图,说出几何体.
4. 练习:
① 画出正四棱锥的三视图.
④ 画出右图所示几何体的三视图.
③ 右图是一个物体的正视图、左视图和俯视图,
试描述该物体的形状.
(三)复习巩固
高中数学必修一课件 篇4
一. 学习目标
(1)通过实例体会分布的意义与作用; (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图,频率折线图; (3)通过实例体会频率分布直方图,频率折线图,茎叶图的各自特点,从而恰当的选择上述方法分析样本的分布,准确的作出总体估计。
二. 学习重点
三.学习难点
能通过样本的频率分布估计总体的分布。
四.学习过程 (一)复习引入
(1 )统计的核心问题是什么?
(2 )随机抽样的几种常用方法有哪些?
(3)通过抽样方法收集数据的目的是什么?
(二)自学提纲
1.我们学习了哪些统计图?不同的统计图适合描述什么样的数据?
2.如何列频率分布表?
3.如何画频率分布直方图?基本步骤是什么?
4.频率分布直方图的纵坐标是什么?
5.频率分布直方图中小长方形的面积表示什么?
6.频率分布直方图中小长方形的面积之和是多少?
(三)课前自测
1.从一堆苹果中任取了20只,并得到了它们的质量(单位:g)数据分布表如下:
分组 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 频数 1 2 3 10 1 则这堆苹果中,质量不小于120g的苹果数约占苹果总数的__________%. 2.关于频率分布直方图,下列说法正确的是( ) A.直方图的高表示该组上的个体在样本中出现的频率 B.直方图的高表示取某数的频率 C.直方图的高表示该组上的样本中出现的频率与组距的比值 D.直方图的高表示该组上的个体在样本中出现的频数与组距的比值 3.已知样本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么频率为0.2的范围是( ) A、5.5-7.5 B、7.5-9.5 C、9.5-11.5 D、11.5-13.5 (四)探究教学 典例:城市缺水问题(自学教材65页~68页)
问题1.你认为为了较为合理地确定出这个标准,需要做哪些工作? 2.如何分析数据?根据这些数据你能得出用水量其他信息吗? 知识整理: 1.频率分布的概念: 频率分布: 频数: 频率:
2.画频率分布直方图的步骤: (1).求极差: (2).决定组距与组数 组距: 组数: (3).将数据分组 (4).列频率分布表 (5).画频率分布直方图 问题: .
1.月平均用水量在2.5—3之间的频率是多少?
2.月均用水量最多的在哪个区间?
3.月均用水量小于4.5 的频率是多少?
4.小长方形的面积=?
5.小长方形的面积总和=?
6.如果希望85%以上居民不超出标准,如何制定标准?
7.直方图有那些优点和缺点?
例题讲解: 例1有一个容量为50的样本数据的分组的频数如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出样本的频率分布表; (2)画出频率分布直方图; (3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少? (4)数据小于21.5的百分比是多少?
3.频率分布折线图、总体密度曲线 问题1:如何得到频率分布折线图 ? 频率分布折线图的概念:
问题2:在城市缺水问题中将样本容量为100,增至1000,其频率分布直方图的情况会有什么变化?假如增至10000呢?
总体密度曲线的概念:
注:用样本分布直方图去估计相应的总体分布时,一般样本容量越大,频率分布直方图就会无限接近总体密度曲线,就越精确地反映了总体的分布规律,即越精确地反映了总体在各个范围内1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。
4. 茎叶图 茎叶图的概念: 茎叶图的特征:
小结:.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
课堂小结:
当堂检测:
1. 一个社会调查机构就某地居民的月收入调查了10000人, 并根据所得数据画了样本的频率分布直方图(如下图)。 为了分析居民的收入与年龄、学历、职业等方面的关系, 要从这10000人中再用分层抽样方法抽出100人作进一步 调查,则 [2500,3000)(元)月收入段应抽取 人。
2、为了解某校高三学生的视力情况,随机抽查了该校200名高三学生的视力情况,得到频率分布直方图(如图), 由于不慎将部分数据丢失,但知道前四组的频数成等比数 列,后6组的频数成等差数列,设最多一组学生数为a,视 力在4.6到5.0之间的频率为b,则
a+b= . 3.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则ba=______. 4.为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181
(1)列出样本的频率分布表。
(2)画出频率分布直方图。
(3)画频率分布折线图;
高中数学必修一课件 篇5
一、目标认知 学习目标:
1.理解函数的单调性、奇偶性定义;
2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.会利用图象和定义判断函数的奇偶性;
4.掌握利用函数性质在解决有关综合问题方面的应用. 重点、难点:
1.对于函数单调性的理解;
2.函数性质的应用.
二、知识要点梳理 1.函数的单调性
(1)增函数、减函数的概念
一般地,设函数f(x)的定义域为A,区间
如果对于M内的任意两个自变量的值x
1、x2,当x1
如果对于M内的任意两个自变量的值x
1、x2,当x1f(x2),那么就说f(x)在区间M上是减函数.
如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间.
要点诠释:
[1]“任意”和“都”;
[2]单调区间与定义域的关系----局部性质;
[3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;
[4]不能随意合并两个单调区间.
(2)已知解析式,如何判断一个函数在所给区间上的单调性?
基本方法:观察图形或依据定义.
2.函数的奇偶性
偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数.
奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数.
要点诠释:
[1]奇偶性是整体性质;
[2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;
[3]f(-x)=f(x)的等价形式为:,
f(-x)=-f(x)的等价形式为:;
[4]由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;
[5]若f(x)既是奇函数又是偶函数,则必有f(x)=0;
[6]
, .
三、规律方法指导
1.证明函数单调性的步骤:
(1)取值.设是
定义域内一个区间上的任意两个量,且
;
(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;
(3)定号.判断差的正负或商与1的大小关系;
(4)得出结论.
2.函数单调性的判断方法:
(1)定义法;
(2)图象法;
(3)对于复合函数在区间
或者
,若
在区间上是单调函数;若
为增函数;若
上是单调函数,则
与与单调性相同(同时为增或同时为减),则单调性相反,则
为减函数. 3.常见结论:
(1)若
(2)若是增函数,则和
为减函数;若
和
是减函数,则
为增函数;
均为增(或减)函数,则在的公共定义域上为增(或减) 函数;
(3)若且为增函数,则函数为增函数,为减函数;
若
(4)若奇函数数,且有最小值 且在
为减函数,则函数为减函数,
,则
在
为增函数. 在
是增函是增函数.
上是增函数,且有最大值
在;若偶函数是减函数,则
2 经典例题透析
类型
一、函数的单调性的证明
1.证明函数上的单调性.
证明:
总结升华:
[1]证明函数单调性要求使用定义;
[2]如何比较两个量的大小?(作差)
[3]如何判断一个式子的符号?(对差适当变形)
举一反三:
【变式1】用定义证明函数
总结升华:可以用同样的方法证明此函数在
上是减函数.
上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.
类型
二、求函数的单调区间
2. 判断下列函数的单调区间;
(1)y=x2-3|x|+2; (2)
举一反三:
【变式1】求下列函数的单调区间:
(1)y=|x+1|; (2)
总结升华:
[1]数形结合利用图象判断函数单调区间;
[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.
[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.
类型
三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)
3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与
的大小.
4. 求下列函数值域:
(1); 1)x∈[5,10]; 2)x∈(-3,-2)∪(-2,1);
(2)y=x2-2x+3;
1)x∈[-1,1]; 2)x∈[-2,2].
4 举一反三:
【变式1】已知函数.
(1)判断函数f(x)的单调区间;
(2)当x∈[1,3]时,求函数f(x)的值域.
思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.域.
,第二问即是利用单调性求函数值
5. 已知二次函数f(x)=x2-(a-1)x+5在区间
上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.
类型
四、判断函数的奇偶性
6. 判断下列函数的奇偶性:
(1)
(2)
(3)f(x)=x2-4|x|+3
(4)f(x)=|x+3|-|x-3|
(5)
(6)
(7)
思路点拨:根据函数的奇偶性的定义进行判断.
举一反三:
【变式1】判断下列函数的奇偶性:
(1)
;
(2)f(x)=|x+1|-|x-1|;
(3)f(x)=x2+x+1;
(4).
思路点拨:利用函数奇偶性的定义进行判断.
举一反三:
【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.
类型
五、函数奇偶性的应用(求值,求解析式,与单调性结合)
7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).
8. f(x)是定义在R上的奇函数,且当x
6 9. 设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)
类型
六、综合问题
10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象重合, 设a>b>0,给出下列不等式,其中成立的是_________.
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)
(1)11. 求下列函数的值域:
(2)
(3)
的图象与f(x)
思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t范围.
解:
12. 已知函数f(x)=x2-2ax+a2-1.
(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;
(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.
7 13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.
证明:
14. 判断函数上的单调性,并证明.
15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.
解:
学习成果测评 基础达标
一、选择题
1.下面说法正确的选项( )
A.函数的单调区间就是函数的定义域
B.函数的多个单调增区间的并集也是其单调增区间
C.具有奇偶性的函数的定义域定关于原点对称
D.关于原点对称的图象一定是奇函数的图象
2.在区间上为增函数的是( )
A.
C.
B.
D.
8
3.已知函数
A.
B.
4.若偶函数在
上是增函数,则下列关系式中成立的是( )
C.
D.
为偶函数,则
的值是( )
A.
B.
C. 5.如果奇函数是( )
A.增函数且最小值是
C.减函数且最大值是
6.设是定义在在区间
D.
上是增函数且最大值为,那么
在区间
上
B.增函数且最大值是
D.减函数且最小值是
上的一个函数,则函数,在上一定是( )
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.非奇非偶函数.
7.下列函数中,在区间
上是增函数的是( )
A.
B.
C.
D.
8.函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上是减函数,则( )
A. f(3)+f(4)>0
B. f(-3)-f(2)
C. f(-2)+f(-5)
D. f(4)-f(-1)>0
二、填空题
1.设奇函数的定义域为
,若当的解是____________.
时,
的图象
如右图,则不等式
2.函数
3.已知
4.若函数____________.
5.函数____________.
三、解答题
的值域是____________. ,则函数的值域是____________.
是偶函数,则的递减区间是在R上为奇函数,且,则当,
1.判断一次函数
2.已知函数(2)在定义域上
反比例函数,二次函数的单调性.
的定义域为,且同时满足下列条件:(1)是奇函数;
单调递减;(3)
3.利用函数的单调性求函数
4.已知函数
① 当
求的取值范围.
的值域;
. 时,求函数的最大值和最小值;
在区间
上是单调函数.
② 求实数的取值范围,使
10 能力提升
一、选择题
1.下列判断正确的是( )
A.函数数
C.函数函数
2.若函数
A.
C.
3.函数
A.
C.
4.已知函数围是( )
A.
B.
是奇函数
B.函数是偶函
是非奇非偶函数
D.函数既是奇函数又是偶
在上是单调函数,则的取值范围是( )
B.
D.
的值域为( )
B.
D.
在区间上是减函数,则实数的取值范
C.
D.
5.下列四个命题:(1)函数增函数;(2)若 函数的递增区间为正确命题的个数是( )
在时是增函数,与;(4)
也是增函数,所以
且
是;(3)
轴没有交点,则
和
表示相等函数.其中
A.
B.
C.
D.
6.定义在R上的偶函数则( )
A.
C.
二、填空题
1.函数
2.已知定义在______. 上的奇函数
,满足,且在区间上为递增,
B.
D.
的单调递减区间是____________________.
,当时,,那么时,
3.若函数
4.奇函数
则
5.若函数
三、解答题
1.判断下列函数的奇偶性 在区间
在上是奇函数,则的解析式为________.
上是增函数,在区间__________.
上的最大值为8,最小值为-1,
在上是减函数,则的取值范围为__________.
(1)
(2)
2.已知函数且当时,
的定义域为,且对任意
是
,都有
上的减函数;(2)函数
,恒成立,证明:(1)函数是奇函数.
3.设函数与
的定义域是
且
,
是偶函数,
是奇函数,且
4.设为实数,函数
(1)讨论
,求和的解析式.
,的最小值.
. 的奇偶性;(2)求综合探究
1.已知函数,的奇偶性依次为( )
A.偶函数,奇函数
B.奇函数,偶函数
C.偶函数,偶函数
D.奇函数,奇函数
2.若是偶函数,其定义域为
,且在
,则
上是减函数,则
的大小关系是( )
A.>
B.
C.
D.
3.已知_____.
,那么=
4.若
在区间上是增函数,则的取值范围是________.
5.已知函数果对于
6.当
7.已知
的定义域是,且满足,(1)求
;(2)解不等式
,,如
. ,都有时,求函数的最小值.
在区间内有一最大值,求的值.
8.已知函数的值. .
的最大值不大于,又当,求 14
[优质课件] 高中化学说课稿(一篇)
作为学生,阅读大量的范文是必不可少的,优秀的范文能让我们感到受益匪浅,阅读范文可以让我们更容易渡过独处的时间。高质量的范文能供更多人参考,你会借鉴优秀的优秀范文模板吗?以下是小编收集整理的“[优质课件] 高中化学说课稿(一篇)”,仅供参考,欢迎大家阅读。
【说教材分析】
1、本节在教材中的地位和功能
①卤代烃是实现烃与烃的含氧衍生物之间转化的重要桥梁。
②卤代烃是理解有机物基团相互影响的重要物质。
③卤代烃用途是帮助学生建立化学与生活联系的重要载体。
④卤化烃的消去反应是中学生学习消去反应概念的最佳选择。
2、本节教材的内容呈现
《卤代烃》这节课教材先呈现卤代烃的概念和物理性质,然后通过对其代表物——溴乙烷具体探究引导学生对卤代烃的化学性质从整体上掌握,教学过程中通过对溴乙烷在氢氧化钠水溶液和氢氧化钠乙醇溶液两种不同条件下发生反应的观察与思考,让学生在学习溴乙烷化学性质的同时,通过对比的方法认识有机化学的重要反应――消去反应。内容相对较多,需要2课时完成。
因此,在实际教学中打破教材格局,将“溴乙烷的结构和性质”作为完整内容一节课,“有关卤代烃的性质与应用”作为一节课。本节课是第一课时,介绍“溴乙烷的结构和性质”。
【说学习对象】
学习这本选修的学生为高二理科班学生,已经学习了必修1、2和选修3、4,具备一定的化学学科素养。通过前面的学习,大部分学生已经建立“结构决定性质”的化学思想,知道哪些因素影响化学反应的速率、效率。另外学生已经在必修2学习了乙醇、乙酸等烃的衍生物的知识。卤代烃也是一类重要的烃的衍生物,是联系烃和烃的衍生物的重要物质,在高考中也占居非常重要地位。根据学生的已有知识基础看,学生对本课时学习的主要困难应在于溴乙烷的水解反应和消去反应的设计与操作上,学生可能的学习策略是假设、讨论和实验探索方式为主。因此,在进行本课学习时,可以借鉴以前的方法,进一步运用学习醇、乙酸等烃衍生物的方法,指导本节知识的学习。
〖学习目标〗
1、知识和技能
(1)了解溴乙烷的结构特点、物理性质并掌握其化学性质
(2)理解溴乙烷水解反应和消去反应及其反应条件
2、过程与方法
用对比的方法学习溴乙烷的取代反应和消去反应,加深对二者的区别与联系的认识,认识反应条件对化学反应的重要性。
通过提出问题、科学猜测、实验验证、形成理论、解决问题的一系列过程,培养实验能力和创新思维能力。
3、情感、态度与价值观
激发学生学习化学的兴趣,培养学生用化学视角观察生活。
〖学习重、难点〗
重点:溴乙烷的结构特点和主要化学性质
难点:溴乙烷发生取代反应和消去反应的基本规律
【说教学方法】
1、发挥实验的功能,通过实验引发学生的认知冲突,通过实验获得解决问题的证据、验证猜想。
2、根据建构主义理论,创设一定的任务情景,通过问题线索引发学生在原有认知基础上主动建构新知识。充分体现学生是信息加工的主体、是意义的主动建构者,促进学生主动发展。
教学策略
情境引入
对比思考
提出问题
实验探究
对比讨论
拓展提高
太平洋惊现“垃圾岛”,足有六个英国大
对比乙烷与溴乙烷的结构特点
如何检验溴乙烷中的溴
溴乙烷与NaOH水溶液、NaOH醇溶液反应
反应条件不同导致反应产物不同
利用卤代烃进行的简单有机合成
太平洋有个巨型“垃圾岛”足有六个英国大
除了人们所知的七个大陆,在太平洋最人迹罕至的地方,又有一个“新大陆”正在生成——这个“新大陆”完全是由垃圾堆起来的,人们把它称为“第八大陆”。这个巨大的垃圾岛,面积是英国的六倍。
在过去60年间,这个垃圾带的面积一直在逐渐扩大。据报道,这里的垃圾多达1千万吨。这里的垃圾种类繁多,有塑料袋、装沐浴露的塑料瓶、拖鞋、儿童玩具、轮胎、饮料罐甚至塑料泳池……
设计意图:用新闻引课,激发学习兴趣,既让学生体会到塑料等卤代烃在我们生活中的重要作用,又让学生注意卤代烃的“过”。
垃圾岛的一部分
广州日报3月9日报
溴乙烷
乙烷
官能团
电子式
结构简式
结构式
化学式
名称
练一练
从二者组成上认识溴乙烷和乙烷物理性质的异同点,归纳物理性质,并实验检验。
设计意图:复习乙烷、溴乙烷的化学用语,对比二者组成,认识溴乙烷的结构并从分子结构角度认识物理性质的关系。
提出问题
1、从溴乙烷的结构分析,哪条键易断裂,为什么?
2、向溴乙烷中滴加硝酸酸化的硝酸银能否出现浅黄色沉淀,为什么?
要检验溴乙烷中的溴要先转化为Br-,怎样转化?
科学猜测
已知:CH3CH3与氢氧化钠溶液不能反应,CH3CH2Br能否与氢氧化钠溶液反应?若反应,可能有什么物质产生?
【科学推测】若反应,则生成乙醇和溴化钠。
设计意图:进一步提出问题,通过问题的解决帮助学生设计实验
如果让你设计实验证明溴乙烷能和氢氧化钠溶液发生反应。你如何解决以下三个问题:
(1)如何用实验证明溴乙烷的Br变成了Br―?另一产物推测是什么,用什么光谱检验为好?
(2)该反应的反应物是溴乙烷和氢氧化钠溶液,混合后是分层的,且有机物的反应一般比较缓慢,如何提高本反应的反应速率?
(3)装置应该是怎样的?大致有几部分。
比较2种装置做溴乙烷与氢氧化钠溶液反应的实验,你认为哪一种更好,解释原因。提示:溴乙烷沸点38。4℃。
选择1装置实验并检验Br—
通过实验完成溴乙烷水解反应的方程式,推理机理
〖交流、讨论〗①该反应属于哪一种化学反应类型?反应机理如何?
②NaOH溶液的作用是什么?
③为什么要加入HNO3酸化?
④若把CH3CH2Br换成CH2Br CH2Br,产物中生成什么?写出反应方程式
CH3CH2I中碘元素的检验方法
小结:卤代烃中卤素的检验步骤:
①取少量卤代烃;②加入NaOH溶液;
③加热煮沸;④冷却;
⑤加入硝酸酸化;⑥加入硝酸银溶液。
根据沉淀(AgX)的颜色可确定卤素的种类。
思考
探究实验:溴乙烷与NaOH醇溶液反应
通过实验完成溴乙烷消去反应的现象、方程式,推理反应机理机理
①乙醇在反应中起到了什么作用?
②如何检验乙烯气体?
③若3只试管中的试剂分别为水、溴的CCl4溶液、酸性KMnO4溶液,则各起什么作用?
【课堂练习】
分别写出下列卤代烃消去卤化氢所得各种产物的结构简式。
①CH3CH2CH2Cl ②
③
设计意图:通过“提出问题→科学猜测→实验验证→形成理论→发展理论→解决问题”这个过程使学生体会科学探究的乐趣,理解溴乙烷的水解反应和消去反应。
比较溴乙烷的取代反应和消去反应,完成下表
结论
生成物
反应条件
反应物
消去反应
取代反应
设计意图:通过讨论比较,使学生区别溴乙烷水解反应和消去反应的条件,进而理解反应条件不同产物不同的道理,更好的体会有机反应过程条件的重要性。
课堂小结
无醇则有醇有醇则无醇
溴乙烷
NaOH水溶液
生成乙醇
NaOH乙醇溶液
生成乙烯
【说板书设计】
第三节卤代烃
一、溴乙烷
1、分子组成和结构
2、物理性质
3、化学性质
(1)水解反应(取代反应)
现象:大试管中有浅黄色沉淀生成。
反应原理:CH3CH2Br+H-OH NaOH CH3CH2OH+HBr
或:CH3CH2Br+NaOH Δ CH3CH2OH+NaBr
(2)消去反应乙醇
现象:产生气体
反应原理:CH3CH2Br+NaOH Δ CH2=CH2 ↑+NaBr+H2O
二、消去反应含义:有机化合物在一定条件下,从分子中脱去一个小分子(如H2O、HX等)而生成不饱和(含双键或叁键)化合物的反应。
【说课堂练习】
1、指出下列方程式的反应类型(条件省略)
CH3CH2Cl+H2O → CH3CH2OH+HCl
CH3CH2OH → CH2=CH2 ↑+H2O
2 CH3CH2OH → CH3CH2OCH2CH3+H2O
2、下列物质与NaOH醇溶液共热可制得烯烃的是:
A.C6H5CH2Cl B.(CH3) 3CBr
C.CH3CHBr CH3 D.CH3 Cl
3、欲将溴乙烷转化为1,2—二溴乙烷,写出有关方程式?
【说课后作业】
1、拓展性作业:查阅资料并结合生活经验说明卤代烃的用途。查阅资料,阅读教材“科学视野”分析卤代烃对大气臭氧层的破坏及臭氧层的保护。
2、活动性作业:走访附近的有机玻璃店或洗衣店,了解是否使用了有机溶剂?向操作人员学习如何安全地使用有机溶剂?
谢谢
[课件必备] 高中数学教学思考其一
在不同的时期,我们看过不同的范文,这些范文能给我们带来很大的帮助,通过阅读范文可以提高我们的表达能力。阅读范文还能够让自己加深对写作的了解,有哪些可以借鉴的教师相关优秀范文呢?下面是小编帮大家编辑的《[课件必备] 高中数学教学思考其一》,相信您能找到对自己有用的内容。
新课程倡导的是教师是学生学习的引导者、组织者、合作者、促进者,是平等的,而不再是“传道”“解惑”的权威,更不是学生学习知识的“批发商”。将学习的主动权交还给学生,是这节课给我的最大的启示。
首先,我让他们先感受多米诺骨现象,通过播放一段影片并且联系生活中的事物和现象,比较这些现象之间的相似之处,感受多米诺骨牌的原理,并在引导他们类比到数学的证明题中,引出数学归纳法,分析三个步骤间的逻辑推理关系。
接着,选取三道由易到难的练习,以填空到不做任何提示的方式过渡,让学生经历“尝试——熟练运用”的过程,强化使用数学归纳法的步骤和注意事项。设置课堂教学如果以灌输为主的,总以为只要抓紧时间将基础知识讲完,然后进行大量的练习和讲评、多讲些例题,就能提高学生的数学成绩。这样的课看起来效率很高,其实不然。因为有些题目讲过几遍,学生依然会做错,原因就在于灌输的课堂往往不能从学生的实际出发,纠正学生本来的错误,而是把教师的想法和解法填鸭给学生,几乎没有师生之间的交流与互动,这与新课程改革的方向相背离。于是我大胆采取以练为主,例题练习合二为一的方式,学生刚明白数学归纳法的原理,就动手运用,避免不了的要犯错误,我再抓住时机纠正这些错误,一边强化使用归纳法的步骤,一边规范解题的过程,
这样的教学方式学生自然是更感兴趣的,提前发现错误肯定比等到做作业和练习甚至考试时再发现更好,所以这样的课堂教学也是更高效的。
最后我以微软的一道面试题结束整节课,目的是想学生们知道自己今天所学的虽然是数学上的一种证明方法,但其实也是一种思维方法,甚至在关系自己前程的一场面试中,只要会运用它,就能取得成功。
课件范文: 高中数学教学思考
对于高中阶段的数学学习,更多强调的是学生的思维品质的培养,注重的是学生在掌握了初步的知识的基础上,透过分析、归纳、综合,不断地对所学知识进行演绎,经过不断地推导总结,对知识构成本质上的认识。解决学生的思维障碍对于高中数学的学习有很大的用心好处。根据对这些不断地总结思考,对于解决高中数学思维障碍,我有以下几点认识和思考。
1.教师在教学过程中应熟悉学生已有的知识状况
高中数学,相比于初中和小学阶段的数学,比较注重于逻辑思考。因此,教师在讲解新的知识的时候,要先回顾教学需要用到的基础知识,做好新旧知识的衔接,不让学生觉得突兀。例如,在刚开始学习高中数学的时候,一般都要先复习初中阶段学到的一元二次函数的具体资料,而对于那些不含任何参数的函数的最大值和最小值的求解比较简单,对于那些内含参数的求解可能对于很多的学生有点困难。在这个时候,我就先从不含参数的函数最大值和最小值求解开始讲起,逐步过渡到内含参数的函数的最大值最小值的求解,最后对求解区间变化的题目进行讲解。经过这样几步的层层递进,学生就会掌握各种一元二次函数的最值求解问题,也在必须程度上调动了全班学生的学习用心性。学生的思维也变得很清晰、很系统,对知识点构成了总体的认识。
2.教师在教学过程中应侧重于学生的发散思维潜力的培养
在高中数学的教学过程中,很多的教师只注重集中思维的培养,不重视提升学生的发散思维潜力。其实,发散思维对于高中数学的学习是至关重要的,能够很好地帮忙学生掌握教材中的基础知识,更加灵活自如地应用知识,这也是新的时代对高中数学教学提出的新的要求。在讲解数学问题的时候,教师不能固定学生的思维,同一道题教师要引导学生进行不同的思考,鼓励学生从不同的思考角度想出新的方法来解决同一个问题。发散思维能够充分调动学生的系统的知识网络,使学生的阶梯思路更加开阔,知识之间的联系也变得更加密切。教学中,透过引入开放性的数学题目,使学生突破常规的思维方法,解决学生的思维障碍,在课堂上引导学生从不同的角度来处理问题,做到解题的思路和方法的灵活应用,从而突破学生的数学思维障碍。
3.教师在教学过程中应更新教学理念,改善教学方法
教学本来就是一种认识新事物的过程,教师要根据认识新事物的规律来引导学生在已有的知识的基础上能够做好与新知识的衔接,在头脑中建立起二者之间的相互关系。教学方法的改善要思考到学生的实际状况,不能只按照教师自己的逻辑思考进行“填鸭式”的教学。教师要讲教材中的一些定义和定理引导学生深刻理解其内涵,从问题的表面去逐步挖掘其本质性的东西,要使学生逐步构成抽象的思维,能够在解决一些经常见到的数学问题的同时也要尝试着解决一些抽象的数学难题。在遇到一些难以解决的问题时,要引导学生变换思维方式,探索解决问题的新的方法和手段。
4.教师在课堂教学中应将数学思想方法作为教学的重点
高中数学的学习更多的是数学思维方法的学习。学生在学习中要逐步掌握一些常见的数学思维方法,比如数学建模。对于数学的学习,不在于做了多少的题,而是在做每一种类型的题目的时候能够领悟其中用到的数学思维方法。一旦掌握了解题的思维方法,至于计算,就是一些基础技能的考查了。教师要引导学生在掌握数学思维方法的基础上,在解题过程中能够透过分析题目,想到用哪一种思维方法来解决问题,或者透过适当地转换形式,以适用某个数学思维方法。综上所述,在高中数学的教学过程中,教师要不断地进行教学总结,要掌握班上学生的数学基础状况,培养学生集中思维的同时要重视发散思维潜力的培养,加强自身的业务潜力,根据学生的反馈信息改善教学方法,将对数学思想方法的教学作为重点。教师要不断地在实践当中进行探索和发现,总结教学的经验,并进行及时的改善,只有这样才能不断改善高中数学教学,解决学生的数学思维障碍,这对于高中数学的教学具有深远的重大好处。
课件范文: 高中数学教学思考
对于高中阶段的数学学习,更多强调的是学生的思维品质的培养,注重的是学生在掌握了初步的知识的基础上,透过分析、归纳、综合,不断地对所学知识进行演绎,经过不断地推导总结,对知识构成本质上的认识。解决学生的思维障碍对于高中数学的学习有很大的用心好处。根据对这些不断地总结思考,对于解决高中数学思维障碍,我有以下几点认识和思考。
1.教师在教学过程中应熟悉学生已有的知识状况
高中数学,相比于初中和小学阶段的数学,比较注重于逻辑思考。因此,教师在讲解新的知识的时候,要先回顾教学需要用到的基础知识,做好新旧知识的衔接,不让学生觉得突兀。例如,在刚开始学习高中数学的时候,一般都要先复习初中阶段学到的一元二次函数的具体资料,而对于那些不含任何参数的函数的最大值和最小值的求解比较简单,对于那些内含参数的求解可能对于很多的学生有点困难。在这个时候,我就先从不含参数的函数最大值和最小值求解开始讲起,逐步过渡到内含参数的函数的最大值最小值的求解,最后对求解区间变化的题目进行讲解。经过这样几步的层层递进,学生就会掌握各种一元二次函数的最值求解问题,也在必须程度上调动了全班学生的学习用心性。学生的思维也变得很清晰、很系统,对知识点构成了总体的认识。
2.教师在教学过程中应侧重于学生的发散思维潜力的培养
在高中数学的教学过程中,很多的教师只注重集中思维的培养,不重视提升学生的发散思维潜力。其实,发散思维对于高中数学的学习是至关重要的,能够很好地帮忙学生掌握教材中的基础知识,更加灵活自如地应用知识,这也是新的时代对高中数学教学提出的新的要求。在讲解数学问题的时候,教师不能固定学生的思维,同一道题教师要引导学生进行不同的思考,鼓励学生从不同的思考角度想出新的方法来解决同一个问题。发散思维能够充分调动学生的系统的知识网络,使学生的阶梯思路更加开阔,知识之间的联系也变得更加密切。教学中,透过引入开放性的数学题目,使学生突破常规的思维方法,解决学生的思维障碍,在课堂上引导学生从不同的角度来处理问题,做到解题的思路和方法的灵活应用,从而突破学生的数学思维障碍。
3.教师在教学过程中应更新教学理念,改善教学方法
教学本来就是一种认识新事物的过程,教师要根据认识新事物的规律来引导学生在已有的知识的基础上能够做好与新知识的衔接,在头脑中建立起二者之间的相互关系。教学方法的改善要思考到学生的实际状况,不能只按照教师自己的逻辑思考进行“填鸭式”的教学。教师要讲教材中的一些定义和定理引导学生深刻理解其内涵,从问题的表面去逐步挖掘其本质性的东西,要使学生逐步构成抽象的思维,能够在解决一些经常见到的数学问题的同时也要尝试着解决一些抽象的数学难题。在遇到一些难以解决的问题时,要引导学生变换思维方式,探索解决问题的新的方法和手段。
4.教师在课堂教学中应将数学思想方法作为教学的重点
高中数学的学习更多的是数学思维方法的学习。学生在学习中要逐步掌握一些常见的数学思维方法,比如数学建模。对于数学的学习,不在于做了多少的题,而是在做每一种类型的题目的时候能够领悟其中用到的数学思维方法。一旦掌握了解题的思维方法,至于计算,就是一些基础技能的考查了。教师要引导学生在掌握数学思维方法的基础上,在解题过程中能够透过分析题目,想到用哪一种思维方法来解决问题,或者透过适当地转换形式,以适用某个数学思维方法。综上所述,在高中数学的教学过程中,教师要不断地进行教学总结,要掌握班上学生的数学基础状况,培养学生集中思维的同时要重视发散思维潜力的培养,加强自身的业务潜力,根据学生的反馈信息改善教学方法,将对数学思想方法的教学作为重点。教师要不断地在实践当中进行探索和发现,总结教学的经验,并进行及时的改善,只有这样才能不断改善高中数学教学,解决学生的数学思维障碍,这对于高中数学的教学具有深远的重大好处。
课件范文: 高中数学教学思考
在学校,我们看过许多范文,这些优秀的范文能我们学到很多的东西,阅读范文可以帮助我们平复心情,让自己冷静思考。高质量的范文能供更多人参考,你觉得哪些优秀范文是值得借鉴的呢?小编为此仔细地整理了以下内容《课件范文: 高中数学教学思考》,希望能对您有所帮助,请收藏。
对于高中阶段的数学学习,更多强调的是学生的思维品质的培养,注重的是学生在掌握了初步的知识的基础上,透过分析、归纳、综合,不断地对所学知识进行演绎,经过不断地推导总结,对知识构成本质上的认识。解决学生的思维障碍对于高中数学的学习有很大的用心好处。根据对这些不断地总结思考,对于解决高中数学思维障碍,我有以下几点认识和思考。
1.教师在教学过程中应熟悉学生已有的知识状况
高中数学,相比于初中和小学阶段的数学,比较注重于逻辑思考。因此,教师在讲解新的知识的时候,要先回顾教学需要用到的基础知识,做好新旧知识的衔接,不让学生觉得突兀。例如,在刚开始学习高中数学的时候,一般都要先复习初中阶段学到的一元二次函数的具体资料,而对于那些不含任何参数的函数的最大值和最小值的求解比较简单,对于那些内含参数的求解可能对于很多的学生有点困难。在这个时候,我就先从不含参数的函数最大值和最小值求解开始讲起,逐步过渡到内含参数的函数的最大值最小值的求解,最后对求解区间变化的题目进行讲解。经过这样几步的层层递进,学生就会掌握各种一元二次函数的最值求解问题,也在必须程度上调动了全班学生的学习用心性。学生的思维也变得很清晰、很系统,对知识点构成了总体的认识。
2.教师在教学过程中应侧重于学生的发散思维潜力的培养
在高中数学的教学过程中,很多的教师只注重集中思维的培养,不重视提升学生的发散思维潜力。其实,发散思维对于高中数学的学习是至关重要的,能够很好地帮忙学生掌握教材中的基础知识,更加灵活自如地应用知识,这也是新的时代对高中数学教学提出的新的要求。在讲解数学问题的时候,教师不能固定学生的思维,同一道题教师要引导学生进行不同的思考,鼓励学生从不同的思考角度想出新的方法来解决同一个问题。发散思维能够充分调动学生的系统的知识网络,使学生的阶梯思路更加开阔,知识之间的联系也变得更加密切。教学中,透过引入开放性的数学题目,使学生突破常规的思维方法,解决学生的思维障碍,在课堂上引导学生从不同的角度来处理问题,做到解题的思路和方法的灵活应用,从而突破学生的数学思维障碍。
3.教师在教学过程中应更新教学理念,改善教学方法
教学本来就是一种认识新事物的过程,教师要根据认识新事物的规律来引导学生在已有的知识的基础上能够做好与新知识的衔接,在头脑中建立起二者之间的相互关系。教学方法的改善要思考到学生的实际状况,不能只按照教师自己的逻辑思考进行“填鸭式”的教学。教师要讲教材中的一些定义和定理引导学生深刻理解其内涵,从问题的表面去逐步挖掘其本质性的东西,要使学生逐步构成抽象的思维,能够在解决一些经常见到的数学问题的同时也要尝试着解决一些抽象的数学难题。在遇到一些难以解决的问题时,要引导学生变换思维方式,探索解决问题的新的方法和手段。
4.教师在课堂教学中应将数学思想方法作为教学的重点
高中数学的学习更多的是数学思维方法的学习。学生在学习中要逐步掌握一些常见的数学思维方法,比如数学建模。对于数学的学习,不在于做了多少的题,而是在做每一种类型的题目的时候能够领悟其中用到的数学思维方法。一旦掌握了解题的思维方法,至于计算,就是一些基础技能的考查了。教师要引导学生在掌握数学思维方法的基础上,在解题过程中能够透过分析题目,想到用哪一种思维方法来解决问题,或者透过适当地转换形式,以适用某个数学思维方法。综上所述,在高中数学的教学过程中,教师要不断地进行教学总结,要掌握班上学生的数学基础状况,培养学生集中思维的同时要重视发散思维潜力的培养,加强自身的业务潜力,根据学生的反馈信息改善教学方法,将对数学思想方法的教学作为重点。教师要不断地在实践当中进行探索和发现,总结教学的经验,并进行及时的改善,只有这样才能不断改善高中数学教学,解决学生的数学思维障碍,这对于高中数学的教学具有深远的重大好处。
【总结分享】高中数学教师年度工作总结一篇
在校园里,我们阅读过许多范文,一篇好的范文会让我们学到东西,阅读范文可以让我们更容易渡过独处的时间。阅读范文还能够让自己加深对写作的了解,那么,您看过哪些值得借鉴的教师相关优秀范文吗?以下是小编为大家收集的“【总结分享】高中数学教师年度工作总结一篇”仅供参考,希望能为您提供参考!
回顾一学期的教学工作,在校各级领导的大力支持下,在高二数学组全体教师的团结协作和奋力拼搏下,圆满完成了各项任务,达到了预期的目的。有成功的喜悦,也有不足的遗憾。下面就本学期的工作总结如下:
一、加强集体备课优化课堂教学
新的课改形势下,高二数学怎么去教,学生怎么去学?无论是教师还是学生都感到压力很大,针对这一问题备课组制定了严密的教学计划,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求。即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展、培养学生的能力,为其自身的进一步发展打下良好的基础。在集体备课中,注重充分发挥各位教师的长处,集体备课把握住了正确的方向和统一了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教。
二、立足课本夯实基础
教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补差,新课改将更加注重对学生能力的考查,适当增加教学的难度,为更多优秀的学生脱颖而出提供了更多的机会和空间,有利于优秀的学生限度发挥自己的潜能,取得更好的成绩;对于基础差的学生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,限度提高他们的数学成绩。
三、因材施教全面提高
由于学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求自己要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同班级、不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。
四、优化练习提高练习的有效性
知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现;首先,练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因。练习的讲评是高二数学教学的一个重要的环节,为了限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性。多做练习,有效的提高了学生的应试能力。
五、加强考法、心理等方面的指导培养非智力因素
充分利用每一次练习、测试的机会,培养学生的应试技巧,提高学生的得分能力,如对选择题、填空题,要注意寻求合理、简洁的解题途经,要力争“保准求快”,对解答题要规范做答,努力作到“会而对,对而全”,减少无谓失分,指导学生经常总结审题答题顺序、技巧,力争找到适合自己的心理调节方式和临场审题、答题的具体方法,逐步提高自己的应试能力;帮助学生树立信心、纠正不良的答题习惯、优化答题策略、强化一些注意事项。
在这一学期中,虽然取得了一些成绩,但还有很多不足,在今后的工作中还要努力向各位学习,不断提高自己的教育教学水平。
实用课件: 高中化学说课稿篇一
我们在闲暇时也会去看一些范文的,学生多看一些范文对学习帮助很大,通过阅读范文我们可以提高语言组织能力。多阅读范文还会帮助到我们学习的各个方面,你是否在寻找有关优秀范文的模板呢?以下是小编收集整理的“实用课件: 高中化学说课稿篇一”,但愿对您的学习工作带来帮助。
我说课的内容是高中化学新课程选修5《有机化学基础》(人教版)第三章《烃的衍生物》第一节《醇、酚》第二课时,依据课程标准要求,并结合学生的知识储备和实际能力,体现化学新课程“从生活走向化学,从化学走向社会”的新理念,贯彻新课改自主、合作、探究等精神,我将从以下五方面设计这节课:
一、说教材
1.内容和地位
本节内容从知识结构上看,可分为四部分,即苯酚的分子组成结构,物理性质、化学性质和它在日常生产、生活中的用途。 从教材整体上看,芳香族化合物在中学化学里面,教材只着重介绍两种物质——苯和苯酚,其中苯是最简单的芳香烃;而苯酚既是很重要的芳香烃衍生物,又是酚类物质的代表。可见,《苯酚》在高中有机化学里面也处于较重要的地位。从教材结构上看,本节内容是安排在《乙醇》后,学生在学习乙醇的过程中已初步掌握了官能团对有机物主要性质的决定性作用,对乙醇中官能团羟基的性质也已有较深的理解和掌握。教材在这一基础上紧接着安排苯酚知识的学习有其独特的作用,既能联系前面已学过的知识,又能为后面烃的衍生物的学习提供方法,作好铺垫。而苯酚的结构与乙醇结构中都含羟基,因此,苯酚和乙醇的性质有相似之处,但事实上苯酚性质与乙醇性质又有不同之处,本节内容安排在此还有对比作用,通过本节课的对比学习,使学生对酚羟基和醇羟基的性质将有一个更全面的认识,理解官能团的性质与所处的化学环境有一定的相互影响,从而学会全面的看待问题,更深层次的掌握知识。
2.教学目标:
根据学生的知识层次和认知特征并结合课程标准的要求,我制定了以下教学目标:
(1)知识与技能方面
a、认识酚类物质,能够识别酚和醇
b、掌握苯酚的分子结构、物理性质、 化学性质和主要用途
c、理解苯环和羟基的相互影响
(2)过程与方法方面
通过对苯酚性质的探究学习,培养学生根据实验现象分析、推理、判断的能力和,培养学生自主学习、探究学习、与他人合作学习的习惯。
(3)情感态度与价值观方面
a、培养实事求是的科学态度和勇于探索的科学精神。
b、通过对结构决定性质的分析,对学生进行辩证思维教育。
c、培养学生关注化学与环境、化学与健康、化学与生活的意识。
3、教学重点难点:
重点:苯酚的化学性质。
难点:官能团的性质与所处的化学环境的相互影响。
二、说教法
学情分析:
本节课前,学生已学完了烃和烃的衍生物中的乙醇等内容,对有机化合物的学习特别是有机分子中的官能团和有机物的化学性质之间的相互联系有一定的认识,能掌握常见的有机反应类型,具备了一定的实验操作能力。
建构主义理论认为,学生通过对外界信息的感知加工建构知识体系,在该过程中,学生是知识的主动建构者;教师是知识建构的帮助者和促进者。而探究式的学习方式有利于学生对知识的建构。
苯酚结构与乙醇结构的相同点(都有羟基)为学生对苯酚性质的探究提供了基础;苯酚结构中与乙醇的不同点(羟基与苯基相连)又为学生的进一步的探究提供了空间。因此,我将该节的内容设计成探究式教学模式。主要采用通过创设情景——探究实验——理论推导——反思应用等教学方法,并充分利用实物感知、演示实验和现代教学手段,充分调动学生的参与意识,给学生提供更多的“动脑想”、“动手做”、“动口说”的机会,体现新课程倡导自主、合作、探究等学习方式。
三、说学法
围绕本节课教学目标和教学方法,引导学生采用类比类推,以旧促新和实验探究等学习方法。
四、说教学过程
【情景一】新课引入
我利用生活中的化学来引入新课,先展示药皂、苯酚软膏以及苯酚软膏的说明书,让学生阅读苯酚软膏说明书,提问:从化学的角度分析苯酚可能具有哪些性质?根据学生的认知特征,引导学生初识苯酚,组织学生观察苯酚的颜色、状态,指导学生动手做探究实验一,根据苯酚在不同溶剂中的溶解情况,自主探究苯酚的溶解性。在此过程中,学生很容易主动的获取苯酚物理性质的知识,传统的教学一般是把物质的物理性质直接传递给学生,显然,这些知识通过学生主动建构比老师将知识简单地传递更易接受和掌握。
【情景二】初识苯酚
【探究实验一】物理性质
学生实验:(1)组织学生观察苯酚的色、态,并小心的闻它的气味。
(2)溶解性实验(溶剂分别为冷水、热水和乙醇)
重点归纳出苯酚的色、态、味和溶解性。
(3)、产生疑问:在苯酚药膏说明书中还提到了“色泽变红”、“不能与碱性药物并用”那么,色泽变红的原因是什么?不能与碱性药物并用说明苯酚可能具有什么化学性质?
【情景三】结构特点
结构分析:观察分子模型,类比醇、酚、酸中羟基的性质
【情景四】极弱酸性
【探究实验二】苯酚溶液是否有酸性?
学生观察到浑浊的苯酚溶液滴加氢氧化钠溶液后变澄清,说明苯酚显酸性,因此,苯酚又名石碳酸,联系已学过的知识:向二氧化碳的水溶液中滴加紫色石蕊试剂,溶液会变红,那么,苯酚溶液也显酸性,向苯酚溶液中滴加紫色石蕊是否也有此现象呢?通过演示实验,发现苯酚中滴加紫色石蕊后并不显红色,学生产生了疑问,苯酚的水溶液为什么不能是石蕊变红呢?引导学生分析该现象产生的原因是苯酚酸性太弱,苯酚的酸性究竟有多弱呢?提起了学生的兴趣,这样自然的过渡到二氧化碳与苯酚钠的反应,指导学生动口向苯酚钠溶液中吹入二氧化碳,此时学生既兴奋又有很浓厚的兴趣,这样设计既是课堂生动活泼,又极大的调动了学生的主观能动性.通过实验学生对苯酚钠溶液与二氧化碳反应已经完全掌握。
【情景五】三元取代
【探究实验三】取代反应
接着组织学生讨论:乙醇和苯酚同样含有羟基,但为什么乙醇不呈酸性,而苯酚呈弱酸性?这说明什么问题?点拨学生:由乙醇和苯酚的结构上分析,并展示他们的分子结构以帮助理解,得出是苯环对羟基的影响,使羟基具有 一定的特性 ,这同时也更进步加深化学环境对官能团性质的影响,突破了难点。继续设疑,那羟基对苯基是否也有影响?
联系前面已学的知识:苯与液溴的反应,推测:将浓溴水加入苯酚中会发生什么反应呢?指导学生完成探究实验三,根据已有知识学生很容易得出是取代反应,那么,是几元取代呢?引导学生回忆甲苯与浓硝酸反应的产物,类比类推苯酚与溴水反应的产物是三元取代。接着,我请学生回忆苯和液溴发生取代反应的条件和产物现象,并与该反应对比,哪个取代反应更容易?学生很容易得出结论,苯酚更易取代,为了加深理解苯酚更易取代这个事实,我从苯和苯酚的结构上对比说明,由于羟基对苯环的影响,使得苯酚中苯环上羟基邻、对位碳原子上的氢原子易被取代。因而苯酚中苯环的性质与苯的性质有了差异,加深对难点官能团对所处的化学环境有影响的理解。
【情景六】显色、氧化
回顾情景一,学生们通过分析色泽变红可能是苯酚与空气中某些成分反应了,不能与碱性药物并用可能是苯酚具有酸性,这两点包含了苯酚的主要化学性质,也就紧扣这节课的重点,以下就围绕这两点来展开,首先,我引导学生们分析空气的成分,得出最有可能与苯酚发生反应的物质是水和氧气,设问:苯酚是与水反应而色泽变红的吗?根据刚才的探究实验一,学生很容易判断出苯酚变红不是与水反应造成的,既然不是与水反应造成的那就可能是与氧气反应造成的,因此,在这个猜想下,我做演示实验一,很快同学们观察到苯酚液变红了,该实验证明了苯酚确实因与氧气反应变红,学生们推断出苯酚具有还原性,接着我就追问:既然苯酚具有还原性,那么,除了能与典型氧化剂氧气反应外,还能否与其他氧化剂反应呢?引导学生总结归纳出我们学过的氧化剂,从学生罗列的氧化剂中我选择了两种:溴水和三氯化铁,这样的教学设计使溴水与三氯化铁在本节的出现显得很自然,
性质小结:结构决定性质,性质反应用途
【情景七】苯酚用途
五、总结反思:
引导学生总结本节课的主要内容带着刚才的思考、讨论的结果再次梳理思路,从整体上把握本节课的重点内容。最后用一道习题来运用本节课的知识。
六、反馈练习:
(1)苯酚与浓硝酸反应可生成一种烈性炸药,请写出化学方程式。
(2)选择合适的试剂和仪器,除去苯中的苯酚。
七、课外探究
设计实验证明葡萄和葡萄饮料中含有酚类物质。通过这个生活小常识和一个课后实验,加强学生对酚类物质的辩证的认识。
八、说板书
(一)、物理性质:
1、无色、特殊气味的针状晶体;
2、常温下,微溶于水,易溶于有机溶剂。
(二)、分子结构:
(三)、化学性质:
1、极弱酸性:
2、三元取代:
3、显色反应:遇FeCl3溶液显紫色(检验苯酚)
4、易被氧化:
(四)、用途:
课件精选: 高中数学优秀课件最新模板
我们在上学时也会去读一些范文,优秀的范文可以让我们积累相关的知识,阅读范文可以让我们进行无声的思考与交流。能在一定程度提升我们的语文水平,那么,您看过哪些值得借鉴的教师相关优秀范文吗?急您所急,小编为朋友们了收集和编辑了“课件精选: 高中数学优秀课件最新模板”,欢迎阅读,希望您能够喜欢并分享!
一。教材分析
1.本节课内容在整个教材中的地位和作用
概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。
2.教学目标定位
根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目标。
(1)基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;
(2)过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;
(3)情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3.教学重难点
重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。
二。教法学法分析
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。为此,我设计了5个环节:①创设情景——引入新课;②交流探究——发现规律;③启发引导——形成结论;④训练小结——深化巩固;⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。
三。教学过程分析
1.创设情景—引入新课
教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x?图像为引子,让学生画y=x?和y=2x?图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x?与y=ax?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。
由浅入深,下面让学生画y=2x?,y=2(x+1)?与y=2(x+1)?+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。
2.探究交流—发现规律
从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x?与y=2x?+4x-1的图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=ax?+bx+c,先将其化成y=a(x+h)?+k的形式,从而判断出y=ax?+bx+c的图像是如何由y=ax?变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)?+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。
3.启发引导—形成结论
前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x?到y=ax?,y=ax?到y=a(x+h)?+k,y=ax?到y=ax?+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a
4.练习小结——巩固深化
为了巩固和加深二次函数y=ax?+bx+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。这个过程中会产生学生之间的三次竞争:①看谁解的快、用时最短;②看谁书写的整齐;③看谁做的对。这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生"考试什么都不会,考完后什么都会"以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。
5.延伸拓广——提高能力
课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。
高中数学必修一课件(精华11篇)
为了获得最佳体验,我特地制作了这份令人满意的“高中数学必修一课件”,希望您可以将本页收藏以备后续阅读。在开始正式授课之前,老师需要精心准备本学期的教学教案课件,每个教师都要认真考虑自己的教案和课件。学生们在教学过程中的表现好坏可以从教案和课件中看出。
高中数学必修一课件【篇1】
通过第一章《空间几何体》的学习,学生对于立体几何已经有了初步的认识,能够识别棱柱、棱锥、棱台、圆柱、圆锥、圆台、球,并理解它们的几何特征。但是这种理解还只是建立在观察、感知的基础上的,对于原理学生是不明确的,所以学生此时有很强的求知欲,急于想搞清楚为什么;同时学生经过高中一年的学习,已经具备了一定的逻辑推理能力,只是缺乏训练,不够严密,不够清晰;有一定的自主探究和合作学习的能力,但有待提高,并愿意动手并参与分组讨论。
1. 理解空间点、直线、平面的概念,知道空间点、直线、平面之间存在什么样的关系;
2. 记忆三公理三推论,能够用简单的语言概括三公理三推论,会用图形表示三公理三推论,并将其转化成数学符号语言;
3. 明确三公理三推论的功能,掌握使用三公理三推论解决立体几何问题的方法。
1. 通过自己动手制作模型,直观地感知空间点、直线与平面之间的位置关系,以及三公理三推论;
2. 通过思考、讨论,发现三公理三推论的条件和结论;
3. 通过例题的训练,进一步理解三公理三推论,明确三公理三推论的功能。
1. 通过操作、观察、讨论培养对立体几何的兴趣,建立合作的意识;
2. 感受立体几何逻辑体系的严密性,培养学生细心的学习品质。
1. 理解三公理三推论的概念及其内涵;
(1)每位同学准备两张硬纸板,其中一张中间用小刀划条缝,铅笔三根;
(2)教师自制的多媒体课件。
1. 回忆构成平面图形的基本元素:点、直线。①两者都是最原始的概念,点没有大小、面积、厚度,直线是向两侧无限延伸的;②点用大写英文字母表示,直线用小写英文字母表示;③ 如果将点看作元素,则直线是一系列点构成的集合,所以点在直线上记作,点不在直线上记作;
2. 提出问题:构成空间几何体有哪些基本元素?(大屏幕出示棱柱、棱锥、棱台)学生很快得到答案:点、直线、平面。
3. 引入课题:什么是平面?点、直线、平面之间有什么样的位置关系?平面有什么性质?这就是我们这堂课要研究的问题。
平面也是一个最原始的概念,是向四周无限延伸的,没有边界。一般用希腊字母、、,…表示平面,或者记为平面ABC,平面ABCD等等。
①点与直线;②点与平面;③直线与平面。
问题二:要将铅笔放置到硬纸板内至少需要几个公共点?
学生通过操作,体会到要将铅笔放置到硬纸板内,只需将铅笔上两点放置到硬纸板内。
学生通过操作,体会公理二所表达的含义。
问题三:还能根据什么条件确定一个平面?引出三推论。
学生通过操作,体会公理三所表达的含义。
⒈平面具有无限延展性;
⒉ 公理一有什么功能?条件是什么?
⒊ 公理二有什么功能?条件是什么?
⒉平面几何中证明平行四边形有哪些定理?这些定理在空间中能否成立?说明理由。
高中数学必修一课件【篇2】
1、学生浏览课文,概括情节,然后由师生共同讨论回答“旁批”的提问。
2、关注阿Q对革命的态度及其变化,阿Q的革命目的,挖掘其思想根源。
①“宣统三年九月十四日--即阿Q将搭连卖给赵白眼的这一天--三更四点,有一只乌篷船到了赵府上的河埠头。”绍兴光复这么庄严的事件,作者却用阿Q卖搭连给赵白眼这件事来作补充说明,你认为作者在这里有什么用意?
提示:一方面说明普通老百姓并不关心什么绍兴光复,而只注意身边发生的小事,辛亥革命与人们的生活差得太远;表明作者对辛亥革命的态度是怀疑的,把绍兴光复与阿Q卖搭连这事联系在一起,显得滑稽可笑。
②“至于革命党,有的说是便在这一夜进了城,个个白盔白甲:穿着崇祯皇帝的素。”此句怎样理解?
提示:这说明清朝已经灭亡了,但未庄人的思想仍停留在明末清初的几百年的过去。民众之愚昧落后不言自见。
③阿Q 先是对革命党“深恶而痛绝之”,何以很快又向往革命,要“革这伙妈妈的命”?
提示:阿Q 身上有着狭隘保守排斥异端的思想,他天生反对变革现实的一切事情,所以他一开始听到革命时很反感,觉得与他为难,便“深恶痛绝”;可是他身上又有着盲目趋时的特点,加上他对现状的不满,尤其自己生活的不痛快,看到举人老爷这样怕,所以他自然又向往革命了。这表明他对革命态度的不稳定性,对革命的不理解甚至误解。
④将阿Q宣布革命后,赵太爷的“老Q”和赵白眼的“阿Q哥”与先前的“混小子”对比,揣摩一下赵太爷等人的内心世界,说说此时的赵太爷又变成了一个怎样的赵太爷?
提示:此时的赵太爷是一个惶恐狡诈卑怯的“弱势”土地主。
⑤阿Q的“白日梦”表明他革命的目的是什么?
提示:用他自己的话说就是“要什么就是什么,欢喜谁就是谁”;用我们的话来说就是金钱、权力和女人。
⑥老尼姑的“革过一革的”这五个字有何含义。
提示:表明当时“革命”一词成为人们的口头禅,但又不理解什么是革命,所以老尼姑演绎说“革过一革的”,这是对革命的绝大讽刺。所谓革命,就是假洋鬼子和秀才的打砸抢罢了。
⑦说说“这是咸与维新的时候了……也相约去革命”这句话的讽刺意味。
提示:揭示两个反动人物“革命”行动的丑恶卑劣,意味深长。也从另一个侧面揭示辛亥革命中资产阶级势力与封建势力勾结起来夺取革命果实的史实。“情投意合”“革命”含有极大的讽刺意味。
⑧阿Q与赵秀才、假洋鬼子虽“素不相能”,但都想到去静修庵“革命”,这说明什么?
提示:说明他们的革命动机都是十分低下的,无非就是找一些弱者来欺负一番,找一些封建主义的东西来革一革罢了。它让读者明白,辛亥革命之所以失败,就是这样的人太多了。
3、“革命”的阿Q对革命的认识糊涂:
封建意识:革命党便是造反,造反便是与他为难, “ 深恶而痛绝之”。
革命动机:举人老爷怕革命,未庄的男女慌张,阿Q快意。革这伙妈妈的的命
革命对象:第一个该死的是小D和赵太爷,还有秀才,还有假洋鬼子,留几条么?王胡本来还可留,但也不要了。
4、注意未庄人对革命后的阿 态度的变化。
二、学习第八章。
1、概括情节,探讨旁批的问题。
2、体会小说对比描写手法的奇妙。不准革命的阿Q为什么会这样?说明革命对于阿Q意味着什么?
阿Q轻轻的走近了,站在赵白眼的背后,心里想招呼,却不知道怎么说才好
用原文回答:洋先生不准他革命,他再没有别的路;从此决不能望有白盔白甲的人来叫他,他所有的抱负,志向,希望,前程,全被一笔勾销了
3、读读议议:
①“带兵的也还是先前的老把总”表明什么?
提示:说明“革命”换汤不换药,许多投机分子钻进革命队伍中,窃取了革命果实。
②“赵司晨脑后空荡荡的走来”,“空荡荡”用的妙在哪里?
提示:这个词把人们看惯了脑后的辫子,而现在一下子看不见辫子时不习惯的微妙感觉写出来了,很有滑稽感。
③未庄人对秀才挂“银桃子”“都惊服”,“惊服”一词有何含义?
提示:这个词刻画了未庄人前后相连的两种心态,先是猜想“银桃子”可能是当大官的象征而吃惊,过后很快便佩服,表明未庄人的趋炎附势心理。
④“我是性急的,……谁愿意在这小县城里做事情。……”假洋鬼子的这段“演讲”,满口“鬼话”,不提辛亥革命的真正功臣孙中山、黄兴等,却提一个投机分子洪哥。说说这段话刻画了假洋鬼子一副怎样的嘴脸。
提示:满口鬼话,大吹牛皮,捏造革命经历个革命资本。半吊子知识分子,外表新式,实际上是一个投机、善变、钻营的封建余孽。他的这番话只能蒙骗没见过世面的未庄乡下人。
⑤洋先生为什么不准阿Q“革命”?
提示:减洋鬼子作为一个与封建主义有着千丝万缕联系的新式资产阶级人物,注定与广大人民有着天然的隔膜,并没有丝毫共同的利益可言。尤其是,假如假洋鬼子同意了阿Q与他一起革命,那么就会认为是对自己身份的极大污辱。所以他决不准阿Q革命,决不同阿Q共一条战壕。
⑥阿Q认为洋先生不准其革命,“再没有别的路”,你认为呢?
提示:凭阿Q当时的觉悟程度,他认为自己是无路可走的,实际上他也确实是无路可走。本来可以投奔真正的革命党,但按照他的'觉悟,他不可能找到真正的革命党。
⑦赵家遭抢这两段话中用了六个“抬出了”,对于表现阿Q此时的心情有怎样的效果?
提示:强调阿Q没有被邀请革命而表现的焦虑不安的心情,更体现他革命动机的低下,那就是想分点东西。
⑧阿Q要告假洋鬼子“造反”的状,你对这一情节怎样理解?
提示:一方面参加革命不成,就要报复,这表现了他思想的狭隘;另一方面,说明阿Q的革命愿望也经不起考验,因为他对于革命的认识根本就不明确。
4、特别强调,阿Q不许小D这样与他情况相似的人革命所流露的自私狭隘思想;未庄人对自由党的“柿油党”的称法和银桃子抵翰林的认知,都显示了辛亥革命的不彻底性,百姓所有的还都是旧思想旧认知。
三、学习第九章。
1、这一章写阿Q被当作替死鬼被捕、被审和被处决,思想开掘深刻,讽刺入木三分,是作者精心打造的“大团圆”,也是编辑们着意设计“旁批”的一章。因而研读时应调动多种朗读方式去朗诵,去品读,并认真回答“旁批”所提出的每一个问题。
2、重点研讨:
①赵家遭抢了,未庄人为什么既“快意”又“恐慌”?
提示:“快意”是因为未庄人平时虽说敬畏赵太爷,但作为被压迫者,心底里还是恨赵太爷这种压迫者,所以听说赵家遭抢,自然就“快意”;“恐慌”是因为对形势不了解,怕危及自己的财产和生命。
②捉拿阿Q竟然用那么多兵,作者这样写有何用意?
③“高明”一词通常是什么意思?这里怎么解释?
提示:“高明”一般指见解、技能等的高超,这里作者是一种创造性的用法,意思是高大明亮。也就是说土谷祠并没有比大牢更好。
④阿Q在“民国”的公堂上行下跪之礼,你怎么看待这件事?
提示:阿Q的下跪,表明他身上的奴性根深蒂固。见到官就下跪,这是中国几千年封建统治者对人民驯服的结果,背后的实质是对国民人格的污辱,但国民长期如此,就像阿Q一样,觉得某人有来头,就自然下跪。作者描写这一情节,一方面是揭露统治者的愚民政策,另一方面是批评国民的奴性人格。
⑤阿Q“画圆圈”这样的细节描写,表现了阿Q什么性格?
⑥小说中前后共有几次写阿Q“睡着了”?说说其言外之意。
提示:大概有五六次,这不仅是写他生理上的睡着了,也暗写他的麻木不仁。作者忧虑国民在铁屋子里沉睡不醒,又希望他们惊醒。
⑦死到临头的阿Q,精神上还那么“泰然”,对此你有什么想法?
⑧“狼”在文中有何象征意义?
提示“狼”象征着那些麻木的看客,不仅充当看客,也充当统治者刽子手的帮凶,一起来吃掉阿Q。
⑨“他们便渐渐的都发生了遗老的气味”这句话是什么意思?
提示:万变不离其宗,顽固的封建阶级本性不变,得了“银桃子”比作“顶子”“翰林”,失了辫子如丧考妣,终于还是迷恋封建王朝的“遗老”。
⑩独写一段未庄人对阿Q被枪毙的态度来结束本文,它隐含作者的什么用意。
提示:给读者揭示一个十分悲观的现象:社会仍是如此黑暗,国民仍是如此愚昧,中国,何时才能得救?
3、旁批之外,强调阿Q三次“似乎觉得,大约本来要”怎样的心理。这样的心理其实是一种认命的宿命观,这样的想法使一切都成为自然,从而淡化了人的努力和挣扎。
4、纠正最后一个旁批概括上的不完全,理解鲁迅的意图。
四、布置作业。
概括阿Q形象,理解作者的创作意图。
高中数学必修一课件【篇3】
1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的
3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行
如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底
设是上的 两点,P是上_________的任意一点,则存在实数,使_______________,则为点P分有向线段所成的比,同时,称P为有向线段的定比分点
(1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是,|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ
1、给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB= DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c
2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____
3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为_____
5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )
、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )
(A)y=(x-2)2-1 (B)y=(x+2)2-1 (C)y=(x-2)2+1 (D)y=(x+2)2+1
7、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC=αOA+βOB,其中a、β∈R,且α+β=1,则点C的轨迹方程为( )
(A)3x+2y-11=0 (B)(x-1)2+(y-2)2=5
8、设P、Q是四边形ABCD对角线AC、BD中点,BC=a,DA=b,则 PQ=_________
9、已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分线长
10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )
11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )
(A)(a)2·(b)2=(a·b)2 (B)|a+b|>|a-b|
(C)(a·b)·c-(b·c)·a与b垂直 (D)(a·b)·c-(b·c)·a=0
12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )
16、利用向量证明:△ABC中,M为BC的中点,则 AB2+AC2=2(AM2+MB2)
17、在三角形ABC中, =(2,3), =(1,k),且三角形ABC的一个内角为直角,求实数k的值
18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量
高中数学必修一课件【篇4】
《文化创新的途径》是人教版高中思想政治必修Ⅲ文化生活第二单元第五课第二框题的内容。通过对前面知识的学习,学生理解了文化的交流、传播、和发展,也明白了文化发展需要创新。而怎样进行创新则是本节课探讨的内容,也是本单元的重点、难点和落脚点。同时,本课是承上启下,对接下来要学习的中华文化、中华民族精神等知识具有指导作用。在呼唤创新的当今时代,文化创新作为一个社会热点,具有很强的思想理论性、实践性。《文化创新的途径》也是高考的高频考点。
汇集实例,印证文化创新是一个民族的文化绵延不断的重要根源,阐述推陈出新、革故鼎新是文化创新的重要途径。
在教材处理方面,用教材而不拘泥于教材,为了更贴近学生实际,体现时代性,我删减了教材中徐悲鸿和梁祝的例子,增加了莫言和中国杂技芭蕾舞《天鹅湖》的内容。
根据新课程标准的要求我确立了本课的三维教学目标:
1、知识目标:
(1)理解文化创新的一个根本途径、两个基本途径。
(2)理解文化创新过程中要坚持正确方向,反对错误倾向。
(1)通过探究文化创新的事例,来激发学生热爱传统文化、
学习各民族文化长处的思想意识。
依据课程标准和考试大纲要求,在吃透教材的基础上,结合我校高二学生基础、理解能力较弱的实际,我确定以下教学重难点:
依据:本课探究是的是怎样才能实现文化创新,所以本知识点理所当然地成为本课重点。
倾向 。
依据:由于学生很难找出正确方向,分清错误倾向。所以,本知识点是难点。
突破难点方法:结合P55的“对待外来文化的三种态度” ,在教师引导下,帮助学生找出正确方向,分清错误倾向。
教必有法而教无定法,只有方法得当,才会有较好的教学效果。依据政治学科特点、本课教学内容和学生实际,备教材备学生,我将采用:
(1)情景教学法:运用多媒体技术,通过视频、图文资料为学生创设生动、直观的教学情景。
(2)讨论教学法:针对教材重难点,开展讨论,发挥学生主体作用。
(3)时事教学法:结合诺贝尔文学奖得主莫言事例进行教学,开拓学生视野,引导学生关注社会,理论联系实际。
新课程理念提出,教学中要注重学生学习方式的转变,由被动、接受式向主动参与,乐于探究、交流与合作的学习方式转变,由此我将采用:
本课主要采用多媒体和黑板相结合的教学手段,精心制作课件,发挥多媒体信息量大,感性、直观的的特点,同时板书重难点,让学生深刻记忆。
1、 初读课本,了解本框知识。
2、 根据课前预习案,明确重难点知识。
3、 查找搜集有关文化创新的社会生活例子。
结合新课标要求,本课讲授过程中,我注重突出重点,条理清晰化教学,同时积极安排自主探究活动。具体过程如下:
1、创设情境、导入新课(4分钟时):
好的开端是成功的一半,好的导入可以激发学习兴趣,调动学习积极性。
(1)播放《喜羊羊与灰太狼》主题曲。讨论:该部影片为什么会受到广大观众的喜爱?对文化发展而言,它的成功表明了什么道理?
(2)导语:该片一改往日国产动画片人物造型呆板僵硬,说教味极浓的缺陷。以幽默的语言,搞笑的剧情,鲜活的人物造型,赢得了广大观众的喜爱。文化要想发展,就需要文化创新。那么,文化怎么才能创新呢?这就是自然而然地过渡到新课探究上来。
在结合课前预习基础上,提出导学问题:
(1)文化创新的根本途径和基本途径是什么?
(2)怎样对待传统文化和外来文化?
(3)在文化创新中错误倾向是什么?如何坚持正确方向?
让学生带着问题自主看书,找出答案,并提问学生回答,先学后教。
针对本课重难点设置以下三个情景:
展示材料1:我的故乡和我的文学是密切相关的,莫言以高密东北乡为情景,以他青少年时期的生活体验和观察发表了一系列中短篇小说,使他名声大震。
探究:你认为莫言在文学创作上能够获得巨大成功的秘诀在哪?
【教师启发】以青少年时期的生活体验和观察发表了一系列中短篇小说,说明莫言获得巨大成功的秘诀是什么?
【教师总结】文化创新的根本途径是立足于社会实践。
展示材料2:莫言将中国民间故事、历史事件与当代背景融为一体,赢得世界殊荣。
【教师启发】将中国民间故事、历史事件与当代背景融为一体说明在文化创新中启示我们需要什么?
【教师总结】文化创新的基本途径之一是继承传统,推陈出新。对于传统文化,一方面,不能离开传统文化空谈创新,另一方面,要体现时代精神。
探究:由上海城市舞蹈有限公司投资制作、中国广东杂技团创作演出的杂技芭蕾《天鹅湖》荣获曼彻斯特戏剧奖(最佳国际剧目奖)。思考杂技芭蕾《天鹅湖》的成功,给我们文化创新有什么启示?
【教师总结】成功经验是不仅继承了优秀传统文化,融入时代精神,而且注重不同民族文化之间的交流、借鉴和融合。 文化创新的基本途径之二是面向世界,博采众长。
(1)不同民族文化之间的交流、借鉴与融合是什么样的过程?(答案课本P53)
(2)在不同民族文化的交流、借鉴与融合的过程中,我们应该怎么做?应该注意哪些问题?提示:想想杂技芭蕾《天鹅湖》在文化的交流、借鉴与融合的过程中是如何做的。
总结:在文化的交流、借鉴与融合的过程中,我们应该:
(1)要以世界优秀文化为营养,充分吸收外国,文化的有益成果,取长补短。
(2)要注意不同民族文化的平等交流,互相借鉴。
(3)要坚持以我为主,为我所用基本原则。
情景三:学生思考课本P55页的探究问题。分组讨论:哪些认识是正确的,哪些是错误的,并进行简要分析。
【学生思考讨论】每组派一名代表阐述本组的观点。
【教师明确】观点一是民族虚无主义和历史虚无主义;观点二是封闭主义和守旧主义;两者都错误,我们应该树立观点三那样正确对待外来文化的观点。(引出两个概念:什么守旧主义和封闭主义,什么是民族虚无主义和历史虚无主义,让学生掌握。)
要把握好两组关系:当代文化与传统文化,民族文化与外来文化的关系。立足于发展中国特色社会主义的实践,着眼于人民群众不断增长的精神文化需求;在历史与现实,东方与西方的文化交汇点上,发扬中华胂质担东方与西方的文化交汇点上,发扬中华民族优秀文化传统,汲取世界文化精华?br>
【设计意图】本环节充分让学生自主参与,让学生成为学习的主人,避免满堂灌和空洞说教。
教师引导学生回顾新学内容,提问学生今天学了什么。强调重难点,并罗列出本框题的逻辑体系。
(08广东高考)37.(10分)看漫面,运用《文化生活》的知识.回答下列问题。
答案要点:
( l )漫画中的文化教育存在只注重中国传统文化排斥外来文化的偏差。
( 2 )①文化的交流、借鉴和融合,是学习和吸收各民族优秀文化成果.以发展本民族文化的过程:是不同民族文化之间相互借鉴,以“取长补短”的过程;是在文化交流和文化借鉴的基础上.推出融会多种文化特质的新文化的过程。
② 在文化交流、借鉴与融合的过程中,要有海纳百川的胸怀,熔铸百家的气魄,科学分析的态度。不同文化之间,有差异就难免有矛盾、有竞争.但文化差异不应该成为文化交流的障碍,文化竞争并不排斥文化合作。不同民族文化之间.应该平等交流、相互借鉴.共享世界文化创新成果。
③ 在学习和借鉴其他民族优秀文化成果时,要以我为主、为我所用。我们要跻身于世界文化发展的前沿,必须深深深植根于自己民族的文化土壤.不断实现中华民族的文化发展。
【设计意图】当堂训练,堂堂清。帮助学生了解知识的运用方式,及时检查学生的知识掌握情况。
有人说,春晚如果没有赵本山的小品,基本可以说暗淡失色,春晚因为有了赵本山及其团队的参与我们有了更多的期待,你认为赵本山及其团队怎样做才能让全国人民享受到文化盛宴?
【设计意图】布置适当、优质的作用有助于学生所学知识的巩固、深化。
采用总分式结构板书,简洁明了,条理清晰,印象深刻。
本课我力求将课堂还给学生,让学生在探究中学习,在快乐中掌握知识,教师做好课堂的组织者和引导者,而不是主宰者和传播者。
本堂课应注意,1、要根据高中生的兴趣爱好来做好充分的课前准备,收集好充分的第一手资料。2、上课的课室要带有多媒体设备,这样才能播放动画视频,帮助学生达到身临其境的效果,使学生得到深刻的体验和感悟,从而达到新课改的目标。
高中数学必修一课件【篇5】
本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。
加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的`问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。
《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,
位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。
在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”
学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。
2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。
高中数学必修一课件【篇6】
教学要点:
1、有感情地朗读课文,理解课文内容;
2、揣摩语言,学习景物描写的方法。
△从本文的题目看,你认为文章主要写了几个方面的内容△找出写百草园、三味书屋两个部分起止句中的过渡段概述一下这篇文章表现了作者怎样的思想感情。
△ 作者在百草园中的生活感受是怎样的?作者对三味书屋的感受是怎样的?二者在内容上是什么关系?有什么作用?
体验与反思:你喜欢怎样的教学内容和教学方式?你认为游戏与学习之间是矛盾的吗?
a、自由讨论。你最喜欢的语段,并说出原因(从写法上分析)b、重点研读。 朗读第二自然段、第七自然段 分析写作技巧
3、拓展延伸a、品味第二、七自然段,自己写一段话。(或写校园一角,或写某个游戏的过程)b、学生评析
教学要点: 1、有感情地朗读课文,理解文章的思路,体会至爱亲情2、研读课文
△ 从全文看,爸爸是一个怎样的人? “花”在全文结构中起着怎样的作用?文章表达了作者怎样的感情?
a、文中哪些写的是眼前事,哪些是回忆过去的事?回忆的事是怎样引出的? B、这些对“我”的成长起了怎样的作用? C、怎样理解文章未尾“我”默念的话的含义?
△ 毕业典礼后“我”回家见到了怎样的情景?这情景预示着什么呢?△“我”是不是真正感觉到自己长大了?从哪些地方看出来的?
教学内容: 1、速读课文,整体感知课文内容,体会字里行间流露的感情。2、体味文章带给我们的深刻启示。
教学设计:
△ 这篇童话讲了一个什么故事?丑小鸭遭受到哪些歧视和打击?丑小鸭是如何面对的?这篇童话给我们什么启示?
集中讨论: a、丑小鸭为什么拼死也要飞向高贵的天鹅? b、怎样理解“只要你是一只天鹅蛋,生在养鸭场里也没有什么关系”这名话? c、为什么说丑小鸭的一生是作者自身生活的写照?
教学要点:理解这两首诗,背诵《假如生活欺骗了你》;了解象征手法的作用联系自己的生活体验,谈学习体会,引导学生正确地面对生活。
课前准备: 1, 根据提示,阅读这两首诗。2, 搜集作者的有关资料。
教师组织学生将搜集到的有关资料进行课堂交流,以利于理解诗歌。
1、 反复阅读诗歌。2、独立思考,仔细品味,感悟诗歌的语言。
A“假如生活欺骗了你”指的'是什么? B诗歌的两部分各表现了怎样的内容? C这首诗歌表现了诗人怎样的人生态度?
1、 面对逆境,我们就只有耐心等待,不予抗争吗?2、怎样理解“而那过去了的,就会成为亲切的怀恋?
(五) 朗读背诵 (六)体验与反思: 教师要求学生联系自己的生活体验,谈谈学习体会,引导学生树立积极乐观的人生态度。
1、 怎样理解诗歌中所说的“路”?这是怎样一种表现手法?你能从学过的课文中找出类似的例子吗?2、四节诗歌表达了什么意思?3、这首诗到底想告诉我们什么意思?
1、 诗人选择了自己的路,可为什么题目却是“未选择的路”?2、在诗歌表现出的情趣上,《未选择的路》与《假如生活欺骗了你》有什么不同?3、这两首诗歌对人可能产生怎样的影响?
三、 课后作业 :试着写一篇随笔,评论一下《假如生活欺骗了你》或《未选择的路》。
教学要点: 熟读课文,把握课文主要内容;掌握常用文言词语,翻译课文;学习本文借事说理的方法,理解作者的思想感情。
教师范读,学生在听的过程中注意正音及句子的停顿。 学生自由诵读,进一步感知课文。 学生齐读,注意断句。
疏通文意 学生借助注释和工具书,将文言文翻译成白话文,然后四人小组讨论交流。全班同学讨论交流,解决四人小组不能解决的问题。
问题探究方仲永的变化经历了哪几个阶段?方仲永由天资过人变得“泯然众人”的原因是什么?文章最后一段议论讲了什么道理?学完本文,你有何感想?
教学要点:认识自我,正确对待成长中的烦恼。 了解他人的烦恼,重新审视并评价自我。 学会沟通与理解,能帮人解脱烦恼。
课前准备:1、提前布置预习,了解活动内容。2、学生自由结合,分为三组,选派组长。3、学生可向爸爸妈妈、朋友了解少年时期的烦恼。4、教师准备多媒体课件,美国电视剧《成长
高中数学必修一课件【篇7】
1、积累词语,掌握“攒、拗、确凿、轻捷、相宜、方正”等词的读音,字形及词义,并学会运用。
3、走进鲁迅的童年,探索他成长的足迹,体味童真童趣。
1、学习本文写景善于抓住景物特征,层次井然、融情入景的写法,培养学生的观察能力和表达能力
2、品味作者简练生动、准确传神的语言特色,增强语感。
3、体味鲁迅在百草园和三味书屋的生活乐趣,尝试表达自己的生活经历和体验。
学习鲁迅先生从小热爱大自然、热爱自由生活、追求新鲜知识的精神。
引导学生学习课文对事物的准确描摹,对动作的准确表达及写作思路的条理性。
1、理解美女蛇故事的作用,初步了解插叙。
2、揣摩三味书屋这一部分的思想内容,理解其中一些重要的词语。
3、引导学生从整体与部分的结合上把握文章的主题思想。
教学要点:
朗读课文,整体感知文章;精读课文,理清文章的总体思路;重点研讨第一部分。体味作者在百草园中的无穷乐趣,尝试表达自己的生活经历和体验。
每个人的童年,是一片宽阔的原野,在这上面,你可以任意栽植世界上所有的花草,可以放飞所有的希望,可以播洒一生的幸福,可以荡漾一生的笑意,童年是券的,只要有一颗敏锐易感的心,童年的一切记忆都会深深留在心中。今天我们学习《从百草园到三味书屋》,了解鲁迅先生有关童年的记忆。
本文是一篇写于1926年9月18日的回忆性散文,当时鲁迅被反动派列入通缉的北京文教界五十人名单,鲁迅难以公开和反动势力进行斗争,被迫于1926年离开北京。鲁迅到厦门大学正值暑假,学生还没开学,就写下这篇散文,后来收入到《朝花夕拾》散文集中。
“朝花”喻童年美好的生活,“拾”回忆往事,原名《旧事重提》,后改为《朝花夕拾》。它是一曲少年时代生活的恋歌。
确凿(záo) 菜畦(qí) 斑蝥(wú) 攒(zǎn) 敛(liǎn) 脑髓(suǐ) 秕(bǐ)谷 蝉蜕(tuì) 书塾(shú) 宿儒(rú) 倜(tì)傥(tǎng) 窦(dòu)
第一部分(从开头到“来不及走到中间去”)写百草园的生活。
第二部分(从“出门向东”到完)写三味书屋情形。
(1)第1自然段说百草园“似乎确凿只有一些野草,但那时却是我的乐园”,这句话是否有矛盾呢?
讨论后归纳:没有矛盾,前一句是用大人的眼来看的,“确凿只有”
断是其中不会有什么动人之处,“似乎”又对这断定有踌躇,这是表示是否记得清楚还不敢说。后一句是从小孩子的眼中来看的,作者回忆童年在百草园玩耍,地切都那么新奇有趣,确定獐的乐园。所以不矛盾。
(2)作者是怎样描写百草园的景物的?
讨论后归纳:
A、从句式上看,用“不心说……也不心说……单是……”宕开一笔,为的是突出下面“单是”的内容。既然“单是”就已趣味无穷,可见园里的佳趣定然比比皆是,这是以一概全的写法。
D、从观察的角度来看:
视觉:碧绿的菜畦,光滑的石井栏,高大的皂荚树、紫红的桑葚,肥胖的黄蜂,轻捷的叫天子。
听觉:鸣蝉在树叶里长吟,油蛉在这里低唱,蟋蟀在这里弹琴。
触觉:有用手指按住它的脊梁,便 会啪的一声,从后窍喷出一阵烟雾的斑蝥,有可以牵连不断地拔起来的何乎乌的臃肿的.根。
E、从修辞手法的角度看:有比喻:覆盆子像小珊瑚攒成的小球。有拟人:油蛉在这里低唱,蟋蟀在这里弹琴。写出孩子心中奇妙的想像和特殊的感受。
F、从遣词描写来看,用词盐分准确、生动,形容黄蜂用“肥胖、伏”,形容叫天子用“轻捷、直窜”,形容石井栏用“光滑”都十分贴切。
(3)文章为什么要写美女蛇的故事?
讨论并归纳:
美女蛇的故事很吸引孩子,给百草园增添了神秘色彩,丰富了百草园作为儿童乐园的情趣。
(4)文章是怎样描写捕鸟的,准确地运用了哪些动词?为什么要写手下捕鸟?
讨论的归纳:先写捕鸟的时间,条件、方法、然后写捕鸟的收获,经验教训。运用的动词有:扫开、露出、支起、撒、系、牵、看、拉、罩。写捕鸟也是写百草园给爱玩的儿童带来的无穷乐趣。
写百草园,作者抓住了一个“乐”字来写,有乐景、乐闻、乐事。洋溢着生机和活力,情趣盎然。表现了儿童热爱大自然,喜欢自由快乐生活的心理。
1、完成研讨与练习一、1、2、,二 1,三。
(2)第7段详写的捕鸟的时间、 、 、收获、经验等,这样写的作用是 。
(4)请用原文词语组成一句话,概括下雪后在百草园只好来捕鸟的原因。
(5)第八段回忆闰土父亲关于捕鸟的答话,对答话含义理解正确的一项是( )
C、闰土父亲的话启迪我遇事要沉着冷静,这也是一种朴素的启蒙教育,所以作者难以忘怀。
1、质疑:“我”到底知不知道被送到私塾去的原因呢?你是从哪些词语看出来的?
讨论归纳:不知道,有“也许是……也许是……也许是……都无从知道”可以看出,三个“也许是”表示尽管猜测的原因很多,但一个也无法肯定。
2、质疑:“Ade,我的蟋蟀们!Ade,我的覆盆子们和木莲们!”这句话运用什么修辞手法?表达了作者什么心理?
归纳:运用了拟人,表达了“我”对百草园的依恋和私塾的反感。
3、这一段在全文结构中起什么作用?
4、作者对先生是怎样评价的?
讨论后归纳:先生很“和蔼”,是本城中极方正、质朴、博学的人。
5、怎样理解先生不回答“怪哉”这虫的问题?
讨论并归纳;私塾先生通常要求学生读他们所指定的书,书外的问题是不予解答的,况且提问者又是一个刚入学不久的学生,如此“不务正业”,这大概是先生不作回答且动怒之意的原因。这种教育思想是不可聚拢,它挫伤子学生求知的积极性。
6、“他有一条戒尺,但是不常用,也有罚跪的规则,但也不常用。”说明先生是一个什么样的人?
归纳:打戒尺、罚跪是私塾教育管理学生的方式。有戒尺,有罚跪规则而不常用,说明他对这种落后的教育方式持保留态度,也反映他对学生的开明思想。
7、三味书屋后面也有一个园,与百草园相比,哪个好玩?
讨论后明确:百草园好玩。百草园很大,这个园很小,在百草园有许多动植物,有许多好看、好听、好吃、好玩的东西,能自由自在地玩耍。而这个园只能爬上花坛去折腊梅花,寻蝉蜕,最好的工作只不过是捉了苍蝇喂蚂蚁,又必须静悄悄地没有声音,玩的伴又不能太多,时间也不能太久。
8、三味书屋里读的是什么书?作者写些教学内容有什么用意?
讨论并归纳:读书、习字、对课。读的书脱离学生实际,艰深难懂,逼着学生死记硬背,作者这样写表达他对束缚儿童身心发展的封建教育的不满。
9、怎样理解少年鲁迅背着先生画画这个问题?
讨论归纳;因为私塾只要求学生读书,不许做别的活动。画画是少年鲁迅的艺术爱好。背着先生画画,表现了少年鲁迅发展个性的强烈愿望以及对束缚儿童身心发展的封建私塾教育的不满。
1、中心思想:本文通过幼年在百草园和三味书屋生活的对比,表现了儿童热爱大自然,喜欢自由快乐生活的心理,同时,对束缚儿童身心发展的封建教育表示不满。
本文语言简练生活、准确传神,如在描写百草园的景物时使用的大量修饰词、准确、形象。在写捕鸟一节时,使用了很多准确生动的动词等。
童年是美好的,请用形象化的儿童语言说说自己快乐的童年。要求学生畅所欲言,可在小组内交流,然后选较好的发言人面向全班交流。
2、课外阅读《朝花夕拾》,思考童年生活对鲁迅成长的影响。
高中数学必修一课件【篇8】
高中数学必修一教案学案
1.1集合的含义及其表示(1)
【教学目标】
1.初步理解集合的概念,知道常用数集的概念及其记法.
2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号.
3.能根据集合中元素的特点,使用适当的方法和准确的语言将其表示出来,并从中体会到用数学抽象符号刻画客观事物的优越性.
【考纲要求】
1.知道常用数集的概念及其记法.
2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号.
【课前导学】
1.集合的含义:构成一个集合.
(1)集合中的元素及其表示:.
(2)集合中的元素的特性:.
(3)元素与集合的关系:
(i)如果a是集合A的元素,就记作__________读作“___________________”;
(ii)如果a不是集合A的元素,就记作______或______读作“_______________”.
【思考】构成集合的元素是不是只能是数或点?
【答】
2.常用数集及其记法:
一般地,自然数集记作____________,正整数集记作__________或___________,
整数集记作________,有理数记作_______,实数集记作________.
3.集合的分类:
按它的元素个数多少来分:
(1)________________________叫做有限集;
(2)________________________叫做无限集;
(3)_______________叫做空集,记为_____________
4.集合的表示方法:
(1)________________________叫做列举法;
(2)________________________叫做描述法.
(3)_______________叫做文氏图
【例题讲解】
例1、下列每组对象能否构成一个集合?
(1)高一年级所有高个子的学生;(2)平面上到原点的距离等于2的点的全体;
(3)所有正三角形的全体;(4)方程的实数解;(5)不等式的所有实数解.
例2、用适当的方法表示下列集合
①由所有大于10且小于20的整数组成的集合记作;
②直线上点的集合记作;
③不等式的解组成的集合记作;
④方程组的解组成的集合记作;
⑤第一象限的点组成的集合记作;
⑥坐标轴上的点的集合记作.
例3、已知集合,若中至多只有一个元素,求实数的取值范围.
【课堂检测】
1.下列对象组成的集体:①不超过45的正整数;②鲜艳的颜色;③中国的大城市;④绝对值最小的实数;⑤高一(2)班中考500分以上的学生,其中为集合的是____________
2.已知2a∈A,a2-a∈A,若A含2个元素,则下列说法中正确的是
①a取全体实数;②a取除去0以外的所有实数;
③a取除去3以外的所有实数;④a取除去0和3以外的所有实数
3.已知集合,则满足条件的实数x组成的集合
【教学反思】
§1.1集合的含义及其表示(2)
【教学目标】
1.进一步加深对集合的概念理解;
2.认真理解集合中元素的特性;
3.熟练掌握集合的表示方法,逐渐培养使用数学符号的规范性.
【考纲要求】
3.知道常用数集的概念及其记法.
4.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号.
【课前导学】
1.集合,则集合中的元素有个.
2.若集合为无限集,则
高中数学必修一课件【篇9】
一、教材分析
(一)地位与作用
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
(二)学情分析
(1)学生已熟练掌握xxx。
(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。
(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。
(4)学生层次参次不齐,个体差异比较明显。
二、目标分析
新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据xx在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:
(一)教学目标
(1)知识与技能
使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。
(2)过程与方法
引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度与价值观
在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
(二)重点难点
本节课的教学重点是xxxxx,教学难点是xxxxx。
三、教法、学法分析
(一)教法
基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
(二)学法
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
四、教学过程分析
(一)教学过程设计
教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。
(1)创设情境,提出问题。
新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。
(2)引导探究,建构概念。
数学概念的形成来自解决实际问题和数学自身发展的需要。但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程。
(3)自我尝试,初步应用。
有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。
(4)当堂训练,巩固深化。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
(5)小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?
(二)作业设计
作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。
高中数学必修一课件【篇10】
教学目标:
①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。
③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。
教学重点与难点:
对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1比较数的大小
例1比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数
∵5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.51,
log0.50.6
板书:略。
师:比较对数值的大小常用方法:
①构造对数函数,直接利用对数函数的单调性比大小;
②借用“中间量”间接比大小;
③利用对数函数图象的位置关系来比大小。
2函数的定义域,值域及单调性。
高中数学必修一课件【篇11】
体味本文“寄情于物”的写法并借鉴之。
启发学生领悟本文以榕树为眼前景与思乡情的触发点、联系点,并以此联想到诸多琐细平凡的故乡生活的 掠影,来表达自己真挚、浓烈而怅惘的思乡之愁。
1、课文写了几个地方的榕树?你认为文章可以分为几个层次?
2、围绕故乡的榕树,作者回忆了与之相关的哪些事情?作者用什么将这些事情连缀起来?
3、本文的三个部分衔接过渡自然。文章是怎样过渡的?
①第三段是过渡段。其中,“我的心却像一只小鸟,从哨音里展翅飞出去……停落在故乡熟悉的大榕树上。我仿佛又看到……看到……”这些词句,像一座桥,把眼前景物与思想情怀联系起来,过渡得巧妙自然。
②“那样的日子不会再回来了”一句,总结了上文,表明了回忆的结束。
③“我仿佛刚刚从一场梦中醒转,身上还留有榕树叶隙漏下的清凉”一句,和上面的夏夜描写承接,衔接自然、巧妙。
4、课文倒数第2段连用两个问句,这样写对表达情感有什么作用?
是疑问,十分真挚地传达出作者浓浓的思乡情。
①、搜集有关乡情的诗歌、文章进行交流。
②、谈谈自己感受最深刻的一次情感体会。
高中数学教学设计精选
学习数年,我们读过很多范文,不少优秀范文是学生写出来的, 阅读范文可以帮助我们平复心情,让自己冷静思考。高质量的范文能供更多人参考,你有没有看过的优秀范文的参考范文呢?下面是小编帮大家编辑的《高中数学教学设计精选》,希望能为您提供更多的参考。
高中数学教学设计 篇1
学习目标
明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.
学习过程
一、学前准备
复习:
1.(课本P28A13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;
(4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;
二、新课导学
◆探究新知(复习教材P14~P25,找出疑惑之处)
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
◆应用示例
例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.
(1) 甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
◆反馈练习
1. (课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?
2.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
3.马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.
当堂检测
1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )
A.42 B.30 C.20 D.12
2.(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?
课后作业
1.(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?
2.(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?
高中数学教学设计 篇2
教学准备
教学目标
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型。
教学重难点
利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
教学过程
一、练习讲解:《习案》作业十三的第3、4题
与时间t(单位:s)的函数关系是
(已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?
(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值
(精确到。
(为,该船何时能进入港口?在港口能呆多久?
(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材P65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型。
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
高中数学教学设计 篇3
高中数学集合教学设计
【教学目的】
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(无限集、空集的意义
【重点难点】
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
【内容分析】
解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明
【教学过程】
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的'有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N*或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含( A )
(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素
5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:
(1) 当x∈N时, x∈G;
(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G
证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整数,
∴ = 不一定属于集合G
【小结】
元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
高中数学教学设计 篇4
一、探究式教学模式概述
创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。
2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。
3、探究式教学模式的特征。
(分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。
(全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。
(发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。
二、教学设计案例
9的探究式教学。
2、教学目标。
(1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。
(2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。
(分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。
3、教学方法:谈话探究法,讨论探究法。
4、教学过程。
(“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点?
(2)提出问题。
问题
A、24个
问题5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?
(8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。
教师:同学们观察1872等,看看它们有何特点?
学生:它们都满足“各位数字之和能被9整除”。
教师:此结论的正确性如何?
学生:老师,我们证明此结论的正确性,好吗?
教师:好。
学生:证明:不妨以n是一个四位数为例证之。
设n=依条件,有a+b+c+d=
则n=1000a+100b+10c+d
=(+(+(+d
=(+(a+b+c+d)
=+9m
=
∵ a,b,c,m∈N
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可证定理的后半部分。
教师:看来上述结论正确。所以得到如下定理。
定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。
教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。
学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教师:启发学生观察这些数字有何特点?提问学生。
学生:可以看出只要从,或者同时含1、2,选取的四个数字之和都不是9的倍数。
教师:请学生们继续尝试选取其他数字试一试。
学生:3+4+5+6=18是9的倍数。
教师:因此用。
故应选D。
(4)学以致用。
问题5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?
教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法?
学生讨论:
学生1:被6整除的五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。
学生。
学生3:第一类:5个数字中无0的五位偶数有。
第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。
学生。
(5)概括强化。
重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。
难点:数字排列知识的灵活应用。
关键:证明的思路以及定理的得出。
新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。
(6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。
总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。
2025高中数学必修一课件精选六篇
老师会根据课本中的主要教学内容整理成教案课件,需要我们认真写好每一份教案课件。老师在上课时需要依据教案课件来实施。不容错过的“高中数学必修一课件”绝妙文章呈上,热烈欢迎参考这些信息希望对你有所助益!
高中数学必修一课件【篇1】
1.本课反映的是儿童生活,贴近学生的生活,宜从联系学生的自身生活经历与体验入手,去激发学生探究的兴趣,引导学生去正确的认识生活,体味成长中的快乐与烦恼。
2.紧扣教材,运用联系比较法,引导学生深入理解课文意旨;运用拓展延伸,引导学生反思自身的生活世界,领悟学习和生活的真谛。
3.自主探究与讨论交流相结合,听说读写与实践模仿相结合,以增强全员参与的兴趣,促进动脑动口动手能力的全面发展。
1.熟记鲁迅的有关知识。
2.理解并运用描写景物的手法。
3.学习并运用联系比较法,进行探究学习。
4.培养热爱自然,关注生活的态度。
1.重点:描述百草园的部分,写景抓特点、按顺序、多角度描写的手法
1.整体感知课文,理解百草园生活是儿童热爱自然,喜欢自由快乐生活的生动体现。
2.学习抓住特点、多角度、按顺序描写景物的手法。
3.掌握“不必说……也不必说……单是”的句式。
(一)导入:第一单元的文章多是反映童年和少年生活的,学过后会勾起对自己童年生活的回忆和对现在生活的反思,还会有新的感触和更深的认识。
(二)板书课题,作者。回顾有关鲁迅的知识,口答明确:原名及籍贯、地位、主要作品及学过的作品、本文的出处。
(三)释题:从题目中获得了哪些信息?(明确本文有两部分内容:1.百草园生活。2.三味书屋生活。)
(五)整体感知。
1.概括特点(参考:百草园生活:自由快乐、丰富多彩、有无限趣味;三味书屋生活:单调枯燥、乏味、受束缚)
2.找出两部分的起止句及过渡段。
(六)细读百草园部分,划出中心句。
1.小组讨论:乐园中使鲁迅感到有无限趣味,包括哪几方面?(提示:从不同角度概括。参考:从看的听的吃的玩的角度或植物动物角度或季节等)
(2)为下列描述对象加上能突出其特点的词语:
3.齐读第二节,思考:重点写的是百草园的哪个位置,用什么句式来体现?
运用:用“不必说……也不必说……单是”仿写一段话。
4.拓展:
(1)划出表现哺鸟动作的动词,推荐两小组分别上台表演。(提示:一人口述原文,一人演鲁迅,两人演小鸟;要求模拟出以下动作,鲁迅:扫开、支起、撒、系、牵、看、拉、捉拿;小鸟:飞翔、落下、啄食、飞走、罩住。)
(2)观察表演者动作,要求用上系列动词描述。
(七)作业:
1.抄录课后所列字词并用两个成语造句;
(一)检查:
1.听写并用画线词造句:菜畦 鉴赏 确凿 臃肿 轻捷 人迹罕至 人声鼎沸
1.找出直接抒情的句子,表达的是什么感情。
2.思考:练习二(2)推测原因之多,说明了什么?(明确:衬托对百草园的难舍之情。)
1.讨论:哪些内容形成了对比,说明了什么?如:(1)玩耍时与读书时不同气氛;(2)师生读书时不同态度。
2.质疑问难:为何写学生读的文字没加标点,先生读的加了标点?(明确:学生没读懂,说明所学内容脱离学生实际。)
(五)拓展:
1.比较所掌握的不同人的童年生活,说说有何感触。
2.对照自身的学习、生活,有何新的认识?
(2)与三味书屋比照:珍惜现在的学习环境,主动学习,探究学习,合作学习,寻找并体验学习中的乐趣。
(3)结合自身经历与体验,仿照本文结构,用“从……到……”作题,写两个生活片段。
提示:可从空间或时间的变化上选材,以场景描述为主,体现成长中的快乐与烦恼。
高中数学必修一课件【篇2】
教学目标
1.数列求和的综合应用
教学重难点
2.数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和Sn=n2-7n-8,
(1)求{an}的通项公式
(2)求{|an|}的前n项和Tn
4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anxn ,求数列{bn}前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值
.已知数列{an},an∈N,Sn= (an+2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)
(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 .某商品在最近100天内的价格f(t)与时间t的
函数关系式是f(t)=
销售量g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值。
高中数学学习方法技巧总结
基础很重要,保持耐心多巩固
要学好数学,最关键的是要有一个好的基础。只有打牢数学基础,才能够把高中数学好,同样只有打好基础,才能够数学取得高分。打好基础是最关键的!比如:建一栋大楼,如果地基不稳,不管大楼有多么豪华,都只是华而不实。
想学好数学,对数学感兴趣
其实学好数学最好的办法就是发自内心由衷的想要学习,渴望学习,才能体会到从学习中所收获的乐趣。自己的成就感提升,对于学习数学的积极性也就提高了,觉得数学并没有那么难,就愿意去多接触了。
多做题反复做,有题感
其实学好数学办法就是要大量做题,反复去做,题做多了就知道哪些方面需要自己去加强学习,还有就是同样做数学题做多了就会有题感。有些题,它的类型都是一样的,题做多了之后,即使你不会做,你也会找到一些解题的思路和技巧。
高中数学学习方法总结
一)、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二)、适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的.精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三)、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
高中数学必修一课件【篇3】
教学要点:1、有感情地朗读课文,理解课文内容;
2、揣摩语言,学习景物描写的方法。
△从本文的题目看,你认为文章主要写了几个方面的内容△找出写百草园、三味书屋两个部分起止句中的过渡段概述一下这篇文章表现了作者怎样的思想感情。
△ 作者在百草园中的生活感受是怎样的?作者对三味书屋的感受是怎样的?二者在内容上是什么关系?有什么作用?
体验与反思:你喜欢怎样的教学内容和教学方式?你认为游戏与学习之间是矛盾的吗?
a、自由讨论。你最喜欢的语段,并说出原因(从写法上分析)b、重点研读。 朗读第二自然段、第七自然段 分析写作技巧
3、拓展延伸a、品味第二、七自然段,自己写一段话。(或写校园一角,或写某个游戏的过程)b、学生评析
教学要点: 1、有感情地朗读课文,理解文章的思路,体会至爱亲情2、研读课文
△ 从全文看,爸爸是一个怎样的人? “花”在全文结构中起着怎样的作用?文章表达了作者怎样的感情?
a、文中哪些写的是眼前事,哪些是回忆过去的事?回忆的事是怎样引出的? B、这些对“我”的成长起了怎样的作用? C、怎样理解文章未尾“我”默念的话的含义?
△ 毕业典礼后“我”回家见到了怎样的情景?这情景预示着什么呢?△“我”是不是真正感觉到自己长大了?从哪些地方看出来的?
教学内容: 1、速读课文,整体感知课文内容,体会字里行间流露的感情。2、体味文章带给我们的深刻启示。
教学设计:
△ 这篇童话讲了一个什么故事?丑小鸭遭受到哪些歧视和打击?丑小鸭是如何面对的?这篇童话给我们什么启示?
集中讨论: a、丑小鸭为什么拼死也要飞向高贵的天鹅? b、怎样理解“只要你是一只天鹅蛋,生在养鸭场里也没有什么关系”这名话? c、为什么说丑小鸭的一生是作者自身生活的写照?
教学要点:理解这两首诗,背诵《假如生活欺骗了你》;了解象征手法的作用联系自己的生活体验,谈学习体会,引导学生正确地面对生活。
课前准备: 1, 根据提示,阅读这两首诗。2, 搜集作者的有关资料。
教师组织学生将搜集到的有关资料进行课堂交流,以利于理解诗歌。
1、 反复阅读诗歌。2、独立思考,仔细品味,感悟诗歌的语言。
A“假如生活欺骗了你”指的'是什么? B诗歌的两部分各表现了怎样的内容? C这首诗歌表现了诗人怎样的人生态度?
1、 面对逆境,我们就只有耐心等待,不予抗争吗?2、怎样理解“而那过去了的,就会成为亲切的怀恋?
(五) 朗读背诵 (六)体验与反思: 教师要求学生联系自己的生活体验,谈谈学习体会,引导学生树立积极乐观的人生态度。
1、 怎样理解诗歌中所说的“路”?这是怎样一种表现手法?你能从学过的课文中找出类似的例子吗?2、四节诗歌表达了什么意思?3、这首诗到底想告诉我们什么意思?
1、 诗人选择了自己的路,可为什么题目却是“未选择的路”?2、在诗歌表现出的情趣上,《未选择的路》与《假如生活欺骗了你》有什么不同?3、这两首诗歌对人可能产生怎样的影响?
三、 课后作业 :试着写一篇随笔,评论一下《假如生活欺骗了你》或《未选择的路》。
教学要点: 熟读课文,把握课文主要内容;掌握常用文言词语,翻译课文;学习本文借事说理的方法,理解作者的思想感情。
教师范读,学生在听的过程中注意正音及句子的停顿。 学生自由诵读,进一步感知课文。 学生齐读,注意断句。
疏通文意 学生借助注释和工具书,将文言文翻译成白话文,然后四人小组讨论交流。全班同学讨论交流,解决四人小组不能解决的问题。
问题探究方仲永的变化经历了哪几个阶段?方仲永由天资过人变得“泯然众人”的原因是什么?文章最后一段议论讲了什么道理?学完本文,你有何感想?
教学要点:认识自我,正确对待成长中的烦恼。 了解他人的烦恼,重新审视并评价自我。 学会沟通与理解,能帮人解脱烦恼。
课前准备:1、提前布置预习,了解活动内容。2、学生自由结合,分为三组,选派组长。3、学生可向爸爸妈妈、朋友了解少年时期的烦恼。4、教师准备多媒体课件,美国电视剧《成长
高中数学必修一课件【篇4】
教材分析
本节课重在探究等比数列的前n项和公式的推导及简单的应用。教学中注重公式的形成过程及数学思想方法的渗透,并揭示公式的结构特征和内在联系.就知识的应用价值来看,它是从大量数学问题和现实问题中抽象出来的模型,在公式推导中所蕴含的数学思想方法在各种数列求和问题中有着广泛的应用.就内容的人文价值上看,它的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生数学的思考问题的良好载体.
教学目标
知识与技能: 掌握等比数列的前n项和公式以及推导方法;会用等比数列的前n项和公式解决有关等比数列的一些简单问题.
过程与方法: 经历等比数列前n 项和的推导过程,总结数列求和方法,体会数学中的思想方法.
情感态度与价值观:通过教材中的实际引例,激发学生学习数学的积极性及学习数学的主动性.
教学重点
等比数列的前n项和公式推导及公式的简单应用
教学难点
等比数列的前n项和公式推导过程和思想方法
教学过程
Ⅰ、课题导入
[创设情境]
[提出问题] “国王对国际象棋的发明者的奖励”的故事
Ⅱ、讲授新课
[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。
高中数学必修一课件【篇5】
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式
二、教学目标分析
1. 知识目标
1)
2) 掌握等比数列的定义 理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四. 教学策略选择与设计
1.课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入
高中数学必修一课件【篇6】
学习目标
1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用。
2. 结合已学过的数学实例,了解类比推理的含义;
3. 能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用。
学习过程
一、课前准备
问题3:因为三角形的内角和是 ,四边形的内角和是 ,五边形的内角和是
……所以n边形的内角和是
新知1:从以上事例可一发现:
叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。
新知2:类比推理就是根据两类不同事物之间具有
推测其中一类事物具有与另一类事物 的性质的推理。
简言之,类比推理是由 的推理。
新知3归纳推理就是根据一些事物的 ,推出该类事物的
的推理。 归纳是 的过程
例子:哥德巴赫猜想:
观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,
16=13+3, 18=11+7, 20=13+7, ……,
50=13+37, ……, 100=3+97,
猜想:
归纳推理的一般步骤
1 通过观察个别情况发现某些相同的性质。
2 从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
※ 典型例题
例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和Sn的归纳过程。
变式1 观察下列等式:1+3=4= ,
1+3+5=9= ,
1+3+5+7=16= ,
1+3+5+7+9=25= ,
……
你能猜想到一个怎样的结论?
变式2观察下列等式:1=1
1+8=9,
1+8+27=36,
1+8+27+64=100,
……
你能猜想到一个怎样的结论?
例2设 计算 的值,同时作出归纳推理,并用n=40验证猜想是否正确。
变式:(1)已知数列 的第一项 ,且 ,试归纳出这个数列的通项公式
例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质。
圆的概念和性质 球的类似概念和性质
圆的周长
圆的面积
圆心与弦(非直径)中点的连线垂直于弦
与圆心距离相等的弦长相等,
※ 动手试试
1. 观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?
2 如果一条直线和两条平行线中的一条相交,则必和另一条相交。
3 如果两条直线同时垂直于第三条直线,则这两条直线互相平行。
三、总结提升
※ 学习小结
1.归纳推理的定义。
2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).
3. 合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法
【课件收藏】 五年级数学说课稿(一篇)
我们多多少少都是读过一些范文的,一些优秀范文对于我们来说是必须的,阅读范文可以帮助我们平复心情,让自己冷静思考。高质量的范文能供更多人参考,你觉得哪些优秀范文是值得借鉴的呢?为此,小编从网络上为大家精心整理了《【课件收藏】 五年级数学说课稿(一篇)》,欢迎大家与身边的朋友分享吧!
一、说教材
1、教学内容:
九年义务教育实验教材北师大版五年级上册六单元可能性的大小第一课时《摸球游戏》103--106页。
2、教材分析、学情分析:
(1)二年级上册,学生学过《抛硬币》,初步感知:一定、可能、不可能。
(2)三年级上册,学生学过《摸球游戏》,知道可能性是有大、小的,会用一定、经常、偶尔、很可能等词语来描述事件发生的概率。
(3)三年级下册,学生学过《猜一猜》《转盘游戏》,进一步认识了可能性的大小。
(4)在四年级下册《游戏公平》的学习中,他们又认识了等可能性。
而本学期所学的概率知识主要用数表示可能性的大小,所以说本节课的内容是在前三个年级的基础上的.一个延伸与发展。
3、教学目标:
根据教材的编排意图及五年级学生年龄的特点和本班学生的实际,我将教学目标定为以下几点:
(1)、知识与能力:通过摸球活动的情境,使学生进一步认识客观事物发生的可能性的大小。能用数表示可能性的大小。
(2)过程与方法:通过摸球、猜测、交流等活动,培养学生进行合理推断的能力。
(3)情感态度价值观:激发学生积极参与、团结合作、主动探究的学习精神,同时渗透概率的思想,从数的角度体会数学与生活的密切联系。
4、教学重、难点:
因本课是让学生从活动中进一步感知可能性的大小,所以,我把本课的教学重点定为理解并掌握用数表示客观事物发生的可能性大小。这既是本课的教学重点,难点是用分数表示可能性的大小。
二、说教具、学具:
为了提高课堂效率,激发学生求知欲,我准备了盒子、不同颜色的乒乓球若干个、转盘、题卡,给学生准备了(每组)五个摸球的图片、一张表格、两个红圆片、一个白圆片。
三、说教法、学法:
为了更好的实现本课教学目标,在教学中主要采取用
(1)引导发现法:教学中引导学生去探索、发现规律、发展学生思维.
(2)分组讨论法:有利于师生之间、学生之间的交流,发挥了学生的主动性和创造性,增强相互间的合作意识,这两种教学法相结合,批导学生会观察、会思考、分交流。
由以下几部分展开教学(出示流程图):摸球游戏-------机智问答-------感知数据(0、分数、1)----描述生活现象。
四、说教学程序:
(一)摸球游戏(复习可能性的大小)
首先,我谈谈第一个环节:摸球游戏。(贴出五个盒子的图片)
(课堂情境模拟)“同学们,老师这里准备了五个百宝盒,里面装有各种不同颜色的乒乓球,请大家仔细观察,这五个盒子中,哪个盒子摸到白球的可能性最小,哪个盒子摸到白球的可能性最大?”“老师,我认为1号盒子摸到白球的可能性最小,因为里没没有白球!”“我认为5号盒子摸到白球的可能性最大,因为里面白球最多有七个!”“我认为2号盒子摸到白球的可能性最大,因为里面全是白球!”学生展开了激烈的争论。我让他们进行简短的交流。
这样的引入,学生既复习了可能性的大小,又自然过渡到新知识,为进一步学习本课用数表示可能性的大小埋下伏笔。
(二)机智问答(用0和1表示“不可能、一定”)
“同学们,请看第一个盒子,能摸到白球吗?”生:不能。“那么,谁能用一个数来表示1号盒子摸到白球的可能性?””老师,就用0表示吧,0就是没有!”好,我们就用0表示不可能发生的可能性(在“不可能”边写下0)。那么,第二个盒子,可以用什么数表示摸到白球的可能性呢?这时,有的学生说用1表示,有的学生说用2表示,因为里面有2个白球,我让他们进行简短讨论,最后,统一了意见,用1表示一定发生的可能性(在“一定”旁边写下1)。
(三)感知数据,生活中的0和1:
那么,我们生活中还有哪些事物发生的可能性可以用0或1表示呢?这里,课堂气氛一下活跃起来了,有的说母鸡下蛋的可能性为0,有的学这节数学课真有趣的可能性为1……
这里,我放手让学生去说,目的是让学生进一步深化理解用0或1表示事物发生的可能性,让他们把数数回归到生活中去,体现了数学与生活的密切联系,有利于激发学生对数学的学习兴趣。
有了前两个盒子作铺垫,第三个盒子,学生很快就找到了1/2表示摸到白球的可能性,紧接着,我把问题抛向学生“怎么用一个数来表示第四、五个盒子摸到白球的可能性呢?”让他们自己去先思考,再讨论,再汇报。最好,学生得出了用1/8表示第四个盒子摸到白球的可能性,用7/8表示第五个盒子摸到白球的可能性,我再引导学生说出,这里的8表示的是盒子里共有8个球,共有八种可能的结果,这里的1是4号盒子里只有一个白球,同样,再引导学生说出这个7/8中的8和7各表示什么。
这个环节,是本课的教学重点和难点所在,让学生用数表示可能性的大小,我在给出0和1作铺垫后,放手让学生自己去探究,这些问题由简入难,层层深入,步步为营,学生碰到问题时进行小组讨论,运用小组讨论的学习方法,从而得出用一个数表示可能性的大小,从而突出了难点,也突破了重点,这也是我在处理本课教学重难点的特色设计。
为了进一步巩固今天所学知识,我让学生小组做课后的“做一做”摸球游戏,并指导学生做好记录,再次调动所有学生的参与热情,课堂气氛达到高潮。然后,让学生解析为什么有的小组共摸了20次球,摸到白球的次数是12次,而有的小组摸了10次球,摸到白球的次数只有3次,而不一定是1/2?让学生认识实际摸球活动中记录的数据和标准概率1/2是有差距的,让学生明白摸球的次数越多,摸到白球的可能性越接近标准概率,这就上升到了理性认识可能性的高度。
五、说板书
最后,我说说我的板书,这样的板书,简单明了,学生通过以前所学知识自然过渡到今天所学知识,(用数表示可能性的大小)符合学生的识知规律,期望取得更好的教学效果,我的说课到此结束,谢谢大家!