你的位置:
  • 范文大全
  • >教案
  • >导航
  • >[推荐教案] 高中数学优秀说课课件最新模板
  • [推荐教案] 高中数学优秀说课课件最新模板

    发表时间:2022-10-13

    老师职责的一部分是要弄自己的教案课件,每个老师都需要仔细规划教案课件。认真做好教案课件的工作计划,才能让学生更加快速地理解各知识点。我们需要从哪些角度来写教案课件呢?下面是小编为大家整理的“[推荐教案] 高中数学优秀说课课件最新模板”,仅供参考,欢迎大家阅读。

    高中数学优秀说课课件(一)

    一。教材分析

    1.本节课内容在整个教材中的地位和作用

    概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

    2.教学目标定位

    根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目标。

    (1)基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;

    (2)过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;

    (3)情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

    3.教学重难点

    重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。

    二。教法学法分析

    数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。为此,我设计了5个环节:①创设情景——引入新课;②交流探究——发现规律;③启发引导——形成结论;④训练小结——深化巩固;⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。

    三。教学过程分析

    1.创设情景—引入新课

    教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x?图像为引子,让学生画y=x?和y=2x?图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x?与y=ax?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。

    由浅入深,下面让学生画y=2x?,y=2(x+1)?与y=2(x+1)?+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。

    2.探究交流—发现规律

    从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x?与y=2x?+4x-1的图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=ax?+bx+c,先将其化成y=a(x+h)?+k的形式,从而判断出y=ax?+bx+c的图像是如何由y=ax?变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)?+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。

    3.启发引导—形成结论

    前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x?到y=ax?,y=ax?到y=a(x+h)?+k,y=ax?到y=ax?+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a

    4.练习小结——巩固深化

    为了巩固和加深二次函数y=ax?+bx+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。这个过程中会产生学生之间的三次竞争:①看谁解的快、用时最短;②看谁书写的整齐;③看谁做的对。这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生"考试什么都不会,考完后什么都会"以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。

    5.延伸拓广——提高能力

    课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。

    高中数学优秀说课课件(二)

    各位评委老师,大家好!

    我是本科数学**号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。

    一、教材分析

    1、 教材的地位和作用

    (1)本节课主要对函数单调性的学习;

    (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

    (3)它是历年高考的热点、难点问题

    (根据具体的课题改变就行了,如果不是热点难点问题就删掉)

    2、 教材重、难点

    重点:函数单调性的定义

    难点:函数单调性的证明

    重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

    二、教学目标

    知识目标:

    (1)函数单调性的定义

    (2)函数单调性的证明

    能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

    情感目标:培养学生勇于探索的精神和善于合作的意识

    (这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

    三、教法学法分析

    1、教法分析

    "教必有法而教无定法",只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

    2、学法分析

    "授人以鱼,不如授人以渔",最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

    (前三部分用时控制在三分钟以内,可适当删减)

    四、教学过程

    1、以旧引新,导入新知

    通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

    2、创设问题,探索新知

    紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

    让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

    让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

    3、 例题讲解,学以致用

    例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

    例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

    例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

    学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

    4、归纳小结

    本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

    5、作业布置

    为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2

    6、板书设计

    我力求简洁明了地概括本节课的.学习要点,让学生一目了然。

    (这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

    五、教学评价

    本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

    高中数学优秀说课课件(三)

    一、学习目标

    1.知识目标:研究曲线的切线,从几何学的角度了解导数概念的背景,明确瞬时变化率就是导数,掌握求曲线切线斜率的一般方法。

    2.能力目标:通过嫦娥一号绕月探测卫星变轨瞬间的瞬时速度和运动的方向为背景,从极限入手,培养学生的创新意识和数形转化能力。

    3.情感目标:通过运动的观点,体会曲线切线的内涵,挖掘数形关系,激发学生学习数学的热情。

    二、教学重点

    曲线切线的概念形成,导数公式的理解和运用。

    三、教学难点

    理解曲线切线的形成是通过逼近的方法得出的。引导学生在平均变化率的基础上探求瞬时变化率。

    四、教学过程

    1.新课引入,创设情景

    ①(大屏幕显示)嫦娥一号绕月探测卫星运行轨迹以及四次变轨的全过程。

    ②讨论问题:()卫星在每次变轨的瞬间不仅有瞬时速度,而且要研究它运动的方向。引出本节课主要研究的课题——曲线的切线。

    2.概念形成,提出问题

    ①(大屏幕显示)分析卫星在变轨瞬间与变轨前的位置关系,引出曲线的割线。

    ②由运动的观点、极限的思想,归纳出曲线切线的概念。以及求曲线切线斜率的一种方法。

    3.转换角度,分析问题

    ①引入增量的概念,在曲线C上取P(x0、y0)及邻近的一点Q(x0+△x,y0+△y),过P、Q两点作割线,分别过P、Q作y轴,x轴的垂线相交于点M,设割线PQ的倾斜角β, .

    ②割线斜率用增量表示的形式不变。(大屏幕显示) 改变P的邻近点Q的位置、曲线的类型、倾斜角的性质,发现tanβ 表示的形式始终不变。左、右邻近点的讨论,为下面说明极限的存在做准备。

    4.归纳总结,解决问题

    ①(大屏幕显示)由于△x可正可负,

    但△x≠0,研究△x无限趋近于0,

    用极限的观点导出曲线切线的斜率。

    ②讨论问题:引导学生将这一运动过程 转化为已学的代数问题。

    k==

    点评公式,重点强调平均变化率和瞬时变化率之间的关系,提出导数。同时引导学生归纳出求曲线切线斜率的一般方法和步骤

    5.例题剖析,深化问题

    例:曲线的方程f(x)=x2+1 求此曲线在点P(1,2)处的切线的方程

    6.学生演板,落实问题

    ①已知曲线y=2x2上一点A(1,2),求

    (1)点A处的切线的斜率;

    (2)点A处的切线的方程。

    ②求曲线y=x2+1在点P(-2,5)处的切线方程。

    7.课堂小结

    8.作业

    P125 第6、7、8、9题

    JK251.com延伸阅读

    高中数学优秀教案范例大全


    作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编帮大家整理的高中数学优秀教案(通用10篇),希望能够帮助到大家。

    高中数学优秀教案范例大全 篇1

    一.教材分析。

    ( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学

    ( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

    想方法,都是学生今后学习和工作中必备的数学素养。

    (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

    二.学情分析。

    ( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

    ( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

    (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

    三.教学目标。

    根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

    (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

    (3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。

    四.重点,难点分析。

    教学重点:公式的推导、公式的特点和公式的运用。

    教学难点:公式的推导方法及公式应用中q与1的关系。

    五.教法与学法分析.

    培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的.角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

    获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

    六.课堂设计

    (一)创设情境,提出问题。(时间设定:3分钟)

    [利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

    [设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]

    提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

    高中数学优秀教案范例大全 篇2

    教学目标:

    1.结合实际问题情景,理解分层抽样的必要性和重要性;

    2.学会用分层抽样的方法从总体中抽取样本;

    3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

    教学重点:

    通过实例理解分层抽样的方法.

    教学难点:

    分层抽样的步骤.

    教学过程:

    一、问题情境

    1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

    2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

    二、学生活动

    能否用简单随机抽样或系统抽样进行抽样,为什么?

    指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

    由于样本的容量与总体的个体数的比为100∶2500=1∶25,

    所以在各年级抽取的个体数依次是,,,即40,32,28.

    三、建构数学

    1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

    说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

    ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

    2.三种抽样方法对照表:

    类别

    共同点

    各自特点

    相互联系

    适用范围

    简单随机抽样

    抽样过程中每个个体被抽取的概率是相同的

    从总体中逐个抽取

    总体中的个体数较少

    系统抽样

    将总体均分成几个部分,按事先确定的规则在各部分抽取

    在第一部分抽样时采用简单随机抽样

    总体中的个体数较多

    分层抽样

    将总体分成几层,分层进行抽取

    各层抽样时采用简单随机抽样或系统

    总体由差异明显的几部分组成

    3.分层抽样的步骤:

    (1)分层:将总体按某种特征分成若干部分.

    (2)确定比例:计算各层的个体数与总体的个体数的比.

    (3)确定各层应抽取的样本容量.

    (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

    四、数学运用

    1.例题.

    例1(1)分层抽样中,在每一层进行抽样可用_________________.

    (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

    ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

    ③某班元旦聚会,要产生两名“幸运者”.

    对这三件事,合适的抽样方法为()

    A.分层抽样,分层抽样,简单随机抽样

    B.系统抽样,系统抽样,简单随机抽样

    C.分层抽样,简单随机抽样,简单随机抽样

    D.系统抽样,分层抽样,简单随机抽样

    例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

    很喜爱

    喜爱

    一般

    不喜爱

    2435

    4567

    3926

    1072

    电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

    解:抽取人数与总的比是60∶12000=1∶200,

    则各层抽取的人数依次是12.175,22.835,19.63,5.36,

    取近似值得各层人数分别是12,23,20,5.

    然后在各层用简单随机抽样方法抽取.

    答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

    数分别为12,23,20,5.

    说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

    (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

    分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

    (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

    (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

    五、要点归纳与方法小结

    本节课学习了以下内容:

    1.分层抽样的概念与特征;

    2.三种抽样方法相互之间的区别与联系.

    高中数学优秀教案范例大全 篇3

    教学目标

    1、知识与技能:

    函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

    赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

    2、过程与方法:

    (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

    (2)了解构成函数的要素;

    (3)会求一些简单函数的定义域和值域;

    (4)能够正确使用“区间”的符号表示函数的定义域;

    3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性。

    教学重点/难点

    重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

    难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

    教学用具

    多媒体

    4、标签

    函数及其表示

    教学过程

    (一)创设情景,揭示课题

    1、复习初中所学函数的概念,强调函数的模型化思想;

    2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

    (1)炮弹的射高与时间的变化关系问题;

    (2)南极臭氧空洞面积与时间的变化关系问题;

    (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题。

    3、分析、归纳以上三个实例,它们有什么共同点;

    4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

    5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

    (二)研探新知

    1、函数的有关概念

    (1)函数的概念:

    设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

    记作:y=f(x),x∈A.

    其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

    注意:

    ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

    (2)构成函数的三要素是什么?

    定义域、对应关系和值域

    (3)区间的概念

    ①区间的分类:开区间、闭区间、半开半闭区间;

    ②无穷区间;

    ③区间的数轴表示.

    (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

    通过三个已知的函数:y=ax+b(a≠0)

    y=ax2+bx+c(a≠0)

    y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

    师:归纳总结

    (三)质疑答辩,排难解惑,发展思维。

    1、如何求函数的定义域

    例1:已知函数f(x)=+

    (1)求函数的定义域;

    (2)求f(-3),f()的值;

    (3)当a>0时,求f(a),f(a-1)的值。

    分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例。如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

    例2、设一个矩形周长为80,其中一边长为x,求它的'面积关于x的函数的解析式,并写出定义域。

    分析:由题意知,另一边长为x,且

    (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合。

    (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合。(即求各集合的交集)

    (5)满足实际问题有意义。

    巩固练习:课本P19第1

    2、如何判断两个函数是否为同一函数

    例3、下列函数中哪个与函数y=x相等?

    分析:

    1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

    2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

    解:

    课本P18例2

    (四)归纳小结

    ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。

    (五)设置问题,留下悬念

    1、课本P24习题1.2(A组)第1—7题(B组)第1题

    2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。

    课堂小结

    高中数学优秀教案范例大全 篇4

    重点难点教学:

    1.正确理解映射的概念;

    2.函数相等的两个条件;

    3.求函数的定义域和值域。

    教学过程:

    1.使学生熟练掌握函数的概念和映射的定义;

    2.使学生能够根据已知条件求出函数的定义域和值域;

    3.使学生掌握函数的三种表示方法。

    教学内容:

    1.函数的定义

    设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的'数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

    注意:

    ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。

    2.构成函数的三要素定义域、对应关系和值域。

    3、映射的定义

    设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

    4.区间及写法:

    设a、b是两个实数,且a

    (1)满足不等式axb?的实数x的集合叫做闭区间,表示为(a,b);

    (2)满足不等式axb?的实数x的集合叫做开区间,表示为(a,b);

    5.函数的三种表示方法

    ①解析法

    ②列表法

    ③图像法

    高中数学优秀教案范例大全 篇5

    前言

    为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

    在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的.文章则排在后面。

    不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程,书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪,你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

    1、集合与函数概念实习作业

    一、教学内容分析

    《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

    二、学生学习情况分析

    该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

    三、设计思想

    《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

    四、教学目标

    1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

    2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

    3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

    五、教学重点和难点

    重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

    难点:培养学生合作交流的能力以及收集和处理信息的能力。

    六、教学过程设计

    【课堂准备】

    1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

    2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

    高中数学优秀教案范例大全 篇6

    一、教学目标

    知识与技能:

    理解任意角的概念(包括正角、负角、零角)与区间角的概念。

    过程与方法:

    会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

    情感态度与价值观:

    1、提高学生的推理能力;

    2、培养学生应用意识。

    二、教学重点、难点:

    教学重点:

    任意角概念的理解;区间角的集合的书写。

    教学难点:

    终边相同角的集合的表示;区间角的集合的书写。

    三、教学过程

    (一)导入新课

    1、回顾角的定义

    ①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

    ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

    (二)教学新课

    1、角的有关概念:

    ①角的定义:

    角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

    ②角的名称:

    注意:

    ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

    ⑵零角的终边与始边重合,如果α是零角α =0°;

    ⑶角的概念经过推广后,已包括正角、负角和零角。

    ⑤练习:请说出角α、β、γ各是多少度?

    2、象限角的概念:

    ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

    例1、如图⑴⑵中的角分别属于第几象限角?

    高中数学优秀教案范例大全 篇7

    一、课程性质与任务

    数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

    1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

    3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

    本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

    1.基础模块是各专业学生必修的基础性内容和应达到的'基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

    3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

    (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

    了解:初步知道知识的含义及其简单应用。

    理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

    计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

    空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

    分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

    数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

    (二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

    第2单元不等式(8学时)

    第3单元函数(12学时)

    第4单元指数函数与对数函数(12学时)

    第5单元三角函数(18学时)

    第6单元数列(10学时)

    第7单元平面向量(矢量)(10学时)

    第8单元直线和圆的方程(18学时)

    第9单元立体几何(14学时)

    第10单元概率与统计初步(16学时)

    2.职业模块

    第1单元三角计算及其应用(16学时)

    第2单元坐标变换与参数方程(12学时)

    第3单元复数及其应用(10学时)

    高中数学优秀教案范例大全 篇8

    提出问题:

    新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

    教材中的地位:

    本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

    设计背景:

    在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

    教学目标:

    一、知识:

    理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

    二、过程与方法:

    由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

    三、能力:

    1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

    2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

    教学过程:

    由实际问题引入:

    问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

    分裂次数与细胞个数

    1,2;2,2×2=22;3,2×2×2=23;x,2×2×……×2=2x

    归纳:y=2x

    问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

    经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=

    寻找异同:

    你能从以上的两个例子中得到的关系式里找到什么异同点吗?

    共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

    那么,今天我们来学习新的一个基本函数:指数函数

    得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

    在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

    般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

    若a

    若a=1,则=1,是一个常量,也没有研究的必要。

    所以有规定且a>0且a≠1。

    由定义,我们可以对指数函数有一初步熟悉。

    进一步理解函数的定义:

    指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的.定义域为R。

    研究函数的途径:由函数的图像的性质,从形与数两方面研究。

    学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

    首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。

    我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

    要求学生描述出指数函数图像的特征,并试着描述出性质。

    数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

    虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

    教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

    高中数学优秀教案范例大全 篇9

    教学准备

    教学目标

    解三角形及应用举例

    教学重难点

    解三角形及应用举例

    教学过程

    一.基础知识精讲

    掌握三角形有关的定理

    利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;

    (2)已知两边和它们的夹角,求第三边和其他两角。

    掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

    二.问题讨论

    思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的`讨论.

    思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

    例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

    一. 小结:

    1.利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

    2.利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;

    (2)已知两边和它们的夹角,求第三边和其他两角。

    3.边角互化是解三角形问题常用的手段.

    三.作业:P80闯关训练

    高中数学优秀教案范例大全 篇10

    一、教学目标:

    掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

    二、教学重点:

    向量的性质及相关知识的综合应用。

    三、教学过程:

    (一)主要知识:

    1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

    (二)例题分析:略

    四、小结:

    1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

    2、渗透数学建模的思想,切实培养分析和解决问题的能力。

    五、作业:

    高中数学完整教案模板


    作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?以下是小编为大家收集的高中数学备课教案模板,仅供参考,欢迎大家阅读。

    高中数学完整教案模板 篇1

    教学目标:

    1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。

    2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。

    3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。

    教学重点、难点:

    1、 重点:指数函数的图像和性质

    2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。

    教学方法:

    引导——发现教学法、比较法、讨论法

    教学过程:

    一、事例引入

    T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的.函数。什么是函数?

    S: --------

    T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:

    C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )

    S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),

    从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。

    二、指数函数的定义

    C:定义: 函数 y = a x (a>0且a≠1)叫做指数函数, x∈R.。

    问题 1:为何要规定 a > 0 且 a ≠1?

    S:(讨论)

    C: (1)当 a

    就没有意义;

    (2)当 a=0时,a x 有时会没有意义,如x= - 2时,

    (3)当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。

    巩固练习1:

    下列函数哪一项是指数函数( )

    A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x

    高中数学完整教案模板 篇2

    活动目标:

    1、知道生病时不怕打针和吃药。

    2、认识数字1-5,并能理解数字的实际意义。

    活动准备:药瓶若干,任务单每人一张

    活动过程:

    一、讨论导入

    1、说说生病了怎么办。

    1、生病了怎么办

    提问:你生病时有没有打过针呢?打针时你怕吗?

    小结:打针是有一点点痛,但忍一忍病就会好了。

    2、说说自己生病的时候

    提问:生病的时候你吃过药吗?药是什么味道的?为什么要吃药?

    小结:吃药能治病,让你的身体快快好起来,所以生病了就要去看病,不要怕吃药,要做个勇敢的孩子。

    二、第一次买药

    我们小朋友都是勇敢的孩子,生病了都能不怕打针吃药。可是,娃娃家的宝宝说:我生病了,可我怕吃药!那我们一起来做娃娃家的爸爸妈妈,帮宝宝去医院买药。

    1、认识数字

    提问:看看每个药瓶上都有数字宝宝,请你根据上面的数字帮宝宝买药。

    2、师生共同检验

    小结:宝宝说谢谢爸爸妈妈帮我们买药。

    三、第二次买药

    宝宝说我们第二天吃的药没有了,请爸爸妈妈再帮忙到医院买些药。

    1、请你根据医生开的单子帮宝宝领药。

    2、请3名幼儿做医生,根据幼儿的任务单给相应的药,幼儿互相检查。

    3、请你根据宝宝的要求,把药送给相应的宝宝吃。

    小结:生病了,只有吃药才能更快的使病好起来。

    高中数学完整教案模板 篇3

    一、教学目标

    1、训练正确划找课文的中心句,领会文章的中心思想。

    2、知道语文是基础的基础,增强学好语文的自觉性。

    3、认读生字词,理解词语在句子中的意思。

    二、重点与难点

    重点:正确划出文章中心句,体会课文的中心思想。

    难点:划出文章的中心句,增强学好语文的自觉性。

    三、教学准备

    预习课文,读通课文,读准生字,理解书后第4题的词语大意,划出不懂的地方。

    四、教学时间 2课时

    五、教学过程:

    第1课时

    (一)教学目标

    1、读通课文,学会生字词。

    2、初知大意,理清各自然段意思。

    (二)教学过程

    1、问题导入。从班级中数学尖子对语文学习不重视造成的问题导入揭题。

    2、自学课文。

    (1)生字词学习

    (2)通读课文,划出问题。

    3、初知大意,试划中心句。

    初步青写这篇课文主要讲什么?

    课文的中心句是哪句?(学生试划有可能不统一,出现好多句,可安排延时反馈。)

    复习回顾:

    什么叫中心句?为什么要找中心句?

    怎样找中心句?第一单元三课的中心句各有什么特点?

    (1)出现在开头,如《别了,我爱的中国》。

    (2)出现在文章中间,如《一夜的工作》。

    (3)出现在文章结尾,如《养花》。

    (4)中心句反复出现,如《别了,我爱的中国》。

    4、自读课文,概括自然段意思。

    5、作业练习。

    (1)做书后第4题

    (2)摘录书上反问句并改成陈述句。

    第2课时

    (一)教学目标

    1、正确划出中心句,体会中心思想,增强学好语文的自觉性。

    2、会用“无论……都……”“非……不可”“不仅……还……”等句式写句子。

    (二)教学过程

    1、揭题定向。

    2、细读讨论。

    (1)灯片出示课后第3题句子。

    这句讲什么?什么叫“充分认识”它们之间的关系?你认为怎样认识才算充分认识了?如果不充分认识有什么害处?

    (2)第2、3自然段举了哪些例子证明没有“充分认识”学习语文和数学关系的害处?苏老是数学家,为什么却讲“若语文不及格,数学再好也不能录取”?你是怎样认识这个关系的?苏老在第4自然段是怎么讲这个关系的?

    (3)哪些证明苏老是体会到学好语文的重要的?

    (4)苏老从自己的亲身体会,从没学好语文的反面例子讲,讲来讲去目的是什么?

    3、重划中心句。

    再划中心句,讨论第1课时试划时的分歧,说清为什么应将“我希望大家在学好数学的同时,也要把语文学好,这对青年人的成长一定有好处的。”划出中心句。

    在说理中加深对中心句特征的认识,体会文章的中心思想。

    4、师生总结。

    这课的中心句和哪一课的相类似?在划中心句的两次变化中,有什么新的收获?

    用“无论……都……”“非……不可”“不仅……还……”等句式(可用一句,也可用两句连用)说说学好语文的重要性。

    5、延时作业。

    任选一题作业(写200字左右的片断)。

    (1)我吃过语文水平不高的苦头。

    (2)苏爷爷,您放心吧!

    高中数学完整教案模板 篇4

    教材分析:

    三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

    教案背景:

    通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

    教学方法:

    以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

    教学目标:

    借助单位圆探究诱导公式。

    能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

    教学重点:

    诱导公式(三)的推导及应用。

    教学难点:

    诱导公式的应用。

    教学手段:

    多媒体。

    教学情景设计:

    一.复习回顾:

    1. 诱导公式(一)(二)。

    2. 角 (终边在一条直线上)

    3. 思考:下列一组角有什么特征?( )能否用式子来表示?

    二.新课:

    已知 由

    可知

    而 (课件演示,学生发现)

    所以

    于是可得: (三)

    设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

    由公式(一)(三)可以看出,角 角 相等。即:

    .

    公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

    设计意图:结合学过的公式(一)(二),发现特点,总结公式。

    1. 练习

    (1)

    设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

    (学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)

    三.例题

    例3:求下列各三角函数值:

    (1)

    (2)

    (3)

    (4)

    例4:化简

    设计意图:利用公式解决问题。

    练习:

    (1)

    (2) (学生板演,师生点评)

    设计意图:观察公式特点,选择公式解决问题。

    四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

    五.课后作业:课后练习A、B组

    六.课后反思与交流

    很荣幸大家来听我的课,通过这课,我学习到如下的东西:

    1.要认真的研读新课标,对教学的目标,重难点把握要到位

    2.注意板书设计,注重细节的东西,语速需要改正

    3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作

    4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣

    5.上课的生动化,形象化需要加强

    听课者评价:

    1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

    2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

    3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

    4.评议者:引导学生通过网络进行探究。

    建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

    ( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好

    ( 2)这样子的'教学可以提高上课效率,让学生更多的时间思考

    ( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用

    ( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来

    ( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少

    ( 6)让学生多探究,课堂会更热闹

    ( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习

    ( 8)教学模式相对简单重复

    ( 9)思路较为清晰,规范化的推理

    高中数学完整教案模板 篇5

    教学目标:

    1、使学生了解角的形成,理解角的概念掌握角的各种表示法;

    2、通过观察、操作培养学生的观察能力和动手操作能力。

    3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化

    4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。

    教学重点:

    理解角的概念,掌握角的三种表示方法

    教学难点:

    掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化

    教学手段:

    教具:电脑课件、实物投影、量角器

    学具:量角器需测量的角

    教学过程:

    一、建立角的概念

    (一)引入角(利用课件演示)

    1、从生活中引入

    提问:

    A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?

    B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的物品中找出角?

    2、从射线引入

    提问:

    A、昨天我们认识了射线,想从一点可以引出多少条射线?

    B、如果从一点出发任意取两条射线,那出现的是什么图形?

    C、哪两条射线可以组成一个角?谁来指一指。

    (二)认识角,总结角的定义

    3、 过渡:角是怎么形成的呢?一起看

    (1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。

    提问:观察从这点引出了几条射线?此时所组成的图形是什么图形?

    (2)、判断下列哪些图形是角。

    (√) (×) (√) (×) (√)

    为何第二幅和第四幅图形不是角?(学生回答)

    谁能用自己的话来概括一下怎样组成的图形叫做角?

    总结:有公共端点的两条射线所组成的图形叫做角(angle)

    角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边.

    B

    0 A

    4、认识角的各部分名称,明确顶点、边的作用

    (1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称)

    (2)角可以画在本上、黑板上,那角的.位置是由谁决定的?

    (3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。

    5、学会用符号表示角

    提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示)

    (1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA.

    (2)观察这两种方法,有什么特点?(字母B都在中间)

    (3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B

    (4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1

    (5)注:区别 “∠”和“

    6、强调角的大小与两边张开的程度有关,与两条边的长短无关。

    二、 角的度量

    1、学习角的度量

    (1)教学生认识量角器

    (2) 认识了量角器,那怎样使用它去测量角的度数呢?这部分知识请同学们合作学习。

    提出要求:小组合作边学习测量方法边尝试测量

    第一个角,想想有几种方法?

    1、要求合作学习探究、测量。

    2、反馈汇报:学生边演示边复述过程

    3、教师利用课件演示正确的操作过程,纠正学生中存在的问题。

    4、归纳概括测量方法(两重合一对)

    (1)用量角器的中心点与角的顶点重合

    (2)零刻度线与角的一边重合(可与内零度刻度线重合;也可与外零度刻度线重合)

    (3)另一条边所对的角的度数,就是这个角的度数。

    5、小结:同一个角无论是用内刻度量角,还是用外刻度量角,结果都一样。

    6、独立练习测量角的度数(书做一做中第一题1,3与第二题)

    (1) 独立测量,师注意查看学生中存在的问题。

    (2) 课件演示纠正问题

    三、度、分、秒的进位制及这些单位间的互化

    为了更精细地度量角,我们引入更小的角度单位:分、秒.把1°的角等分成60份,每份叫做1分记作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒记作1″.

    1°=60′,1′=60″;

    1′=( )°,1″=( )′.

    例1 将57.32°用度、分、秒表示.

    解:先把0.32°化为分,

    0.32°=60′×0.32=19.2′.

    再把0.2′化为秒,

    0.2′=60″×0.2=12″.

    所以 57.32″=57°19′12″.

    例2 把10°6′36″用度表示.

    解:先把36″化为分,

    36″=( )′×36=0.6′

    6′+0.6′=6.6′.

    再把6.6′化为度,

    6.6′=( )°×6.6=0.11°.

    所以 10°6′36″=10.11°.

    四、巩固练习

    课本P122练习

    五、总结:请大家回忆一下,今天都学了那些知识,通过学习你想说些什么?

    六、作业:课本P123 3、4.(1)(3)、5.(2)(4)

    高中数学完整教案模板 篇6

    教学目的:

    知识目标:

    了解在柱坐标系、球坐标系中刻画空间中点的位置的方法

    能力目标:

    了解柱坐标、球坐标与直角坐标之间的变换公式。

    德育目标:

    通过观察、探索、发现的创造性过程,培养创新意识。

    教学重点:

    体会与空间直角坐标系中刻画空间点的位置的方法的区别和联系

    教学难点:

    利用它们进行简单的数学应用

    授课类型:

    新授课

    教学模式:

    启发、诱导发现教学.

    教具:

    多媒体、实物投影仪

    教学过程:

    一、复习引入:

    情境:我们用三个数据来确定卫星的位置,即卫星到地球中心的距离、经度、纬度。

    问题:如何在空间里确定点的位置?有哪些方法?

    学生回顾

    在空间直角坐标系中刻画点的位置的方法_科_网]

    极坐标的意义以及极坐标与直角坐标的互化原理

    二、讲解新课:

    1、球坐标系

    设P是空间任意一点,在oxy平面的射影为Q,连接OP,记|OP|=,OP与OZ轴正向所夹的角为,P在oxy平面的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为,点P的位置可以用有序数组表示,我们把建立上述对应关系的坐标系叫球坐标系(或空间极坐标系)

    有序数组叫做点P的球坐标,其中≥0,0≤≤,0≤<2。

    空间点P的直角坐标与球坐标之间的变换关系为:

    2、柱坐标系

    设P是空间任意一点,在oxy平面的射影为Q,用(ρ,θ)(ρ≥0,0≤θ

    平面oxy上的极坐标,点P的位置可用有序数组(ρ,θ,Z)表示把建立上述对应关系的坐标系叫做柱坐标系

    有序数组(ρ,θ,Z)叫点P的柱坐标,其中ρ≥0,0≤θ

    空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,Z)之间的变换关系为:

    3、数学应用

    例1建立适当的球坐标系,表示棱长为1的正方体的顶点.

    变式训练

    建立适当的.柱坐标系,表示棱长为1的正方体的顶点.

    例2.将点M的球坐标化为直角坐标.

    变式训练

    1.将点M的直角坐标化为球坐标.

    2.将点M的柱坐标化为直角坐标.

    3.在直角坐标系中点>0)的球坐标是什么?

    例3.球坐标满足方程r=3的点所构成的图形是什么?并将此方程化为直角坐标方程.

    变式训练

    标满足方程=2的点所构成的图形是什么?

    例4.已知点M的柱坐标为点N的球坐标为求线段MN的长度.

    思考:

    在球坐标系中,集合表示的图形的体积为多少?

    三、巩固与练习

    四、小 结:本节课学习了以下内容:

    1.球坐标系的作用与规则;

    2.柱坐标系的作用与规则。

    五、课后作业:教材P15页12,13,14,15,16

    六、课后反思:本节内容与平面直角坐标和极坐标结合起来,学生容易理解。但以后少用,可能会遗忘很快。需要定期调回学生的记忆。

    高中数学完整教案模板 篇7

    重点难点教学:

    1.正确理解映射的概念;

    2.函数相等的两个条件;

    3.求函数的定义域和值域。

    一.教学过程:

    1. 使学生熟练掌握函数的概念和映射的定义;

    2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。

    二.教学内容:

    1.函数的定义

    设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:

    (),yf_A

    其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_A?叫值域(range)。显然,值域是集合B的子集。

    注意:

    ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

    2.构成函数的三要素 定义域、对应关系和值域。

    3、映射的定义

    设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

    一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。

    4. 区间及写法:

    设a、b是两个实数,且a

    (1) 满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];

    (2) 满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);

    5.函数的三种表示方法 ①解析法 ②列表法 ③图像法

    高中数学完整教案模板 篇8

    第四课时:圆锥曲线参数方程的应用

    一、教学目标:

    知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题

    过程与方法:选择适当的参数方程求最值。

    情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

    二、重难点:教学重点:选择适当的参数方程求最值。

    教学难点:正确使用参数式来求解最值问题

    三、教学模式:讲练结合,探析归纳

    四、教学过程:

    (一)、复习引入:

    通过参数简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,参数取值范围等问题。

    (二)、讲解新课:

    例1、双曲线的两焦点坐标是。

    答案:(0,-4),(0,4)。学生练习。

    例2、方程(t为参数)的图形是双曲线右支。

    学生练习,教师准对问题讲评。反思归纳:判断曲线形状的方法。

    例3、设P是椭圆在第一象限部分的弧AB上的一点,求使四边形OAPB的面积最大的点P的坐标。

    分析:本题所求的最值可以有几个转化方向,即转化为求的最大值或者求点P到AB的最大距离,或者求四边形OAPB的最大值。

    学生练习,教师准对问题讲评。【=时四边形OAPB的最大值=6,此时点P为(3,2)。】

    (三)、巩固训练

    1、直线与圆相切,那么直线的倾斜角为(A)

    A.或B.或C.或D.或

    2、椭圆()与轴正向交于点A,若这个椭圆上存在点P,使OP⊥AP,(O为原点),求离心率的范围。

    3、抛物线的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长。

    4、设P为等轴双曲线上的一点,,为两个焦点,证明

    5、求直线与圆的交点坐标。

    解:把直线的'参数方程代入圆的方程,得(1+t)2+(1-t)2=4,得t=±1,分别代入直线方程,得交点为(0,2)和(2,0)。

    (三)、小结:本节课我们利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题,选择适当的参数方程正确使用参数式来求解最值问题,要求理解和掌握求解方法。

    (四)、作业:

    练习:在抛物线的顶点,引两互相垂直的两条弦OA,OB,求顶点O在AB上射影H的轨迹方程。

    五、教学反思:

    高中数学完整教案模板 篇9

    教学内容:

    平行线的认识

    教学目标:

    1、使学生初步,会判断同一平面上两条直线是否平行。

    2、使学生知道两条平行线之间的距离相等,并会测量平行线之间的距离。

    3、使学生会用两块三角板或一根直尺、一块三角板正确地画平行线。

    教学重点:

    认识平行线的特征,会用两块三角板或一根直尺、一块三角板正确地画平行线。教学难点:画平行线。

    教学过程

    (一)引入新课:

    (1)什么叫垂线?相互垂直说明两条直线的位置怎样?

    (2)相交的两条直线是不是一定垂直?

    (3)二条直线除相交外,还有一种是什么?生活中有哪些可以看成是永不相交?

    (4)今天我们来学习这种线。(出示课题:平行线)

    (二)分析、讨论,得出结论:

    1、从上面的例中,你能知道什么是平行线吗?学生:两条永不相交的直线叫做平行线。

    2、这句话中完整吗?谁能提出反对意见?补充:在同一平面内。

    3、平行线也可以叫相互平行。怎样用相互平行来描述下面两条线呢?AB

    4、刚才我们说火车轨道可以看成平行线,因此要求枕木怎样才能符合要求?为什么一定要求枕木必须长度相等?你看到过平行线吗?请举例说明。

    5、根据这个事实,你认为平行线应具有什么特征?结论:两条平行线之间的(距离相等)。

    6、大家讨论怎样画一条直线的平行线?

    (1)画两条长度一样的垂线,再连接起来。

    (2)还有其它方法吗?看书本P63自学这几种方法。

    (三)实践应用,形成经验:

    (1)判断下列各组线是否是平行线:(图)P64 1

    (2)下列各组图中有几组是平行线:P64 2

    (3)画平行线

    (4)画这些直线的平行线P64 4

    (5)过一点画这条直线的平行线:P64 5

    (五)总结提高:

    1、什么叫平行线。

    2、怎样画平行线。

    (六)作业:作业本

    高中数学优秀教案范例大全


    作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编帮大家整理的高中数学优秀教案(通用10篇),希望能够帮助到大家。

    高中数学优秀教案范例大全 篇1

    一.教材分析。

    ( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学

    ( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

    想方法,都是学生今后学习和工作中必备的数学素养。

    (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

    二.学情分析。

    ( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

    ( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

    (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

    三.教学目标。

    根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

    (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

    (3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。

    四.重点,难点分析。

    教学重点:公式的推导、公式的特点和公式的运用。

    教学难点:公式的推导方法及公式应用中q与1的关系。

    五.教法与学法分析.

    培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的.角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

    获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

    六.课堂设计

    (一)创设情境,提出问题。(时间设定:3分钟)

    [利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

    [设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]

    提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

    高中数学优秀教案范例大全 篇2

    教学目标:

    1.结合实际问题情景,理解分层抽样的必要性和重要性;

    2.学会用分层抽样的方法从总体中抽取样本;

    3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

    教学重点:

    通过实例理解分层抽样的方法.

    教学难点:

    分层抽样的步骤.

    教学过程:

    一、问题情境

    1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

    2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

    二、学生活动

    能否用简单随机抽样或系统抽样进行抽样,为什么?

    指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

    由于样本的容量与总体的个体数的比为100∶2500=1∶25,

    所以在各年级抽取的个体数依次是,,,即40,32,28.

    三、建构数学

    1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

    说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

    ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

    2.三种抽样方法对照表:

    类别

    共同点

    各自特点

    相互联系

    适用范围

    简单随机抽样

    抽样过程中每个个体被抽取的概率是相同的

    从总体中逐个抽取

    总体中的个体数较少

    系统抽样

    将总体均分成几个部分,按事先确定的规则在各部分抽取

    在第一部分抽样时采用简单随机抽样

    总体中的个体数较多

    分层抽样

    将总体分成几层,分层进行抽取

    各层抽样时采用简单随机抽样或系统

    总体由差异明显的几部分组成

    3.分层抽样的步骤:

    (1)分层:将总体按某种特征分成若干部分.

    (2)确定比例:计算各层的个体数与总体的个体数的比.

    (3)确定各层应抽取的样本容量.

    (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

    四、数学运用

    1.例题.

    例1(1)分层抽样中,在每一层进行抽样可用_________________.

    (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

    ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

    ③某班元旦聚会,要产生两名“幸运者”.

    对这三件事,合适的抽样方法为()

    A.分层抽样,分层抽样,简单随机抽样

    B.系统抽样,系统抽样,简单随机抽样

    C.分层抽样,简单随机抽样,简单随机抽样

    D.系统抽样,分层抽样,简单随机抽样

    例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

    很喜爱

    喜爱

    一般

    不喜爱

    2435

    4567

    3926

    1072

    电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

    解:抽取人数与总的比是60∶12000=1∶200,

    则各层抽取的人数依次是12.175,22.835,19.63,5.36,

    取近似值得各层人数分别是12,23,20,5.

    然后在各层用简单随机抽样方法抽取.

    答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

    数分别为12,23,20,5.

    说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

    (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

    分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

    (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

    (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

    五、要点归纳与方法小结

    本节课学习了以下内容:

    1.分层抽样的概念与特征;

    2.三种抽样方法相互之间的区别与联系.

    高中数学优秀教案范例大全 篇3

    教学目标

    1、知识与技能:

    函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

    赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

    2、过程与方法:

    (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

    (2)了解构成函数的要素;

    (3)会求一些简单函数的定义域和值域;

    (4)能够正确使用“区间”的符号表示函数的定义域;

    3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性。

    教学重点/难点

    重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

    难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

    教学用具

    多媒体

    4、标签

    函数及其表示

    教学过程

    (一)创设情景,揭示课题

    1、复习初中所学函数的概念,强调函数的模型化思想;

    2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

    (1)炮弹的射高与时间的变化关系问题;

    (2)南极臭氧空洞面积与时间的变化关系问题;

    (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题。

    3、分析、归纳以上三个实例,它们有什么共同点;

    4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

    5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

    (二)研探新知

    1、函数的有关概念

    (1)函数的概念:

    设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

    记作:y=f(x),x∈A.

    其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

    注意:

    ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

    (2)构成函数的三要素是什么?

    定义域、对应关系和值域

    (3)区间的概念

    ①区间的分类:开区间、闭区间、半开半闭区间;

    ②无穷区间;

    ③区间的数轴表示.

    (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

    通过三个已知的函数:y=ax+b(a≠0)

    y=ax2+bx+c(a≠0)

    y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

    师:归纳总结

    (三)质疑答辩,排难解惑,发展思维。

    1、如何求函数的定义域

    例1:已知函数f(x)=+

    (1)求函数的定义域;

    (2)求f(-3),f()的值;

    (3)当a>0时,求f(a),f(a-1)的值。

    分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例。如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

    例2、设一个矩形周长为80,其中一边长为x,求它的'面积关于x的函数的解析式,并写出定义域。

    分析:由题意知,另一边长为x,且

    (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合。

    (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合。(即求各集合的交集)

    (5)满足实际问题有意义。

    巩固练习:课本P19第1

    2、如何判断两个函数是否为同一函数

    例3、下列函数中哪个与函数y=x相等?

    分析:

    1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

    2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

    解:

    课本P18例2

    (四)归纳小结

    ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。

    (五)设置问题,留下悬念

    1、课本P24习题1.2(A组)第1—7题(B组)第1题

    2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。

    课堂小结

    高中数学优秀教案范例大全 篇4

    重点难点教学:

    1.正确理解映射的概念;

    2.函数相等的两个条件;

    3.求函数的定义域和值域。

    教学过程:

    1.使学生熟练掌握函数的概念和映射的定义;

    2.使学生能够根据已知条件求出函数的定义域和值域;

    3.使学生掌握函数的三种表示方法。

    教学内容:

    1.函数的定义

    设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的'数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

    注意:

    ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。

    2.构成函数的三要素定义域、对应关系和值域。

    3、映射的定义

    设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

    4.区间及写法:

    设a、b是两个实数,且a

    (1)满足不等式axb?的实数x的集合叫做闭区间,表示为(a,b);

    (2)满足不等式axb?的实数x的集合叫做开区间,表示为(a,b);

    5.函数的三种表示方法

    ①解析法

    ②列表法

    ③图像法

    高中数学优秀教案范例大全 篇5

    前言

    为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

    在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的.文章则排在后面。

    不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程,书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪,你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

    1、集合与函数概念实习作业

    一、教学内容分析

    《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

    二、学生学习情况分析

    该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

    三、设计思想

    《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

    四、教学目标

    1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

    2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

    3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

    五、教学重点和难点

    重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

    难点:培养学生合作交流的能力以及收集和处理信息的能力。

    六、教学过程设计

    【课堂准备】

    1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

    2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

    高中数学优秀教案范例大全 篇6

    一、教学目标

    知识与技能:

    理解任意角的概念(包括正角、负角、零角)与区间角的概念。

    过程与方法:

    会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

    情感态度与价值观:

    1、提高学生的推理能力;

    2、培养学生应用意识。

    二、教学重点、难点:

    教学重点:

    任意角概念的理解;区间角的集合的书写。

    教学难点:

    终边相同角的集合的表示;区间角的集合的书写。

    三、教学过程

    (一)导入新课

    1、回顾角的定义

    ①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

    ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

    (二)教学新课

    1、角的有关概念:

    ①角的定义:

    角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

    ②角的名称:

    注意:

    ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

    ⑵零角的终边与始边重合,如果α是零角α =0°;

    ⑶角的概念经过推广后,已包括正角、负角和零角。

    ⑤练习:请说出角α、β、γ各是多少度?

    2、象限角的概念:

    ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

    例1、如图⑴⑵中的角分别属于第几象限角?

    高中数学优秀教案范例大全 篇7

    一、课程性质与任务

    数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

    1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

    3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

    本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

    1.基础模块是各专业学生必修的基础性内容和应达到的'基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

    3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

    (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

    了解:初步知道知识的含义及其简单应用。

    理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

    计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

    空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

    分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

    数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

    (二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

    第2单元不等式(8学时)

    第3单元函数(12学时)

    第4单元指数函数与对数函数(12学时)

    第5单元三角函数(18学时)

    第6单元数列(10学时)

    第7单元平面向量(矢量)(10学时)

    第8单元直线和圆的方程(18学时)

    第9单元立体几何(14学时)

    第10单元概率与统计初步(16学时)

    2.职业模块

    第1单元三角计算及其应用(16学时)

    第2单元坐标变换与参数方程(12学时)

    第3单元复数及其应用(10学时)

    高中数学优秀教案范例大全 篇8

    提出问题:

    新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

    教材中的地位:

    本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

    设计背景:

    在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

    教学目标:

    一、知识:

    理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

    二、过程与方法:

    由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

    三、能力:

    1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

    2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

    教学过程:

    由实际问题引入:

    问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

    分裂次数与细胞个数

    1,2;2,2×2=22;3,2×2×2=23;x,2×2×……×2=2x

    归纳:y=2x

    问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

    经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=

    寻找异同:

    你能从以上的两个例子中得到的关系式里找到什么异同点吗?

    共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

    那么,今天我们来学习新的一个基本函数:指数函数

    得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

    在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

    般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

    若a

    若a=1,则=1,是一个常量,也没有研究的必要。

    所以有规定且a>0且a≠1。

    由定义,我们可以对指数函数有一初步熟悉。

    进一步理解函数的定义:

    指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的.定义域为R。

    研究函数的途径:由函数的图像的性质,从形与数两方面研究。

    学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

    首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。

    我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

    要求学生描述出指数函数图像的特征,并试着描述出性质。

    数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

    虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

    教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

    高中数学优秀教案范例大全 篇9

    教学准备

    教学目标

    解三角形及应用举例

    教学重难点

    解三角形及应用举例

    教学过程

    一.基础知识精讲

    掌握三角形有关的定理

    利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;

    (2)已知两边和它们的夹角,求第三边和其他两角。

    掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

    二.问题讨论

    思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的`讨论.

    思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

    例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

    一. 小结:

    1.利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

    2.利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;

    (2)已知两边和它们的夹角,求第三边和其他两角。

    3.边角互化是解三角形问题常用的手段.

    三.作业:P80闯关训练

    高中数学优秀教案范例大全 篇10

    一、教学目标:

    掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

    二、教学重点:

    向量的性质及相关知识的综合应用。

    三、教学过程:

    (一)主要知识:

    1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

    (二)例题分析:略

    四、小结:

    1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

    2、渗透数学建模的思想,切实培养分析和解决问题的能力。

    五、作业:

    高中数学教案优秀教案手写


    作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编帮大家整理的高中数学优秀教案(通用13篇),希望能够帮助到大家。

    高中数学教案优秀教案手写 篇1

    教材分析:

    三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

    教案背景:

    通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

    教学方法:

    以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

    教学目标:

    借助单位圆探究诱导公式。

    能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

    教学重点:

    诱导公式(三)的推导及应用。

    教学难点:

    诱导公式的应用。

    教学手段:

    多媒体。

    教学情景设计:

    一.复习回顾:

    1. 诱导公式(一)(二)。

    2. 角 (终边在一条直线上)

    3. 思考:下列一组角有什么特征?( )能否用式子来表示?

    二.新课:

    已知 由

    可知

    而 (课件演示,学生发现)

    所以

    于是可得: (三)

    设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

    由公式(一)(三)可以看出,角 角 相等。即:

    公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

    设计意图:结合学过的公式(一)(二),发现特点,总结公式。

    1. 练习

    (1)

    设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

    (学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)

    三.例题

    例3:求下列各三角函数值:

    (1)

    (2)

    (3)

    (4)

    例4:化简

    设计意图:利用公式解决问题。

    练习:

    (1)

    (2) (学生板演,师生点评)

    设计意图:观察公式特点,选择公式解决问题。

    四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

    五.课后作业:课后练习A、B组

    六.课后反思与交流

    很荣幸大家来听我的课,通过这课,我学习到如下的东西:

    1.要认真的研读新课标,对教学的目标,重难点把握要到位

    2.注意板书设计,注重细节的东西,语速需要改正

    3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作

    4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣

    5.上课的生动化,形象化需要加强

    听课者评价:

    1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

    2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

    3.评议者:平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

    4.评议者:引导学生通过网络进行探究。

    建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

    ( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好

    ( 2)这样子的教学可以提高上课效率,让学生更多的时间思考

    ( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用

    ( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来

    ( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少

    ( 6)让学生多探究,课堂会更热闹

    ( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习

    ( 8)教学模式相对简单重复

    ( 9)思路较为清晰,规范化的推理

    高中数学教案优秀教案手写 篇2

    教学准备

    教学目标

    解三角形及应用举例

    教学重难点

    解三角形及应用举例

    教学过程

    一.基础知识精讲

    掌握三角形有关的定理

    利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

    利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

    掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

    二.问题讨论

    思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

    思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

    例6:在某海滨城市附近海面有一台风,据检测,当前台

    风中心位于城市O(如图)的东偏南方向

    300 km的海面P处,并以20 km / h的速度向西偏北的

    方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,

    并以10 km / h的速度不断增加,问几小时后该城市开始受到

    台风的侵袭。

    一. 小结:

    1.利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的'对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

    3.边角互化是解三角形问题常用的手段.

    三.作业:P80闯关训练

    高中数学教案优秀教案手写 篇3

    一、指导思想与理论依据

    数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

    二、教材分析

    三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

    三、学情分析

    本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

    四、教学目标

    (1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

    (2)能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

    (3)创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

    (4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

    五、教学重点和难点

    1、教学重点

    理解并掌握诱导公式。

    2、教学难点

    正确运用诱导公式,求三角函数值,化简三角函数式。

    六、教法学法以及预期效果分析

    “授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

    1、教法

    数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

    在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

    2、学法

    “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。

    在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

    3、预期效果

    本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

    七、教学流程设计

    (一)创设情景

    1、复习锐角300,450,600的三角函数值;

    2、复习任意角的三角函数定义;

    3、问题:由你能否知道sin2100的值吗?引如新课。

    设计意图

    高中数学优秀教案高中数学教学设计与教学反思

    自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

    (二)新知探究

    1、让学生发现300角的终边与2100角的终边之间有什么关系;

    2、让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

    3、Sin2100与sin300之间有什么关系。

    设计意图

    由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫。

    (三)问题一般化

    探究一

    1、探究发现任意角的终边与的终边关于原点对称;

    2、探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;

    3、探究发现任意角与的三角函数值的关系。

    设计意图

    首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

    (四)练习

    利用诱导公式(二),口答下列三角函数值。

    喜悦之后让我们重新启航,接受新的挑战,引入新的问题。

    (五)问题变形

    由sin3000=—sin600出发,用三角的定义引导学生求出sin(—3000),Sin1500值,让学生联想若已知sin3000=—sin600,能否求出sin(—3000),Sin1500)的值。学生自主探究

    高中数学教案优秀教案手写 篇4

    教学目标

    理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。

    (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

    (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

    (3)通过通项公式认识等比数列的性质,能解决某些实际问题。

    通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。

    通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。

    教材分析

    (1)知识结构

    等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

    (2)重点、难点分析

    教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.

    ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.

    ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

    ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

    教学建议

    (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.

    (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.

    (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

    (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法.启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

    (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

    (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

    教学设计示例

    课题:等比数列的概念

    教学目标

    通过教学使学生理解等比数列的概念,推导并掌握通项公式.

    使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

    培养学生勤于思考,实事求是的精神,及严谨的科学态度.

    教学重点,难点

    重点、难点是等比数列的定义的归纳及通项公式的推导.

    教学用具

    投影仪,多媒体软件,电脑.

    教学方法

    讨论、谈话法.

    教学过程

    一、提出问题

    给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

    ①-2,1,4,7,10,13,16,19,…

    ②8,16,32,64,128,256,…

    ③1,1,1,1,1,1,1,…

    ④243,81,27,9,3,1,…

    ⑤31,29,27,25,23,21,19,…

    ⑥1,-1,1,-1,1,-1,1,-1,…

    ⑦1,-10,100,-1000,10000,-100000,…

    ⑧0,0,0,0,0,0,0,…

    由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).

    二、讲解新课

    请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数

    这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)

    等比数列(板书)

    等比数列的定义(板书)

    根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语.

    请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:

    对定义的认识(板书)

    (1)等比数列的首项不为0;

    (2)等比数列的每一项都不为0,即

    问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

    (3)公比不为

    用数学式子表示等比数列的定义.

    是等比数列

    ①.在这个式子的写法上可能会有一些争议,如写成

    ,可让学生研究行不行,好不好;接下来再问,能否改写为

    是等比数列?为什么不能?式子给出了数列第项与第

    项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

    等比数列的通项公式(板书)

    问题:用和表示第项

    ①不完全归纳法

    ②叠乘法

    ,…,这个式子相乘得,所以

    (板书)(1)等比数列的通项公式

    得出通项公式后,让学生思考如何认识通项公式.

    (板书)(2)对公式的认识

    由学生来说,最后归结:

    ①函数观点;

    ②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

    这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

    如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题。

    三、小结

    本节课研究了等比数列的.概念,得到了通项公式;

    注意在研究内容与方法上要与等差数列相类比;

    用方程的思想认识通项公式,并加以应用。

    探究活动

    将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为毫米。

    参考答案:

    30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。

    高中数学数列教案设计

    一、教材分析

    (一)地位与作用

    数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

    (二)学情分析

    (1)学生已熟练掌握_________________。

    (2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

    (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

    (4)学生层次参次不齐,个体差异比较明显。

    二、目标分析

    新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

    (一)教学目标

    (1)知识与技能

    使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

    (2)过程与方法

    引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

    (3)情感态度与价值观

    在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

    (二)重点难点

    本节课的教学重点是________________________,教学难点是_____________________。

    三、教法、学法分析

    (一)教法

    基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

    1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

    2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

    3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

    (二)学法

    在学法上我重视了:

    1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

    2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

    四、教学过程分析

    (一)教学过程设计

    教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

    (1)创设情境,提出问题。

    新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

    (2)引导探究,建构概念。

    数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程.

    (3)自我尝试,初步应用。

    有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

    (4)当堂训练,巩固深化。

    通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

    (5)小结归纳,回顾反思。

    小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

    (二)作业设计

    作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

    高中数学教案优秀教案手写 篇5

    教学准备

    教学目标

    进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.

    教学重难点

    教学重点:熟练运用定理.

    教学难点:应用正、余弦定理进行边角关系的相互转化.

    教学过程

    一、复习准备:

    1.写出正弦定理、余弦定理及推论等公式.

    2.讨论各公式所求解的三角形类型.

    二、讲授新课:

    1.教学三角形的解的讨论:

    ①出示例1:在△ABC中,已知下列条件,解三角形.

    分两组练习→讨论:解的个数情况为何会发生变化?

    ②用如下图示分析解的情况. (A为锐角时)

    ②练习:在△ABC中,已知下列条件,判断三角形的解的情况.

    2.教学正弦定理与余弦定理的活用:

    ①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦.

    分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角.

    ②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.

    分析:由三角形的什么知识可以判别? →求最大角余弦,由符号进行判断

    ③出示例4:已知△ABC中,,试判断△ABC的形状.

    分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?

    3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.

    三、巩固练习:

    3.作业:教材P11 B组1、2题.

    高中数学教案优秀教案手写 篇6

    一、教学目标

    1.知识与技能

    (1)掌握斜二测画法画水平设置的平面图形的直观图。

    (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

    2.过程与方法

    学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

    3.情感态度与价值观

    (1)提高空间想象力与直观感受。

    (2)体会对比在学习中的作用。

    (3)感受几何作图在生产活动中的应用。

    二、教学重点、难点

    重点、难点:用斜二测画法画空间几何值的直观图。

    三、学法与教学用具

    1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

    2.教学用具:三角板、圆规

    四、教学思路

    (一)创设情景,揭示课题

    1.我们都学过画画,这节课我们画一物体:圆柱

    把实物圆柱放在讲台上让学生画。

    2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

    (二)研探新知

    1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

    画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

    练习反馈

    根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

    2.例2,用斜二测画法画水平放置的圆的直观图

    教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

    教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

    3.探求空间几何体的直观图的画法

    (1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

    教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

    (2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

    4.平行投影与中心投影

    投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

    5.巩固练习,课本P16练习1(1),2,3,4

    三、归纳整理

    学生回顾斜二测画法的关键与步骤

    四、作业

    1.书画作业,课本P17练习第5题

    2.课外思考课本P16,探究(1)(2)

    高中数学教案优秀教案手写 篇7

    教学目标:

    (1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

    (2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

    (3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

    教学重难点:

    (1)重点:了解集合的含义与表示、集合中元素的特性。

    (2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

    教学过程:

    【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?

    [设计意图]引出“集合”一词。

    【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

    [设计意图]探讨并形成集合的含义。

    【问题3】请同学们举出认为是集合的例子。

    [设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

    【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?

    [设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。理解集合与元素的关系。

    【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集

    [设计意图]引出并介绍列举法。

    【问题6】例1的讲解。同学们能用列举法表示不等式x-7

    【问题7】例2的讲解。请同学们思考课本第6页的思考题。

    [设计意图]帮助学生在表示具体的集合时,如何从列举法与描述法中做出选择。

    【问题8】请同学们总结这节课我们主要学习了那些内容?有什么学习体会?

    [设计意图]学习小结。对本节课所学知识进行回顾。布置作业。

    高中数学教案优秀教案手写 篇8

    教学目标

    1.明确等差数列的定义.

    2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

    3.培养学生观察、归纳能力.

    教学重点

    1. 等差数列的概念;

    2. 等差数列的通项公式

    教学难点

    等差数列“等差”特点的理解、把握和应用

    教具准备

    投影片1张

    教学过程

    (I)复习回顾

    师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

    (Ⅱ)讲授新课

    师:看这些数列有什么共同的.特点?

    1,2,3,4,5,6; ①

    10,8,6,4,2,…; ②

    生:积极思考,找上述数列共同特点。

    对于数列①(1≤n≤6);(2≤n≤6)

    对于数列②-2n(n≥1)(n≥2)

    对于数列③(n≥1)(n≥2)

    共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

    师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

    一、定义:

    等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

    如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

    二、等差数列的通项公式

    师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

    若将这n-1个等式相加,则可得:

    即:即:即:……

    由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

    如数列①(1≤n≤6)

    数列②:(n≥1)

    数列③:(n≥1)

    由上述关系还可得:即:则:=如:三、例题讲解

    例1:(1)求等差数列8,5,2…的第20项

    (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

    解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

    (Ⅲ)课堂练习

    生:(口答)课本P118练习3

    (书面练习)课本P117练习1

    师:组织学生自评练习(同桌讨论)

    (Ⅳ)课时小结

    师:本节主要内容为:①等差数列定义。

    即(n≥2)

    ②等差数列通项公式 (n≥1)

    推导出公式:(V)课后作业

    一、课本P118习题3.2 1,2

    二、1.预习内容:课本P116例2P117例4

    2.预习提纲:

    ①如何应用等差数列的定义及通项公式解决一些相关问题?

    ②等差数列有哪些性质?

    高中数学教案优秀教案手写 篇9

    教学目标:

    (1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

    (2)进一步理解曲线的方程和方程的曲线.

    (3)初步掌握求曲线方程的方法.

    (4)通过本节内容的教学,培养学生分析问题和转化的能力.

    教学重点、难点:求曲线的方程.

    教学用具:

    计算机.

    教学方法:

    启发引导法,讨论法.

    教学过程:

    【引入】

    1.提问:什么是曲线的方程和方程的曲线.

    学生思考并回答.教师强调.

    2.坐标法和解析几何的意义、基本问题.

    对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

    (1)根据已知条件,求出表示平面曲线的方程.

    (2)通过方程,研究平面曲线的性质.

    事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

    【问题】

    如何根据已知条件,求出曲线的方程.

    【实例分析】

    例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

    首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

    解法一:易求线段的中点坐标为(1,3),

    由斜率关系可求得l的斜率为

    于是有

    即l的方程为

    分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

    (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

    证明:(1)曲线上的点的坐标都是这个方程的解.

    设是线段的垂直平分线上任意一点,则

    将上式两边平方,整理得

    这说明点的坐标是方程的解.

    (2)以这个方程的解为坐标的点都是曲线上的点.

    设点的坐标是方程①的任意一解,则

    到、的距离分别为

    所以,即点在直线上.

    综合(1)、(2),①是所求直线的方程.

    至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

    解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

    由两点间的距离公式,点所适合的条件可表示为

    将上式两边平方,整理得

    果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

    这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

    让我们用这个方法试解如下问题:

    例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

    分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

    求解过程略.

    【概括总结】通过学生讨论,师生共同总结:

    分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

    首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

    (1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

    (2)写出适合条件的'点的集合;

    (3)用坐标表示条件,列出方程;

    (4)化方程为最简形式;

    (5)证明以化简后的方程的解为坐标的点都是曲线上的点.

    一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

    上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

    下面再看一个问题:

    例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

    【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

    解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

    由距离公式,点适合的条件可表示为

    将①式移项后再两边平方,得

    化简得

    由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

    【练习巩固】

    题目:在正三角形内有一动点,已知到三个顶点的距离分别为、 、,且有,求点轨迹方程.

    分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

    根据条件,代入坐标可得

    化简得

    由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

    【小结】师生共同总结:

    (1)解析几何研究研究问题的方法是什么?

    (2)如何求曲线的方程?

    (3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

    【作业】课本第72页练习1,2,3;

    高中数学教案优秀教案手写 篇10

    教学准备

    教学目标

    1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

    2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

    归纳——猜想——证明的数学研究方法;

    3、数学思想:培养学生分类讨论,函数的数学思想。

    教学重难点

    重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

    难点:等比数列的性质的探索过程。

    教学过程

    1、问题引入:

    前面我们已经研究了一类特殊的数列——等差数列。

    问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

    (学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

    要想确定一个等差数列,只要知道它的首项a1和公差d。

    已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

    师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

    (第一次类比)类似的,我们提出这样一个问题。

    问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

    (这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

    2、新课:

    1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

    师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?

    师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

    公式的推导:(师生共同完成)

    若设等比数列的公比为q和首项为a1,则有:

    方法一:(累乘法)

    3)等比数列的性质:

    下面我们一起来研究一下等比数列的性质

    通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

    问题4:如果{an}是一个等差数列,它有哪些性质?

    (根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

    3、例题巩固:

    例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。

    答案:1458或128。

    例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3 …a20 =_ 10 ____.

    例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?

    (本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

    1、 小结:

    今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

    我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

    2、作业:

    P129:1,2,3

    思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?

    高中数学教案优秀教案手写 篇11

    第一章 有理数

    课题:1.1 正数和负数(1)

    【学习目标】:1、掌握正数和负数概念;

    2、会区分两种不同意义的量,会用符号表示正数和负数;

    3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

    【重点难点】:正数和负数概念

    【导学指导】:

    一、知识链接:

    1、小学里学过哪些数请写出来: 、 、 。

    2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)

    回答下面提出的问题:

    3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

    二、自主学习

    1、正数与负数的产生

    (1)、生活中具有相反意义的量

    如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

    请你也举一个具有相反意义量的例子: 。

    (2)负数的产生同样是生活和生产的需要

    2、正数和负数的表示方法

    (1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。

    (2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

    (3)阅读P3练习前的内容

    3、正数、负数的概念

    1)大于0的数叫做 ,小于0的数叫做 。

    2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

    【课堂练习】:

    1. P3第一题到第四题(直接做在课本上)。

    2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

    3.已知下列各数: , ,3.14,+3065,0,-239;

    则正数有_____________________;负数有____________________。

    4.下列结论中正确的是 ( )

    A.0既是正数,又是负数 B.O是最小的正数

    C.0是最大的负数 D.0既不是正数,也不是负数

    5.给出下列各数:-3,0,+5, ,+3.1, ,20xx,+20xx;

    其中是负数的有 ( )

    A.2个 B.3个 C.4个 D.5个

    【要点归纳】:

    正数、负数的概念:

    (1)大于0的数叫做 ,小于0的数叫做 。

    (2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

    【拓展训练】:

    1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

    2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.

    3.甲比乙大-3岁表示的意义是______________________。

    4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

    【总结反思】:

    课题:1.1正数和负数(2)

    【学习目标】:

    1、会用正、负数表示具有相反意义的'量;

    2、通过正、负数学习,培养学生应用数学知识的意识;

    【学习重点】:用正、负数表示具有相反意义的量;

    【学习难点】:实际问题中的数量关系;

    【导学指导】

    一、知识链接.

    通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。

    问题:零为什么即不是正数也不是负数呢?

    引导学生思考讨论,借助举例说明。

    参考例子:温度表示中的零上,零下和零度。

    二.自主探究

    问题:(课本第4页例题)

    先引导学生分析,再让学生独立完成

    例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

    2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

    美国减少6.4%, 德国增长1.3%,

    法国减少2.4%, 英国减少3.5%,

    意大利增长0.2%, 中国增长7.5%.

    写出这些国家20xx年商品进出口总额的增长率;

    解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;

    2)六个国家20xx年商品进出口总额的增长率:

    美国___________ 德国__________

    法国___________ 英国__________

    意大利__________ 中国__________

    高中数学教案优秀教案手写 篇12

    【教学目标】

    1、知识与技能

    (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

    (2)账务等差数列的通项公式及其推导过程:

    (3)会应用等差数列通项公式解决简单问题。

    2、过程与方法

    在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

    3、情感、态度与价值观

    通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

    【教学重点】

    ①等差数列的概念;

    ②等差数列的通项公式

    【教学难点】

    ①理解等差数列“等差”的特点及通项公式的含义;

    ②等差数列的通项公式的推导过程。

    【学情分析】

    我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

    【设计思路】

    1、教法

    ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

    ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

    ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

    2、学法

    引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

    【教学过程】

    一、创设情境,引入新课

    1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

    2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2、5m,最低降至5m、那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

    3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息。按照单利计算本利和的'公式是:本利和=本金×(1+利率×存期)、按活期存入10000元钱,年利率是0、72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

    教师:以上三个问题中的数蕴涵着三列数。

    学生:

    ①0,5,10,15,20,25,…、

    ②18,15、5,13,10、5,8,5、5、

    ③10072,10144,10216,10288,10360、

    (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。

    二、观察归纳,形成定义

    ①0,5,10,15,20,25,…、

    ②18,15、5,13,10、5,8,5、5、

    ③10072,10144,10216,10288,10360、

    思考1上述数列有什么共同特点?

    思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

    思考3你能将上述的文字语言转换成数学符号语言吗?

    教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。

    学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。

    教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。

    (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。)

    三、举一反三,巩固定义

    1、判定下列数列是否为等差数列?若是,指出公差d、

    (1)1,1,1,1,1;

    (2)1,0,1,0,1;

    (3)2,1,0,-1,-2;

    (4)4,7,10,13,16、

    教师出示题目,学生思考回答。教师订正并强调求公差应注意的问题。

    注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0、

    (设计意图:强化学生对等差数列“等差”特征的理解和应用)、

    2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

    (设计意图:强化等差数列的证明定义法)

    四、利用定义,导出通项

    1、已知等差数列:8,5,2,…,求第200项?

    2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

    教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法。

    (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力)

    五、应用通项,解决问题

    1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?

    2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an、

    3、求等差数列3,7,11,…的第4项和第10项

    教师:给出问题,让学生自己操练,教师巡视学生答题情况。

    学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

    (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。)

    七、归纳总结:

    1、一个定义:

    等差数列的定义及定义表达式

    2、一个公式:

    等差数列的通项公式

    3、二个应用:

    定义和通项公式的应用

    教师:让学生思考整理,找几个代表发言,最后教师给出补充

    (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。)

    【设计反思】

    本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。

    高中数学教案优秀教案手写 篇13

    一、教学目标

    1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

    2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

    3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

    4、初步培养学生反证法的数学思维。

    二、教学分析

    重点:四种命题;难点:四种命题的关系

    1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

    2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

    3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

    三、教学手段和方法(演示教学法和循序渐进导入法)

    1、以故事形式入题

    2、多媒体演示

    四、教学过程

    (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

    设计意图:创设情景,激发学生学习兴趣

    (二)复习提问:

    1.命题“同位角相等,两直线平行”的条件与结论各是什么?

    2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

    3.原命题真,逆命题一定真吗?

    “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

    学生活动:

    口答:(l)若同位角相等,则两直线平行;

    (2)若一个四边形是正方形,则它的四条边相等.

    设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

    (三)新课讲解:

    1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

    2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

    3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

    (四)组织讨论:

    让学生归纳什么是否命题,什么是逆否命题。

    (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

    (六)课堂小结:

    1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

    原命题若p则q;

    逆命题若q则p;(交换原命题的条件和结论)

    否命题,若¬p则¬q;(同时否定原命题的条件和结论)

    逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

    2、四种命题的关系

    (1).原命题为真,它的逆命题不一定为真。

    (2).原命题为真,它的否命题不一定为真。

    (3).原命题为真,它的逆否命题一定为真。

    (七)回扣引入

    分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

    第一句:“该来的没来”其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

    第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

    第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

    五、作业

    1.设原命题是“若断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判。

    2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假。

    高中数学优秀教案范例大全


    作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编帮大家整理的高中数学优秀教案(通用10篇),希望能够帮助到大家。

    高中数学优秀教案范例大全 篇1

    一.教材分析。

    ( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学

    ( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

    想方法,都是学生今后学习和工作中必备的数学素养。

    (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

    二.学情分析。

    ( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

    ( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

    (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

    三.教学目标。

    根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

    (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

    (3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。

    四.重点,难点分析。

    教学重点:公式的推导、公式的特点和公式的运用。

    教学难点:公式的推导方法及公式应用中q与1的关系。

    五.教法与学法分析.

    培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的.角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

    获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

    六.课堂设计

    (一)创设情境,提出问题。(时间设定:3分钟)

    [利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

    [设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]

    提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

    高中数学优秀教案范例大全 篇2

    教学目标:

    1.结合实际问题情景,理解分层抽样的必要性和重要性;

    2.学会用分层抽样的方法从总体中抽取样本;

    3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

    教学重点:

    通过实例理解分层抽样的方法.

    教学难点:

    分层抽样的步骤.

    教学过程:

    一、问题情境

    1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

    2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

    二、学生活动

    能否用简单随机抽样或系统抽样进行抽样,为什么?

    指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

    由于样本的容量与总体的个体数的比为100∶2500=1∶25,

    所以在各年级抽取的个体数依次是,,,即40,32,28.

    三、建构数学

    1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

    说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

    ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

    2.三种抽样方法对照表:

    类别

    共同点

    各自特点

    相互联系

    适用范围

    简单随机抽样

    抽样过程中每个个体被抽取的概率是相同的

    从总体中逐个抽取

    总体中的个体数较少

    系统抽样

    将总体均分成几个部分,按事先确定的规则在各部分抽取

    在第一部分抽样时采用简单随机抽样

    总体中的个体数较多

    分层抽样

    将总体分成几层,分层进行抽取

    各层抽样时采用简单随机抽样或系统

    总体由差异明显的几部分组成

    3.分层抽样的步骤:

    (1)分层:将总体按某种特征分成若干部分.

    (2)确定比例:计算各层的个体数与总体的个体数的比.

    (3)确定各层应抽取的样本容量.

    (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

    四、数学运用

    1.例题.

    例1(1)分层抽样中,在每一层进行抽样可用_________________.

    (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

    ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

    ③某班元旦聚会,要产生两名“幸运者”.

    对这三件事,合适的抽样方法为()

    A.分层抽样,分层抽样,简单随机抽样

    B.系统抽样,系统抽样,简单随机抽样

    C.分层抽样,简单随机抽样,简单随机抽样

    D.系统抽样,分层抽样,简单随机抽样

    例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

    很喜爱

    喜爱

    一般

    不喜爱

    2435

    4567

    3926

    1072

    电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

    解:抽取人数与总的比是60∶12000=1∶200,

    则各层抽取的人数依次是12.175,22.835,19.63,5.36,

    取近似值得各层人数分别是12,23,20,5.

    然后在各层用简单随机抽样方法抽取.

    答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

    数分别为12,23,20,5.

    说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

    (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

    分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

    (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

    (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

    五、要点归纳与方法小结

    本节课学习了以下内容:

    1.分层抽样的概念与特征;

    2.三种抽样方法相互之间的区别与联系.

    高中数学优秀教案范例大全 篇3

    教学目标

    1、知识与技能:

    函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

    赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

    2、过程与方法:

    (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

    (2)了解构成函数的要素;

    (3)会求一些简单函数的定义域和值域;

    (4)能够正确使用“区间”的符号表示函数的定义域;

    3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性。

    教学重点/难点

    重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

    难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

    教学用具

    多媒体

    4、标签

    函数及其表示

    教学过程

    (一)创设情景,揭示课题

    1、复习初中所学函数的概念,强调函数的模型化思想;

    2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

    (1)炮弹的射高与时间的变化关系问题;

    (2)南极臭氧空洞面积与时间的变化关系问题;

    (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题。

    3、分析、归纳以上三个实例,它们有什么共同点;

    4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

    5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

    (二)研探新知

    1、函数的有关概念

    (1)函数的概念:

    设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

    记作:y=f(x),x∈A.

    其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

    注意:

    ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

    (2)构成函数的三要素是什么?

    定义域、对应关系和值域

    (3)区间的概念

    ①区间的分类:开区间、闭区间、半开半闭区间;

    ②无穷区间;

    ③区间的数轴表示.

    (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

    通过三个已知的函数:y=ax+b(a≠0)

    y=ax2+bx+c(a≠0)

    y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

    师:归纳总结

    (三)质疑答辩,排难解惑,发展思维。

    1、如何求函数的定义域

    例1:已知函数f(x)=+

    (1)求函数的定义域;

    (2)求f(-3),f()的值;

    (3)当a>0时,求f(a),f(a-1)的值。

    分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例。如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

    例2、设一个矩形周长为80,其中一边长为x,求它的'面积关于x的函数的解析式,并写出定义域。

    分析:由题意知,另一边长为x,且

    (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合。

    (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合。(即求各集合的交集)

    (5)满足实际问题有意义。

    巩固练习:课本P19第1

    2、如何判断两个函数是否为同一函数

    例3、下列函数中哪个与函数y=x相等?

    分析:

    1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

    2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

    解:

    课本P18例2

    (四)归纳小结

    ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。

    (五)设置问题,留下悬念

    1、课本P24习题1.2(A组)第1—7题(B组)第1题

    2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。

    课堂小结

    高中数学优秀教案范例大全 篇4

    重点难点教学:

    1.正确理解映射的概念;

    2.函数相等的两个条件;

    3.求函数的定义域和值域。

    教学过程:

    1.使学生熟练掌握函数的概念和映射的定义;

    2.使学生能够根据已知条件求出函数的定义域和值域;

    3.使学生掌握函数的三种表示方法。

    教学内容:

    1.函数的定义

    设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的'数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

    注意:

    ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。

    2.构成函数的三要素定义域、对应关系和值域。

    3、映射的定义

    设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

    4.区间及写法:

    设a、b是两个实数,且a

    (1)满足不等式axb?的实数x的集合叫做闭区间,表示为(a,b);

    (2)满足不等式axb?的实数x的集合叫做开区间,表示为(a,b);

    5.函数的三种表示方法

    ①解析法

    ②列表法

    ③图像法

    高中数学优秀教案范例大全 篇5

    前言

    为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

    在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的.文章则排在后面。

    不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程,书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪,你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

    1、集合与函数概念实习作业

    一、教学内容分析

    《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

    二、学生学习情况分析

    该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

    三、设计思想

    《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

    四、教学目标

    1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

    2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

    3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

    五、教学重点和难点

    重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

    难点:培养学生合作交流的能力以及收集和处理信息的能力。

    六、教学过程设计

    【课堂准备】

    1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

    2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

    高中数学优秀教案范例大全 篇6

    一、教学目标

    知识与技能:

    理解任意角的概念(包括正角、负角、零角)与区间角的概念。

    过程与方法:

    会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

    情感态度与价值观:

    1、提高学生的推理能力;

    2、培养学生应用意识。

    二、教学重点、难点:

    教学重点:

    任意角概念的理解;区间角的集合的书写。

    教学难点:

    终边相同角的集合的表示;区间角的集合的书写。

    三、教学过程

    (一)导入新课

    1、回顾角的定义

    ①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

    ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

    (二)教学新课

    1、角的有关概念:

    ①角的定义:

    角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

    ②角的名称:

    注意:

    ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

    ⑵零角的终边与始边重合,如果α是零角α =0°;

    ⑶角的概念经过推广后,已包括正角、负角和零角。

    ⑤练习:请说出角α、β、γ各是多少度?

    2、象限角的概念:

    ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

    例1、如图⑴⑵中的角分别属于第几象限角?

    高中数学优秀教案范例大全 篇7

    一、课程性质与任务

    数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

    1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

    3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

    本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

    1.基础模块是各专业学生必修的基础性内容和应达到的'基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

    3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

    (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

    了解:初步知道知识的含义及其简单应用。

    理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

    计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

    空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

    分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

    数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

    (二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

    第2单元不等式(8学时)

    第3单元函数(12学时)

    第4单元指数函数与对数函数(12学时)

    第5单元三角函数(18学时)

    第6单元数列(10学时)

    第7单元平面向量(矢量)(10学时)

    第8单元直线和圆的方程(18学时)

    第9单元立体几何(14学时)

    第10单元概率与统计初步(16学时)

    2.职业模块

    第1单元三角计算及其应用(16学时)

    第2单元坐标变换与参数方程(12学时)

    第3单元复数及其应用(10学时)

    高中数学优秀教案范例大全 篇8

    提出问题:

    新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

    教材中的地位:

    本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

    设计背景:

    在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

    教学目标:

    一、知识:

    理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

    二、过程与方法:

    由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

    三、能力:

    1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

    2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

    教学过程:

    由实际问题引入:

    问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

    分裂次数与细胞个数

    1,2;2,2×2=22;3,2×2×2=23;x,2×2×……×2=2x

    归纳:y=2x

    问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

    经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=

    寻找异同:

    你能从以上的两个例子中得到的关系式里找到什么异同点吗?

    共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

    那么,今天我们来学习新的一个基本函数:指数函数

    得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

    在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

    般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

    若a

    若a=1,则=1,是一个常量,也没有研究的必要。

    所以有规定且a>0且a≠1。

    由定义,我们可以对指数函数有一初步熟悉。

    进一步理解函数的定义:

    指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的.定义域为R。

    研究函数的途径:由函数的图像的性质,从形与数两方面研究。

    学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

    首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。

    我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

    要求学生描述出指数函数图像的特征,并试着描述出性质。

    数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

    虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

    教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

    高中数学优秀教案范例大全 篇9

    教学准备

    教学目标

    解三角形及应用举例

    教学重难点

    解三角形及应用举例

    教学过程

    一.基础知识精讲

    掌握三角形有关的定理

    利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;

    (2)已知两边和它们的夹角,求第三边和其他两角。

    掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

    二.问题讨论

    思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的`讨论.

    思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

    例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

    一. 小结:

    1.利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

    2.利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;

    (2)已知两边和它们的夹角,求第三边和其他两角。

    3.边角互化是解三角形问题常用的手段.

    三.作业:P80闯关训练

    高中数学优秀教案范例大全 篇10

    一、教学目标:

    掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

    二、教学重点:

    向量的性质及相关知识的综合应用。

    三、教学过程:

    (一)主要知识:

    1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

    (二)例题分析:略

    四、小结:

    1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

    2、渗透数学建模的思想,切实培养分析和解决问题的能力。

    五、作业:

    高中数学优秀教案范例大全


    作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编帮大家整理的高中数学优秀教案(通用10篇),希望能够帮助到大家。

    高中数学优秀教案范例大全 篇1

    一.教材分析。

    ( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学

    ( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

    想方法,都是学生今后学习和工作中必备的数学素养。

    (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

    二.学情分析。

    ( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

    ( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

    (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

    三.教学目标。

    根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

    (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

    (3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。

    四.重点,难点分析。

    教学重点:公式的推导、公式的特点和公式的运用。

    教学难点:公式的推导方法及公式应用中q与1的关系。

    五.教法与学法分析.

    培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的.角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

    获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

    六.课堂设计

    (一)创设情境,提出问题。(时间设定:3分钟)

    [利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

    [设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]

    提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

    高中数学优秀教案范例大全 篇2

    教学目标:

    1.结合实际问题情景,理解分层抽样的必要性和重要性;

    2.学会用分层抽样的方法从总体中抽取样本;

    3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

    教学重点:

    通过实例理解分层抽样的方法.

    教学难点:

    分层抽样的步骤.

    教学过程:

    一、问题情境

    1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

    2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

    二、学生活动

    能否用简单随机抽样或系统抽样进行抽样,为什么?

    指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

    由于样本的容量与总体的个体数的比为100∶2500=1∶25,

    所以在各年级抽取的个体数依次是,,,即40,32,28.

    三、建构数学

    1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

    说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

    ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

    2.三种抽样方法对照表:

    类别

    共同点

    各自特点

    相互联系

    适用范围

    简单随机抽样

    抽样过程中每个个体被抽取的概率是相同的

    从总体中逐个抽取

    总体中的个体数较少

    系统抽样

    将总体均分成几个部分,按事先确定的规则在各部分抽取

    在第一部分抽样时采用简单随机抽样

    总体中的个体数较多

    分层抽样

    将总体分成几层,分层进行抽取

    各层抽样时采用简单随机抽样或系统

    总体由差异明显的几部分组成

    3.分层抽样的步骤:

    (1)分层:将总体按某种特征分成若干部分.

    (2)确定比例:计算各层的个体数与总体的个体数的比.

    (3)确定各层应抽取的样本容量.

    (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

    四、数学运用

    1.例题.

    例1(1)分层抽样中,在每一层进行抽样可用_________________.

    (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

    ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

    ③某班元旦聚会,要产生两名“幸运者”.

    对这三件事,合适的抽样方法为()

    A.分层抽样,分层抽样,简单随机抽样

    B.系统抽样,系统抽样,简单随机抽样

    C.分层抽样,简单随机抽样,简单随机抽样

    D.系统抽样,分层抽样,简单随机抽样

    例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

    很喜爱

    喜爱

    一般

    不喜爱

    2435

    4567

    3926

    1072

    电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

    解:抽取人数与总的比是60∶12000=1∶200,

    则各层抽取的人数依次是12.175,22.835,19.63,5.36,

    取近似值得各层人数分别是12,23,20,5.

    然后在各层用简单随机抽样方法抽取.

    答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

    数分别为12,23,20,5.

    说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

    (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

    分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

    (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

    (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

    五、要点归纳与方法小结

    本节课学习了以下内容:

    1.分层抽样的概念与特征;

    2.三种抽样方法相互之间的区别与联系.

    高中数学优秀教案范例大全 篇3

    教学目标

    1、知识与技能:

    函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

    赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

    2、过程与方法:

    (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

    (2)了解构成函数的要素;

    (3)会求一些简单函数的定义域和值域;

    (4)能够正确使用“区间”的符号表示函数的定义域;

    3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性。

    教学重点/难点

    重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

    难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

    教学用具

    多媒体

    4、标签

    函数及其表示

    教学过程

    (一)创设情景,揭示课题

    1、复习初中所学函数的概念,强调函数的模型化思想;

    2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

    (1)炮弹的射高与时间的变化关系问题;

    (2)南极臭氧空洞面积与时间的变化关系问题;

    (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题。

    3、分析、归纳以上三个实例,它们有什么共同点;

    4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

    5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

    (二)研探新知

    1、函数的有关概念

    (1)函数的概念:

    设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

    记作:y=f(x),x∈A.

    其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

    注意:

    ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

    (2)构成函数的三要素是什么?

    定义域、对应关系和值域

    (3)区间的概念

    ①区间的分类:开区间、闭区间、半开半闭区间;

    ②无穷区间;

    ③区间的数轴表示.

    (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

    通过三个已知的函数:y=ax+b(a≠0)

    y=ax2+bx+c(a≠0)

    y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

    师:归纳总结

    (三)质疑答辩,排难解惑,发展思维。

    1、如何求函数的定义域

    例1:已知函数f(x)=+

    (1)求函数的定义域;

    (2)求f(-3),f()的值;

    (3)当a>0时,求f(a),f(a-1)的值。

    分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例。如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

    例2、设一个矩形周长为80,其中一边长为x,求它的'面积关于x的函数的解析式,并写出定义域。

    分析:由题意知,另一边长为x,且

    (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合。

    (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合。(即求各集合的交集)

    (5)满足实际问题有意义。

    巩固练习:课本P19第1

    2、如何判断两个函数是否为同一函数

    例3、下列函数中哪个与函数y=x相等?

    分析:

    1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

    2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

    解:

    课本P18例2

    (四)归纳小结

    ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。

    (五)设置问题,留下悬念

    1、课本P24习题1.2(A组)第1—7题(B组)第1题

    2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。

    课堂小结

    高中数学优秀教案范例大全 篇4

    重点难点教学:

    1.正确理解映射的概念;

    2.函数相等的两个条件;

    3.求函数的定义域和值域。

    教学过程:

    1.使学生熟练掌握函数的概念和映射的定义;

    2.使学生能够根据已知条件求出函数的定义域和值域;

    3.使学生掌握函数的三种表示方法。

    教学内容:

    1.函数的定义

    设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的'数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

    注意:

    ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。

    2.构成函数的三要素定义域、对应关系和值域。

    3、映射的定义

    设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

    4.区间及写法:

    设a、b是两个实数,且a

    (1)满足不等式axb?的实数x的集合叫做闭区间,表示为(a,b);

    (2)满足不等式axb?的实数x的集合叫做开区间,表示为(a,b);

    5.函数的三种表示方法

    ①解析法

    ②列表法

    ③图像法

    高中数学优秀教案范例大全 篇5

    前言

    为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

    在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的.文章则排在后面。

    不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程,书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪,你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

    1、集合与函数概念实习作业

    一、教学内容分析

    《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

    二、学生学习情况分析

    该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

    三、设计思想

    《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

    四、教学目标

    1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

    2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

    3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

    五、教学重点和难点

    重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

    难点:培养学生合作交流的能力以及收集和处理信息的能力。

    六、教学过程设计

    【课堂准备】

    1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

    2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

    高中数学优秀教案范例大全 篇6

    一、教学目标

    知识与技能:

    理解任意角的概念(包括正角、负角、零角)与区间角的概念。

    过程与方法:

    会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

    情感态度与价值观:

    1、提高学生的推理能力;

    2、培养学生应用意识。

    二、教学重点、难点:

    教学重点:

    任意角概念的理解;区间角的集合的书写。

    教学难点:

    终边相同角的集合的表示;区间角的集合的书写。

    三、教学过程

    (一)导入新课

    1、回顾角的定义

    ①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

    ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

    (二)教学新课

    1、角的有关概念:

    ①角的定义:

    角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

    ②角的名称:

    注意:

    ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

    ⑵零角的终边与始边重合,如果α是零角α =0°;

    ⑶角的概念经过推广后,已包括正角、负角和零角。

    ⑤练习:请说出角α、β、γ各是多少度?

    2、象限角的概念:

    ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

    例1、如图⑴⑵中的角分别属于第几象限角?

    高中数学优秀教案范例大全 篇7

    一、课程性质与任务

    数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

    1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

    3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

    本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

    1.基础模块是各专业学生必修的基础性内容和应达到的'基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

    3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

    (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

    了解:初步知道知识的含义及其简单应用。

    理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

    计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

    空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

    分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

    数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

    (二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

    第2单元不等式(8学时)

    第3单元函数(12学时)

    第4单元指数函数与对数函数(12学时)

    第5单元三角函数(18学时)

    第6单元数列(10学时)

    第7单元平面向量(矢量)(10学时)

    第8单元直线和圆的方程(18学时)

    第9单元立体几何(14学时)

    第10单元概率与统计初步(16学时)

    2.职业模块

    第1单元三角计算及其应用(16学时)

    第2单元坐标变换与参数方程(12学时)

    第3单元复数及其应用(10学时)

    高中数学优秀教案范例大全 篇8

    提出问题:

    新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

    教材中的地位:

    本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

    设计背景:

    在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

    教学目标:

    一、知识:

    理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

    二、过程与方法:

    由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

    三、能力:

    1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

    2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

    教学过程:

    由实际问题引入:

    问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

    分裂次数与细胞个数

    1,2;2,2×2=22;3,2×2×2=23;x,2×2×……×2=2x

    归纳:y=2x

    问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

    经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=

    寻找异同:

    你能从以上的两个例子中得到的关系式里找到什么异同点吗?

    共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

    那么,今天我们来学习新的一个基本函数:指数函数

    得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

    在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

    般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

    若a

    若a=1,则=1,是一个常量,也没有研究的必要。

    所以有规定且a>0且a≠1。

    由定义,我们可以对指数函数有一初步熟悉。

    进一步理解函数的定义:

    指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的.定义域为R。

    研究函数的途径:由函数的图像的性质,从形与数两方面研究。

    学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

    首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。

    我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

    要求学生描述出指数函数图像的特征,并试着描述出性质。

    数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

    虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

    教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

    高中数学优秀教案范例大全 篇9

    教学准备

    教学目标

    解三角形及应用举例

    教学重难点

    解三角形及应用举例

    教学过程

    一.基础知识精讲

    掌握三角形有关的定理

    利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;

    (2)已知两边和它们的夹角,求第三边和其他两角。

    掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

    二.问题讨论

    思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的`讨论.

    思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

    例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

    一. 小结:

    1.利用正弦定理,可以解决以下两类问题:

    (1)已知两角和任一边,求其他两边和一角;

    (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

    2.利用余弦定理,可以解决以下两类问题:

    (1)已知三边,求三角;

    (2)已知两边和它们的夹角,求第三边和其他两角。

    3.边角互化是解三角形问题常用的手段.

    三.作业:P80闯关训练

    高中数学优秀教案范例大全 篇10

    一、教学目标:

    掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

    二、教学重点:

    向量的性质及相关知识的综合应用。

    三、教学过程:

    (一)主要知识:

    1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

    (二)例题分析:略

    四、小结:

    1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

    2、渗透数学建模的思想,切实培养分析和解决问题的能力。

    五、作业:

    本文网址://www.jk251.com/jiaoan/53652.html

    【[推荐教案] 高中数学优秀说课课件最新模板】相关推荐
    五年级下学期班主任工作计划 优秀范文模板

    充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《五年级下学期班主任工作计划 优秀范文模板》,希望能够为您提供参考。五年级下学期班主任工作计划新的一学期又开始了,为了在新的学期里把工作做好,把我...

    2025春四年级班主任工作计划

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“春四年级班主任工作计划”。20xx春四年级下学期班主任工作计划本学期我继续担任四年级的班主任,为了更好地开展工作,现拟订本学期班主任工作计划。一、...