你的位置:
  • 范文大全
  • >教师范文
  • >导航
  • >课件范文: 高中数学教学思考
  • 课件范文: 高中数学教学思考

    发表时间:2022-08-07

    在学校,我们看过许多范文,这些优秀的范文能我们学到很多的东西,阅读范文可以帮助我们平复心情,让自己冷静思考。高质量的范文能供更多人参考,你觉得哪些优秀范文是值得借鉴的呢?小编为此仔细地整理了以下内容《课件范文: 高中数学教学思考》,希望能对您有所帮助,请收藏。

    对于高中阶段的数学学习,更多强调的是学生的思维品质的培养,注重的是学生在掌握了初步的知识的基础上,透过分析、归纳、综合,不断地对所学知识进行演绎,经过不断地推导总结,对知识构成本质上的认识。解决学生的思维障碍对于高中数学的学习有很大的用心好处。根据对这些不断地总结思考,对于解决高中数学思维障碍,我有以下几点认识和思考。

    1.教师在教学过程中应熟悉学生已有的知识状况

    高中数学,相比于初中和小学阶段的数学,比较注重于逻辑思考。因此,教师在讲解新的知识的时候,要先回顾教学需要用到的基础知识,做好新旧知识的衔接,不让学生觉得突兀。例如,在刚开始学习高中数学的时候,一般都要先复习初中阶段学到的一元二次函数的具体资料,而对于那些不含任何参数的函数的最大值和最小值的求解比较简单,对于那些内含参数的求解可能对于很多的学生有点困难。在这个时候,我就先从不含参数的函数最大值和最小值求解开始讲起,逐步过渡到内含参数的函数的最大值最小值的求解,最后对求解区间变化的题目进行讲解。经过这样几步的层层递进,学生就会掌握各种一元二次函数的最值求解问题,也在必须程度上调动了全班学生的学习用心性。学生的思维也变得很清晰、很系统,对知识点构成了总体的认识。

    2.教师在教学过程中应侧重于学生的发散思维潜力的培养

    在高中数学的教学过程中,很多的教师只注重集中思维的培养,不重视提升学生的发散思维潜力。其实,发散思维对于高中数学的学习是至关重要的,能够很好地帮忙学生掌握教材中的基础知识,更加灵活自如地应用知识,这也是新的时代对高中数学教学提出的新的要求。在讲解数学问题的时候,教师不能固定学生的思维,同一道题教师要引导学生进行不同的思考,鼓励学生从不同的思考角度想出新的方法来解决同一个问题。发散思维能够充分调动学生的系统的知识网络,使学生的阶梯思路更加开阔,知识之间的联系也变得更加密切。教学中,透过引入开放性的数学题目,使学生突破常规的思维方法,解决学生的思维障碍,在课堂上引导学生从不同的角度来处理问题,做到解题的思路和方法的灵活应用,从而突破学生的数学思维障碍。

    3.教师在教学过程中应更新教学理念,改善教学方法

    教学本来就是一种认识新事物的过程,教师要根据认识新事物的规律来引导学生在已有的知识的基础上能够做好与新知识的衔接,在头脑中建立起二者之间的相互关系。教学方法的改善要思考到学生的实际状况,不能只按照教师自己的逻辑思考进行“填鸭式”的教学。教师要讲教材中的一些定义和定理引导学生深刻理解其内涵,从问题的表面去逐步挖掘其本质性的东西,要使学生逐步构成抽象的思维,能够在解决一些经常见到的数学问题的同时也要尝试着解决一些抽象的数学难题。在遇到一些难以解决的问题时,要引导学生变换思维方式,探索解决问题的新的方法和手段。

    4.教师在课堂教学中应将数学思想方法作为教学的重点

    高中数学的学习更多的是数学思维方法的学习。学生在学习中要逐步掌握一些常见的数学思维方法,比如数学建模。对于数学的学习,不在于做了多少的题,而是在做每一种类型的题目的时候能够领悟其中用到的数学思维方法。一旦掌握了解题的思维方法,至于计算,就是一些基础技能的考查了。教师要引导学生在掌握数学思维方法的基础上,在解题过程中能够透过分析题目,想到用哪一种思维方法来解决问题,或者透过适当地转换形式,以适用某个数学思维方法。综上所述,在高中数学的教学过程中,教师要不断地进行教学总结,要掌握班上学生的数学基础状况,培养学生集中思维的同时要重视发散思维潜力的培养,加强自身的业务潜力,根据学生的反馈信息改善教学方法,将对数学思想方法的教学作为重点。教师要不断地在实践当中进行探索和发现,总结教学的经验,并进行及时的改善,只有这样才能不断改善高中数学教学,解决学生的数学思维障碍,这对于高中数学的教学具有深远的重大好处。

    jK251.com其他人还在看

    [课件必备] 高中数学教学思考其一


    在不同的时期,我们看过不同的范文,这些范文能给我们带来很大的帮助,通过阅读范文可以提高我们的表达能力。阅读范文还能够让自己加深对写作的了解,有哪些可以借鉴的教师相关优秀范文呢?下面是小编帮大家编辑的《[课件必备] 高中数学教学思考其一》,相信您能找到对自己有用的内容。

    新课程倡导的是教师是学生学习的引导者、组织者、合作者、促进者,是平等的,而不再是“传道”“解惑”的权威,更不是学生学习知识的“批发商”。将学习的主动权交还给学生,是这节课给我的最大的启示。

    首先,我让他们先感受多米诺骨现象,通过播放一段影片并且联系生活中的事物和现象,比较这些现象之间的相似之处,感受多米诺骨牌的原理,并在引导他们类比到数学的证明题中,引出数学归纳法,分析三个步骤间的逻辑推理关系。

    接着,选取三道由易到难的练习,以填空到不做任何提示的方式过渡,让学生经历“尝试——熟练运用”的过程,强化使用数学归纳法的步骤和注意事项。设置课堂教学如果以灌输为主的,总以为只要抓紧时间将基础知识讲完,然后进行大量的练习和讲评、多讲些例题,就能提高学生的数学成绩。这样的课看起来效率很高,其实不然。因为有些题目讲过几遍,学生依然会做错,原因就在于灌输的课堂往往不能从学生的实际出发,纠正学生本来的错误,而是把教师的想法和解法填鸭给学生,几乎没有师生之间的交流与互动,这与新课程改革的方向相背离。于是我大胆采取以练为主,例题练习合二为一的方式,学生刚明白数学归纳法的原理,就动手运用,避免不了的要犯错误,我再抓住时机纠正这些错误,一边强化使用归纳法的步骤,一边规范解题的过程,

    这样的教学方式学生自然是更感兴趣的,提前发现错误肯定比等到做作业和练习甚至考试时再发现更好,所以这样的课堂教学也是更高效的。

    最后我以微软的一道面试题结束整节课,目的是想学生们知道自己今天所学的虽然是数学上的一种证明方法,但其实也是一种思维方法,甚至在关系自己前程的一场面试中,只要会运用它,就能取得成功。

    高中数学课件九篇


    从小到大,我们看过不少的范文,优秀的范文可以让我们积累相关的知识,阅读范文可以锻炼文笔,提高写作能力。高质量的范文能供更多人参考,您是否正在考虑怎么样才能写好优秀范文呢?教师范文网(jk251.com)小编特地为大家精心收集和整理了“高中数学课件九篇”,欢迎大家阅读,希望对大家有所帮助。

    高中数学课件【篇1】

    教学目标

    (1)理解四种命题的概念;

    (2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

    (3)理解一个命题的真假与其他三个命题真假间的关系;

    (4)初步掌握反证法的概念及反证法证题的基本步骤;

    (5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

    (6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

    (7)培养学生用反证法简单推理的技能,从而发展学生的思维能力。

    教学重点和难点

    重点:四种命题之间的关系;

    难点:反证法的运用。

    教学过程设计

    一、导入新课

    【练习】

    1、把下列命题改写成“若p则q”的形式:

    (1)同位角相等,两直线平行;

    (2)正方形的四条边相等。

    2、什么叫互逆命题?上述命题的逆命题是什么?

    将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论。

    如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题。

    上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”。

    值得指出的是原命题和逆命题是相对的。我们也可以把逆命题当成原命题,去求它的逆命题。

    3、原命题真,逆命题一定真吗?

    “同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。

    学生活动:

    口答:

    (1)若同位角相等,则两直线平行;

    (2)若一个四边形是正方形,则它的四条边相等。

    设计意图:

    通过复习旧知识,打下学习否命题、逆否命题的基础。

    二、新课

    【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

    【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题。

    【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

    学生活动:

    口答:若一个四边形不是正方形,则它的四条边不相等。

    教师活动:

    【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。

    若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定。

    【板书】原命题:若p则q;

    否命题:若┐p则q┐。

    【提问】原命题真,否命题一定真吗?举例说明?

    学生活动:

    讲论后回答:

    原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。

    原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。

    由此可以得原命题真,它的否命题不一定真。

    设计意图:

    通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的`真假,调动学生学习的积极性。

    教师活动:

    【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

    学生活动:

    讨论后回答

    【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题。

    教师活动:

    【提问】原命题“正方形的四条边相等”的逆否命题是什么?

    学生活动:

    口答:若一个四边形的四条边不相等,则不是正方形。

    教师活动:

    【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。

    原命题是“若p则q”,则逆否命题为“若┐q则┐p。

    【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

    学生活动:

    讨论后回答

    这两个逆否命题都真。

    原命题真,逆否命题也真。

    教师活动:

    【提问】原命题的真假与其他三种命题的真

    假有什么关系?举例加以说明?

    【总结】

    1、原命题为真,它的逆命题不一定为真。

    2、原命题为真,它的否命题不一定为真。

    3、原命题为真,它的逆否命题一定为真。

    设计意图:

    通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性。

    教师活动总结。

    PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

    3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

    4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

    x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM平面bcd。

    变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)

    变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。

    [设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef

    高中数学课件【篇2】

    合理制定三维目标,明确重点与难点。

    《普通高中数学课程标准》提出的三维教学目标是:知识与技能,过程与方法,情感态度与价值观。知识与技能目标包括学生要知道、了解、理解的基础知识、基本原理目标和学生必须达到的基本技能目标;过程与方法目标包括实现数学科学中的探究过程和探究方法、优化学生的学习过程,强调学生探索新知识的经历和获得新知识的体验;情感态度与价值观目标中包括学生的学习兴趣与热情、战胜困难的精神、认识数学之美感和塑造学生的人格。三维目标之间的关系是“在实现知识与技能的过程中有机地融合、渗透过程与方法目标、情感态度与价值观目标的达成。”三维目标是课堂教学活动的出发点与归宿。

    教学设计时教师要依据教材的具体内容,结合学生的学习实际,以促进每一个学生的发展为本,合理地制订三维目标,注意体现三维目标的整体性,相辅相成。所谓重点,指一节课中最重要的新知识,即联动全局,带动全面的重要之点,是学生认知发生转折与质变的地方,是教学的重心所在,是课堂教学中需要解决的主要矛盾。所谓难点是一节课中学习起来最困难的地方,是学生的认知能力与知识要求之间存在较大矛盾、知识跨越最大的地方,是学生难于理解和掌握的内容。例如“等差数列前n项和”这节课中的重点是“等差数列前n项和公式”,难点是“等差数列前n项和公式的推导——倒序相加法”。只有合理制订三维目标和确定好重点与难点,才能围绕三维目标和重点与难点的突破,制定出出色的教学设计。

    为学生提供充分从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学体验,将数学应用于生活,提高自主探究数学知识的能力和学生学习数学能力。

    认知最牢靠和最根深蒂固的部分就是生活中经常接触和经常使用的知识,有些已经进入了他们的潜意识。如果能把新知识巧妙地溶于生活情境中,那将会是学生非常欢迎的,一旦接受也会被牢固掌握。而现代教学手段比以往更容易让现实生活中的现象再现或模拟于课堂。因此,从学生的生活经验和知识背景出发,提供学生充分进行数学实践活动和交流的机会课堂效果一定会很好。用与学生年龄特征相适应的大众化、生活化的方式呈现数学内容,也是数学课程改革的一个基本思路。教师要敢于走出教材,走出课堂,走进丰富多彩的生活。比如在引入两个平面垂直的判定定理时,教师提出:建造一座大楼,怎样才能使墙面与地面垂直呢?学生很快会联想到建筑工人常常用一端系着铅锤的细绳让其垂直地面,并以这根绳子为参照,看看所砌的墙是否经过这条细绳。然后问:为什么若墙面经过这条绳子,所砌的墙就与地面垂直呢?还可以引导学生观察教室门板与地面的位置关系,它们是否垂直?转动门扇是否还与地面保持垂直,奇怪吗?为什么?到底隐藏着数学上的什么奥秘?由这些亲切真实情景,导出两个平面垂直的判定定理就水到渠成了。

    高中数学课件【篇3】

    教学目标:

    1.掌握基本事件的概念;

    等可能性;

    3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

    教学重点:

    掌握古典概型这一模型.

    教学难点:

    如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.

    教学方法:

    问题教学、合作学习、讲解法、多媒体辅助教学.

    教学过程:

    一、问题情境

    1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

    二、学生活动

    1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

    共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

    (““““5点”和“6点”,

    这6种情况的可能性都相等;

    三、建构数学

    1.介绍基本事件的概念,等可能基本事件的概念;

    、(等可能性);

    3.得出随机事件发生的概率公式:

    四、数学运用

    1.例题.

    例1

    有红心

    探究(

    探究(、(正,正)、(反,反)3个基本事件,对吗?

    学生活动:探究(一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

    探究(、(正,反)、(反,正)、(反,反)四个基本事件.

    (设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

    例2

    一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

    一次摸出2只球,则摸到的两只球都是白球的概率是多少?

    问题:在运用古典概型计算事件的概率时应当注意什么?

    ①判断概率模型是否为古典概型

    ②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

    教师示范并总结用古典概型计算随机事件的概率的步骤

    例3

    同时抛两颗骰子,观察向上的点数,问:

    (1)共有多少个不同的可能结果?

    (2)点数之和是6的可能结果有多少种?

    (3)点数之和是6的概率是多少?

    问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

    学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.

    问题:点数之和是3的倍数的可能结果有多少种?

    (介绍图表法)

    例4

    甲、乙两人作出拳游戏(锤子、剪刀、布),求:

    (甲赢的概率;(3)乙赢的概率.

    设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

    2.练习.

    (1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

    (2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

    (3)第103页练习1,2.

    (4)从1,2,3,…,9这9个数字中任取2个数字,

    ①2个数字都是奇数的概率为_________;

    ②2个数字之和为偶数的概率为_________.

    五、要点归纳与方法小结

    本节课学习了以下内容:

    1.基本事件,古典概型的概念和特点;

    2.古典概型概率计算公式以及注意事项;

    图表法.

    高中数学课件【篇4】

    一、教学背景分析

    (一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.

    (二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略.

    (三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.

    二、教学目标设计

    (一)知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法.

    (二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力.

    (三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神.

    三、教法学法设计

    (一)教学方法设计:为了更好地培养学生自主学习能力,提高学生的综合素质,我主要采用探究式教学方法.一方面我通过设置情境、问题诱导充分发挥主导作用;另一方面学生通过对我提供的素材进行直观观察→动手操作→讨论探究→归纳抽象→总结规律的过程充分体现主体地位.

    使用多媒体辅助教学与自制教具相结合的设计方案,实现多媒体快捷、形象、大容量的优势与自制教具直观、实用的优势的结合,既突出了知识的产生过程,又增加了课堂的趣味性.

    1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

    2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

    3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

    4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

    5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.

    四、教学建议

    教材分析

    1.知识结构

    2.重点难点分析

    重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

    椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.

    (1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

    另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

    (2)根据椭圆的定义求标准方程,应注意下面几点:

    ①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

    ②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

    ③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

    ④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

    (3)两种标准方程的椭圆异同点

    中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.

    椭圆的焦点在轴上标准方程中项的分母较大;

    椭圆的焦点在轴上标准方程中项的分母较大.

    另外,形如中,只要,,同号,就是椭圆方程,它可以化为.

    (4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

    高中数学课件【篇5】

    一、教学目标

    (一)知识与技能

    1、进一步熟练掌握求动点轨迹方程的基本方法。

    2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

    (二)过程与方法

    1、培养学生观察能力、抽象概括能力及创新能力。

    2、体会感性到理性、形象到抽象的思维过程。

    3、强化类比、联想的方法,领会方程、数形结合等思想。

    (三)情感态度价值观

    1、感受动点轨迹的动态美、和谐美、对称美

    2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气

    二、教学重点与难点

    教学重点:运用类比、联想的方法探究不同条件下的轨迹

    教学难点:图形、文字、符号三种语言之间的过渡

    三、、教学方法和手段

    【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

    【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

    【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。

    高中数学课件【篇6】

    我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:

    一、教材分析

    教材的地位和作用

    “曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!

    根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。

    二、教学目标

    根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:

    知识目标:

    1、了解曲线上的点与方程的解之间的一一对应关系;

    2、初步领会“曲线的方程”与“方程的曲线”的概念;

    3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;

    4、强化“形”与“数”一致并相互转化的思想方法。

    能力目标:

    1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;

    2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;

    3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。

    情感目标:

    1、通过概念的引入,让学生感受从特殊到一般的认知规律;

    2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。

    三、重难点突破

    “曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。

    怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。

    四、学情分析

    此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。

    高中数学课件【篇7】

    高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。最好的方式就是用多媒体电脑和诸如《几何画板》、《几何画王》、《几何专家》等工具软件,为学生创设数学实验情境。例如,在上“棱柱和异面直线”课时,我们指导学生用硬纸制作“长方体”和“正三棱柱”等模型。教师用《几何画板》设计并创作“长方体中的异面直线”课件,引导学生利用自己制作的“长方体”模型和上述课件,思考以下问题:“长方体中所有体对角线(4条)与所有面对角线(12条)共组成多少对异面直线?”、“长方体中所有体对角线(4条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有棱(12条)之间相互组成多少对异面直线?”、“长方体所有面对角线(12条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有面对角线(12条)之间相互组成多少对异面直线?”。然后由学生独立进行数学实验,探讨上述问题。

    此外,教师还要根据数学思想发展脉络,充分利用实验手段尤其是运用现代教育技术,创设教学实验情景、设计系列问题、增加辅助环节,有助于引导学生通过操作、实践,探索数学定理的证明和数学问题的解决方法,让学生亲自体验数学建模过程,培养学生的数学创新能力和实践能力,提高数学素养。

    为了构建生动活泼富有个性的数学课堂,我把创设情境,激发学生的学习兴趣当成数学教学的重头戏,使之成为数学课的一道亮丽的风景。 《数学课程标准》强调数学课堂教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学,理解数学,让学生感受到数学就在他们周围。因此,我从学生已有的生活经验出发,创设有趣的教学情境,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,感受数学与日常生活的密切联系,感受数学在生活中的作用,加深对数学的理解,并运用数学知识解决现实生活中的问题。如《课程标准》在综合实践的教学建议部分提供了这样一个案例:

    要求学生统计自己家庭一周内丢弃的塑料袋个数,并依据所收集的数据展开讨论。其程序是:(1)作为家庭作业提出此问题;(2)学生自主进行统计活动;(3)请某学生在课堂上对结果做现场统计(列出统计表,老师也把自己的统计结果融入其中);(4)统计分析(引导学生根据数据对全班一周丢弃塑料袋情况用不同的算法进行描述和评价);(5)结合问题情境深入领会有关概念(如平均数、中位数、众数等)的含义,并通过问题的层层深入让学生进一步感受不同统计量来表示同一问题的必要性;(6)问题自然延伸(计算这些袋对土地造成的污染,先估计一个袋的污染,然后通过多种方式计算推及到一周呢?一年呢?全校同学的家庭呢?照此速度要多久就会污染整个学校呢?)。由此例可以看出,这种模式的一个关键点就是围绕着学生日常生活来展开的,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐关系,朴素的问题情境自然让学生产生一种情感上的亲和力和感召力,可以让他们真正应用数学,并引导他们学会做事。

    高中数学课件【篇8】

    高中数学《等差数列》试讲答辩

    为帮助各位考生备战教师资格面试,中公教师网整理了各学科教师资格面试试讲答辩语音示范,以下是高中数学《等差数列》试讲答辩,希望对各位考生有所帮助!【面试备课纸】

    3.基本要求: (1)要有板书;(2)试讲十分钟左右;(3)条理清晰,重点突出;

    (4)学生掌握等差数列的特点与性质。【教学设计】

    一、教学目标 【知识与技能】能够复述等差数列的概念,能够学会等差数列的通项公式的推导过程及蕴含的数学思想。

    【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,提高知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。

    【情感态度与价值观】通过对等差数列的研究,具备主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

    二、教学重难点 【教学重点】

    等差数列的概念、等差数列的通项公式的推导过程及应用。【教学难点】

    等差数列通项公式的推导。

    三、教学过程 环节一:导入新课 教师PPT展示几道题目:

    1.我们经常这样数数,从0开始,每隔5一个数,可以得到数列:0,5,15,20,25 2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92。

    年,在澳大利亚悉尼举行的奥运会上,女子举重正式列为比赛项目,该项目共设置了7个级别,其中交情的4个级别体重组成数列(单位:kg):48,53,58,63。

    教师提问学生这几组数有什么特点?学生回答从第二项开始,每一项与前一项的差都等于一个常数,教师引出等差数列。

    环节二:探索新知 1.等差数列的概念

    学生阅读教材,同桌讨论,类比等比数列总结出等差数列的概念

    如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

    问题1:等差数列的概念中,我们应该注意哪些细节呢?

    环节三:课堂练习

    抢答:下列数列是否为等差数列?(1)1,2,4,6,8,10,12,……(2)0,1,2,3,4,5,6,……(3)3,3,3,3,3,3,3,……(4)-8,-6,-4,-2,0,2,4,……(5)3,0,-3,-6,-9,…… 环节四:小结作业

    小结:1.等差数列的概念及数学表达式。

    关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

    作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。

    高中数学课件【篇9】

    一、教学内容分析:

    本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

    二、学生学习情况分析:

    任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

    三、设计思想

    本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

    四、教学目标

    通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

    五、教学重点与难点

    重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。

    六、教学过程设计

    (一)知识准备、新课引入

    提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示)

    提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

    [设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]

    (二)判定定理的'探求过程

    1、直观感知

    提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?

    生1:例举日光灯与天花板,树立的电线杆与墙面。

    生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。

    [学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]

    2、动手实践

    教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。

    [设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]

    3、探究思考

    (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行

    (2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?

    4、归纳确认:(多媒体幻灯片演示)

    直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。

    简单概括:(内外)线线平行?线面平行a符号表示:ba

    高中数学教学设计精选


    学习数年,我们读过很多范文,不少优秀范文是学生写出来的, 阅读范文可以帮助我们平复心情,让自己冷静思考。高质量的范文能供更多人参考,你有没有看过的优秀范文的参考范文呢?下面是小编帮大家编辑的《高中数学教学设计精选》,希望能为您提供更多的参考。

    高中数学教学设计 篇1

    学习目标

    明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.

    学习过程

    一、学前准备

    复习:

    1.(课本P28A13)填空:

    (1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;

    (2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;

    (3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;

    (4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;

    二、新课导学

    ◆探究新知(复习教材P14~P25,找出疑惑之处)

    问题1:判断下列问题哪个是排列问题,哪个是组合问题:

    (1)从4个风景点中选出2个安排游览,有多少种不同的方法?

    (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

    ◆应用示例

    例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

    例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.

    (1) 甲站在中间;

    (2)甲、乙必须相邻;

    (3)甲在乙的左边(但不一定相邻);

    (4)甲、乙必须相邻,且丙不能站在排头和排尾;

    (5)甲、乙、丙相邻;

    (6)甲、乙不相邻;

    (7)甲、乙、丙两两不相邻。

    ◆反馈练习

    1. (课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?

    2.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列

    3.马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.

    当堂检测

    1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )

    A.42 B.30 C.20 D.12

    2.(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?

    课后作业

    1.(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?

    2.(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

    高中数学教学设计 篇2

    教学准备

    教学目标

    掌握三角函数模型应用基本步骤:

    (1)根据图象建立解析式;

    (2)根据解析式作出图象;

    (3)将实际问题抽象为与三角函数有关的简单函数模型。

    教学重难点

    利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

    教学过程

    一、练习讲解:《习案》作业十三的第3、4题

    与时间t(单位:s)的函数关系是

    (已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?

    (1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值

    (精确到。

    (为,该船何时能进入港口?在港口能呆多久?

    (3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3

    米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

    本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

    练习:教材P65面3题

    三、小结:1、三角函数模型应用基本步骤:

    (1)根据图象建立解析式;

    (2)根据解析式作出图象;

    (3)将实际问题抽象为与三角函数有关的简单函数模型。

    2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

    高中数学教学设计 篇3

    高中数学集合教学设计

    【教学目的】

    (1)使学生初步理解集合的概念,知道常用数集的概念及记法

    (2)使学生初步了解“属于”关系的意义

    (无限集、空集的意义

    【重点难点】

    教学重点:集合的基本概念及表示方法

    教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

    授课类型:新授课

    课时安排:1课时

    教 具:多媒体、实物投影仪

    【内容分析】

    解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础

    把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑

    本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

    这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念

    集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明

    【教学过程】

    一、复习引入:

    1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

    2.教材中的章头引言;

    3.集合论的创始人——康托尔(德国数学家)(见附录);

    4.“物以类聚”,“人以群分”;

    5.教材中例子(P4)

    二、讲解新课:

    阅读教材第一部分,问题如下:

    (1)有那些概念?是如何定义的?

    (2)有那些符号?是如何表示的?

    (3)集合中元素的特性是什么?

    (一)集合的'有关概念:

    由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

    定义:一般地,某些指定的对象集在一起就成为一个集合.

    1、集合的概念

    (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

    (2)元素:集合中每个对象叫做这个集合的元素

    2、常用数集及记法

    (1)非负整数集(自然数集):全体非负整数的集合 记作N,

    (2)正整数集:非负整数集内排除0的集 记作N*或N+

    (3)整数集:全体整数的集合 记作Z ,

    (4)有理数集:全体有理数的集合 记作Q ,

    (5)实数集:全体实数的集合 记作R

    注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

    (Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

    3、元素对于集合的隶属关系

    (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

    (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

    4、集合中元素的特性

    (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

    (2)互异性:集合中的元素没有重复

    (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

    B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……

    ⑵“∈”的开口方向,不能把a∈A颠倒过来写

    三、练习题:

    2

    2、下列各组对象能确定一个集合吗?

    (1)所有很大的实数 (不确定)

    (2)好心的人 (不确定)

    (3)1,2,2,3,4,5.(有重复)

    3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__

    4、由实数x,-x,|x|, 所组成的集合,最多含( A )

    (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

    5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

    (1) 当x∈N时, x∈G;

    (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

    证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G

    证明(2):∵x∈G,y∈G,

    ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

    ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

    ∵a∈Z, b∈Z,c∈Z, d∈Z

    ∴(a+c) ∈Z, (b+d) ∈Z

    ∴x+y =(a+c)+(b+d) ∈G,

    又∵ =且 不一定都是整数,

    ∴ = 不一定属于集合G

    【小结】

    元素、属于、不属于)

    2.集合元素的性质:确定性,互异性,无序性

    高中数学教学设计 篇4

    一、探究式教学模式概述

    创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。

    2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。

    3、探究式教学模式的特征。

    (分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。

    (全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。

    (发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。

    二、教学设计案例

    9的探究式教学。

    2、教学目标。

    (1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。

    (2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。

    (分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。

    3、教学方法:谈话探究法,讨论探究法。

    4、教学过程。

    (“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点?

    (2)提出问题。

    问题

    A、24个

    问题5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?

    (8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。

    教师:同学们观察1872等,看看它们有何特点?

    学生:它们都满足“各位数字之和能被9整除”。

    教师:此结论的正确性如何?

    学生:老师,我们证明此结论的正确性,好吗?

    教师:好。

    学生:证明:不妨以n是一个四位数为例证之。

    设n=依条件,有a+b+c+d=

    则n=1000a+100b+10c+d

    =(+(+(+d

    =(+(a+b+c+d)

    =+9m

    =

    ∵ a,b,c,m∈N

    ∴ 111a+11b+c+m∈N

    所以n能被9整除

    同理可证定理的后半部分。

    教师:看来上述结论正确。所以得到如下定理。

    定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。

    教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。

    学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

    教师:启发学生观察这些数字有何特点?提问学生。

    学生:可以看出只要从,或者同时含1、2,选取的四个数字之和都不是9的倍数。

    教师:请学生们继续尝试选取其他数字试一试。

    学生:3+4+5+6=18是9的倍数。

    教师:因此用。

    故应选D。

    (4)学以致用。

    问题5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?

    教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法?

    学生讨论:

    学生1:被6整除的五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。

    学生。

    学生3:第一类:5个数字中无0的五位偶数有。

    第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。

    学生。

    (5)概括强化。

    重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。

    难点:数字排列知识的灵活应用。

    关键:证明的思路以及定理的得出。

    新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。

    (6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。

    总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。

    范文收藏: 高中数学说课稿


    在学校,我们看过许多范文,这些范文能给我们带来很大的帮助,阅读范文可以让我们进行无声的思考与交流。阅读范文能够更好地领悟作文书写的精髓,写优秀范文需要包括呢些方面呢?小编经过搜集和处理,为您提供范文收藏: 高中数学说课稿,仅供参考,欢迎大家阅读。

    【教材分析】

    1、本节教材的地位与作用

    本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。

    2、教学重点

    会求闭区间上连续开区间上可导的函数的最值。

    3、教学难点

    高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法。

    4、教学关键

    本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。

    【教学目标】

    根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:

    1、知识和技能目标

    (1)理解函数的最值与极值的区别和联系。

    (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。

    (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。

    2、过程和方法目标

    (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。

    (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。

    (3)会求闭区间上连续,开区间内可导的函数的最大、最小值。

    3、情感和价值目标

    (1)认识事物之间的的区别和联系。

    (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。

    (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。

    【教法选择】

    根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。

    本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。

    【学法指导】

    对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。

    【教学过程】

    本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织。

    高中数学教学个人总结精选


    今天我们给大家分享一篇值得一读的“高中数学教学个人总结”文章,大家了解的范文有哪些?搜集范文只要手机有网就行。 参考范文模板是写作的捷径,非常感谢您来到本页敬请浏览!

    高中数学教学个人总结 篇1

    高中数学线上教学工作总结

    随着数字化时代的到来,线上教学逐渐成为教育领域的新时尚。在此背景下,高中数学线上教学也越来越得到广泛的应用和推广。作为一名高中数学老师,我也亲身体会到线上教学的优势和劣势,同时也得到了很多教学经验,下面就来总结一下。

    一、优势

    1.提高学生学习兴趣

    作为数字时代的一员,高中生们对于网络课程、视频直播等数字化学习方式更为热衷和接受。在线上教学平台上,老师可以使用丰富的多媒体素材,配合动画、图片、声音、视频等多种形式的展示和讲解,更加生动易懂,提高学生的学习兴趣和主动性。

    2.更加灵活的授课方式

    在线上教学平台上,老师可以在课堂上不受地域和时间限制,更加自由地安排授课内容和授课方式。同时,学生们也可以在任何时间和地点利用互联网学习数学,方便快捷。

    3.提高学生学习效率

    在线上教学平台上,老师可以根据学生们的学习情况调整授课进度和教学内容,学生们更能够在自己的学习节奏下学习数学,并及时反馈问题和疑惑,提高学习效率。

    二、劣势

    1.设备和网络问题

    在线上教学课堂需要教学工具和高速稳定的网络,如果设备和网络环境不好,则会影响到教学效果。

    2.交流不足

    在线上教学平台上,老师和学生之间的交流较少,有时候学生的问题和疑惑不容易被发现和解决,需要老师和学生之间的及时沟通和交流。

    三、教学经验

    1.充分利用在线上教学平台丰富的教学资源和工具

    在线上教学平台不仅可以提供多种多样的教学资源和工具,同时还可以支持群聊、发表心得等工具,可以利用这些工具与学生进行互动和交流,同时充分利用多媒体素材,让学生在观看视频内容的同时进行微信群或QQ群上的互动交流,这样可以更好地促进学生的思考和学习。

    2.注重学生的学习状况和进度

    因为在线上教学平台上,老师不会像传统课堂一样面面俱到地进行教学,所以在教学过程中需要留意学生的学习情况和进度,必要的时候可以与学生进行一对一的沟通和交流,及时纠正学生的错误,提高学习效率。

    3.鼓励学生的自主学习和思考

    在线上教学平台上,老师不一定会全部讲授所有知识点,这就要求学生要有一定的自主学习和思考能力,老师在授课的同时也要鼓励学生独立思考和独立解题,这样才能更好地提高学生的自主性和应对能力。

    综上所述,在线上教学平台给我们带来了更广泛的教学优势和劣势,但是在实际教学过程中,我们需要注重平台的利用和学生的情况把握,结合传统教学方式,因材施教,注重教学效率提高和学生能力的培养。

    高中数学教学个人总结 篇2

    幸福,对于当下急功近利、欲壑难填的国人来说,是一个敏感的话题,也是一件可遇而不可求的奢侈品。人们都说,一千个读者就有一千个哈姆雷特,那么,是不是13亿中国人就有13亿种对幸福的解读呢?答案不得而知,但是,作为一个从教7年的年轻教师,一个对生活要求不算太高的年轻教师,我确确实实地感受到了作为一名教师的幸福,这其中虽然伴随着成长的跌跌撞撞,但是我一直坚信,我能成为一名因我的存在而让学生感到幸福,同时我也乐在其中的老师,因为彼岸花开,希望永在。

    幸福来自彼此的喜欢。

    20__年秋天,我踏进了亚林一中的校门。我认真备课,我虚心求教。只要有时间我就去听数学组其他老师的课,认真做好笔记,回寝室后我就认真钻研反思,我与前辈的差距在哪,我如何在最短的时间里成长。很快,我的勤奋务实有了回报。学生看见我,老远就跑过来,问这问那,课堂上学生的小眼睛都瞪得圆圆的,自然成绩错不了。有一个叫张浩的学生的妈妈找到我,说张浩近一段时间特别愿意学数学,而她因一些小事和孩子闹得不愉快,问我能不能帮她劝劝孩子。这是我始料未及的,但我欣然答应了。结果是皆大欢喜。所以,这一年的教学经历告诉我,要想成为一名幸福的老师,就要做到既能走到学生身边,又要走进学生的心里,彼此喜欢,彼此不设防,幸福才能

    悄然来临。

    幸福来自彼此的尊重。

    学生尊重老师,理所当然。其实,老师尊重学生也是理当如此。20__年,因为我教学成绩突出,我被调到高一年组承担文科重点班的教学任务。说起这届学生,就不得不说一个叫张纪元的孩子,他在20__年的高考中取得了数学141的高分,成为松林管局文科状元。对于刚接触的这个年组第一却选择文科的优秀学生,我要求自己一定要用自己的专业水平赢得他的尊重。我认真备课,做大量的高考题,为他量身选择能激发他的学习热情和动力的习题,哪怕是在我高三每周42节课的时候。如今已中国政法大学大三的他仍不时地给我发短信打电话。不仅是张纪元如此,那届学生见我都会很亲切的喊我一声“晓秋老师!”所以,这三年我成长最快,虽然是被学生撵着成长起来的。我的总结是,不要小瞧学生的能力,要想成为学生的良师益友,就要学会彼此尊重。

    幸福来自彼此的认同。

    我一直认为林区的家长易于沟通,只要你是一个认真负责的老师,家长就会认可你。20__年春节,邵明洋的爸爸问了好多人之后,终于打通了我新换的电话,就是想表达一下感激之情。他说,孩子是花了8000元钱上的高中,初中数学倒数,如今成了数学成绩年组第一的优等生,他很感激。放下电话,我的心中溢满了幸福感。一个老师的价值能得到家长的认可,那他就是一个幸福的老师,我把这样的认可当成我最高的荣誉,千金不换。

    人往往因为生命的不完美而感到有所缺憾,也因此感慨幸福的难得。就如张爱玲说,生命是一袭华丽的袍子,上面爬满了蚤子。不要苛求幸福,其实它就在不远处,也许就在彼岸,在你思维的转角处。感谢让我成长,让我感受到作为一名教师的幸福的学生、家长、同仁。

    看,彼岸花开,幸福常在。

    高中数学教学个人总结 篇3

    繁忙而有序的一学期教学工作即将结束,回顾一学期的工作,在收获与缺憾中追求完美,在经验与教训中追求完善,在得与失中走向更加成熟。

    我在本学期深入学习教学理念,根据每一个单元教学内容和学生的实际情况,我进行了不同模式的摸索,时时刻刻都是用新教学理念武装自己,彻底更新观念,打破常规教学,走新路。在学校和本组的集体学习中,对新教学有了全面的了解,做到了与时俱进,更新观念,切实做到了在实际教学中更新观念,走出一条有自己特色的教学之路。

    数学概念是数学基础知识,是学生必须牢固而又熟练掌握的内容之一。它也是高考数学科所重点考查的重点内容。对于重要的数学概念,考生尤其需要正确理解和熟练掌握,达到运用自如的程度。从这几年的职业高考来看,有相当多的考生对掌握不牢,对一些概念内容的理解只浮于表面,甚至残缺不全,因而在解

    题中往往无从下手或者导致各种错误。

    数学中的定理、公式是数学的基础知识,学生必须认真对待,熟练掌握。对于重要定理、重要公式尤其如此。要使学生懂得正确理解,熟练掌握定理、公式,并能正确灵活运用定理公式去解题,往往会化繁为间、化难为易,达到事半功倍的目的。

    运算的快速、准确是职业高考的考查的内容之一,同时见于职业班学生计算能力差,更应该多练习,在选好的练习题的前提之下,要多练习,提高运算能力、以练取胜。

    基于上述见解,下面简单谈谈我的具体做法。讲到方法,这是一个很具体很灵活懂得问题,它对不同基础的学生而采用的手段。我的教学特点是“高、难、细

    高:用职业高考的高度、高考的题目所达到的水平进行教学。每讲一个概念、定理、公式,每讲一道例题或布置作业,都站在或尽量站在高考的高度来要求。难:教学的起点较高,例题和布置练习,不论低、中、高档题,都要求有一定思考性,即有一定的难度。力求多选一些重点突出难点适当,知识覆盖较大的题目。

    细:要做到高与难,细就显得尤其重要和突出。教学要扎实,狠抓三基。要不惜花力气教好每个概念、定理、公式。掌握每节知识的内在联系和各种题型的基本解法,对重要概念、定理、公式一定要弄懂其内涵和外延,只有细,才可能达到高和难。

    总结一学期的教学工作,有收获的快乐,也有不足的缺憾,本人力争在今后的工作中继续努力,取他人之长补己之短,力求在本职工作中日臻完善,更上一层楼。

    高中数学教学个人总结 篇4

    新课程标准的颁布和实验的正式启动,为新一轮教学改革指明了方向,同时也为教师的发展指明了道路,时代呼唤的是研究型、学者型甚至是专家型的教师,因此,作为教师的我们,必须认真学习新课程标准和现代教学教育理论,深刻反思自己的教学实践并上升到理性思考,把理论与实践真正结合起来,尽快跟上时代的步伐。那么数学教学应从那些方面进行反思呢?笔者认为可以从以下几个方面进行反思。

    1教学理念上反思

    新课程标准理念要求教师从片面注重知识的传授转变到注重学生学习能力的培养,教师不仅要关注学生学习的结果,更重要的是要关注学生的学习过程,促进学生学会自主学习、合作学习,引导学生探究学习,让学生亲历、感受和理解知识产生和发展的过程,培养学生的数学素养和创新思维能力,重视学生的可持续发展,培养学生终身学习的能力。我们必须在新课程标准的理念指导下,更新教育观念,真正做到变注入式教学为启发式,变学生被动听课为主动参与,变单纯知识传授为知能并重。在教学中让学生自己观察,让学生自己思考,让学生自己表述,让学生自己动手,让学生自己得出结论。正确认识自我,不断提高自身的综合素质,为培养全面发展的人才而奋斗。

    2学习过程上反思

    课堂教学应将学生的学习过程由接受—记忆—模仿和练习转化为探索—研究—创新,从而实现由传授知识的教学观向培养学生学习的教育观转变,逐步培养学生发现问题—提出问题—分析问题—解决问题—再发现问题的能力。教师要在反思自己教学行为的同时,观察并反思学生的学习过程,检查、审视学生在学习过程中学到了什么,遇到了什么,形成了怎样的能力,发现并解决了什么问题,这种反思有利于学生观察能力、自学能力、实验能力、思维能力和创新能力的提高。

    3教学方式、方法上反思

    长期以来,教学内容的安排多以知识的逻辑为主线,忽视了教育的逻辑和接受的逻辑,即教材中的章节理所当然地成为教学的单元,教材内容先后顺序无一变动地成为教学内容的安排顺序。授课方式基本上是“满堂灌”,灌知识,灌方法,鲜有师生互动,更谈不上激活体悟、启迪智慧、开拓潜能。我们不能不反思,这样的教学方式是否符合现代教育思想?新课程标准告诉我们,在教学活动中,教师应成为组织者、引导者、促进者和参与者,教师的教学方法应该灵活多样,教学过程是师生交往共同发展的互动过程。要通过讨论、研究、实验等多种教学组织形式,引导学生积极主动的学习,培养学生掌握和运用知识的能力,要关注每个学生,使每个学生都得到充分发展。

    4教学过程上的反思

    教学过程反思包括课前温课中的反思、课中反思、课后反思。

    4.1课前温课中的反思

    课前温课中的反思主要是:

    (1)对新的课程改革,如何突破习以为常的教育教学方法,应以新课程标准的理念为指导,改进教法,优化教法。

    (2)教学情境设计是否符合实际(学生的实际、教材的实际、生活生产的实际等),是否有利于引导学生观察、分析、归纳、总结、解决问题。

    (3)对所选材料要“审问之,慎思之,明辩之”,取其长处,去其糟粕,避免差错。

    4.2课中反思

    课中反思是一种难度较高的瞬间反思,它是在教学过程中及时、主动地调整教学方案、教学策略,从而使课堂教学达到高效和高质。具体要反思:教学行为是否明确;教学活动是否围绕教学目标来进行;能否在教学活动中充分地让学生动手实践、自主探索与合作交流;能否及时掌握学生的学习状况和课堂出现的问题,并及时调整教学节奏和教学行为等。

    4.3课后反思

    教后知不足,即使是成功的课堂教学,也难免有疏漏、失误之处,一节课留下些许遗憾在所难免。课后可在新知导语、课堂氛围、学生思维、板书设计,课件应用等方面做出反思。课后反思可作为以后教学的借鉴和参考。

    5数学实习和数学探究中反思

    数学实习、数学探究是数学学习不可缺少的重要内容,数学实习和数学探究重在让学生动手实践,尝试科学研究的过程,体验创造的激情,建立严谨的科学态度和不怕困难的科学精神;重在培养学生勇于质疑和善于反思的习惯,培养学生发现、提出、解决数学问题的能力;重在发展学生的创新意识和实践能力。教师要成为学生实习和探究的组织者、指导者、合作者。引导和帮助而不是代替学生发现和提出研究课题,特别应该鼓励和帮助学生独立地发现和提出问题;组织和鼓励学生组成课题组合作的解决问题;指导和帮助学生养成查阅相关的参考书籍和资料、在计算机网络上查找和引证资料的习惯。

    总之数学教学中需要反思的地方很多,我们在教学过程中只有勤分析,善反思,不断总结,我们的教育教学理念和教学能力才能与时俱进。愿我们在工作中学习,在学习中工作,紧跟时代的步伐。

    高中数学教学个人总结 篇5

    今年是本人参加工作的第六个年头,在工作中有得有失,在搞好学校体育工作的同时,全神贯注抓好课堂教学,业余训练,使我校体育工作得到长足的发展,丰富了校园生活,增强了师生的身体素质,健全了学校体育教学制度。现就近几年的个人工作做如下总结:

    认真贯彻执行新的《体育课程标准》,本着“健康第一”的指导思想,确立“以人为本”的体育教学目标,结合德育、智育和美育,促进学生身心的全面发展,为培养新型、现代的建设者和接班人做准备。平时能认真加强体育新教育教学理论的学习,进行有目的、有计划的教学实践,教科研意识气氛浓厚,教学质量有明显的提高。

    学校一操一活动是反映学生整体面貌的形象“工程”,是学校整体推进素质教育的一个窗口,一直抢抓大课间跑操工作和阳光活动工作,不断增进学生身体素质,提高学生身体健康水平,培养学生的体育学习兴趣,为终身体育打下了良好的基础。

    学生课余训练和竞赛是学校体育的重要组成部分,对活跃学生课余文化生活,促进学校体育工作开展、发挥学生特长,培养后备体育人才具有积极意义。每天早上坚持体育队的训练任务,并建立了田径队、篮球队、乒乓球队、羽毛球队,并根据学校、镇、县的各种比赛安排,合理的进行训练,积极参加各种比赛!

    本人在做好各项体育工作的前提下,还担任着班主任工作,建立了良好的班集体,班级的各种工作有条不紊地进行。

    以上是我工作的小结和体会,在今后的工作中,我想我会更加严格要求自己,提高自身素质,努力学习,积极工作,勇攀教育事业的高峰,做一名优秀的人民教师。

    分备教材和备学生两部分,二者相辅相成,互相影响。备教材就是根据所学内容设计课堂教学情景,力争做到深入浅出,生动活泼,方法灵活,讲练结合,真正体现学生的主体作用和教师的主导作用;备学生指的是全面掌握学生学习数学的现状,依据学生的学习态度、水平设计合理恰当的教学氛围,充分考虑学生的智力发展水平,扩展学生的认知领域,为学生提供思维训练的平台,创设熟悉易懂的学习情景,为学生的心理发展和知识积累提供可能。备课中一定要注意从学生的实际出发,从教材的实际内容出发,这样二者兼顾才能提高备课的针对性、有效性。

    上课是教学活动的主要环节,也是教学工作的关键阶段。上课要坚持以学生活动为中心,面向全体学生授课,以启发式为主,兼顾个别学生,从听讲、笔记、练习、反馈等环节入手,引导学生积极参与学习活动,理解和掌握基本概念和基本技能,使学生在学习活动过程中不仅获得知识还要提高解决问题的能力,不光获得应有的智慧,也应掌握思考问题的思想方法。对概念课采用启发引导式,引导学生理解和掌握新概念产生的背景,发生发展的过程,展示新旧知识之间的内在联系,加深对概念的理解和掌握;对巩固课坚持&“精讲多练&”,精选典型例题,引导学生仔细分析问题的特点,寻求解决问题的思路和方法,提出合理的解决方案,力争使讲解通俗易懂,使方法融会贯通,并让学生在练习中加以消化,真正提高学生分析问题解决问题的能力。

    包括课本上的练习、习题、以及课外作业,针对学生的不同层次提出不同的要求:练习题要求全体学生尽量当堂完成,并及时进行讲解;习题中的A组题挑选有针对性的题目作为书面作业,要求学生课后独立完成,全批全改,深入了解学生对新知识新概念及新方法的掌握情况,B组题适当地对学有余力的学生提出要求,并及时给与提示,以求进一步提高;课外作业则根据实际情况灵活把握,精选题目,不求数量而求质量,加强和深化学生对概念公式的理解和掌握,特别是对学生作业中出现的错误及时予以纠正,以积累学生的解题经验,提高认识。

    主要是指导学生及时旧课,预习新课,特别是对学生中存在的问题或集中讲解,或个别答疑,以求真正地使学生的数学学习保证持续性,建立知识网络的联系,引导学生从系统的高度,整体上把握数学知识,概念和方法。尤其是在课后辅导中更多地关注学习基础薄弱的学生,帮助他们树立了学习数学的信心,使他们得到了应有的进步。总之,教学工作不仅仅要落实常规,还要因地制宜,与时俱进,针对学生的具体情况采取相应的措施与办法,有计划有落实有检查,关注每一个学生,关注每一个课堂,关注每一个环节,从小处着眼,从细处着手。只有这样才有利于教学质量的提高,有利于学生身心的健康发展。

    高中数学教学个人总结 篇6

    “函数的单调性”问题既是函数概念的延续与拓展,又是后续指数函数、对数函数、三角函数研究的基础,在本节课的讲解中,还渗透了探索发现、数形结合等数学思想方法。为此我们从熟悉的实际生活出发,结合熟悉的一次函数、二次函数的图象,为学生学习函数的单调性创设教学情境,拉近与未知知识的距离,调动积极性,增加参与度。在学生自主探索的过程中,教师可给予一定的引导,如设置一些问题:指出函数图象变化的趋势,数学当中如何描述,如何用符号化的数学语言来刻画,如何给出严格的定义,定义中哪些是值得注意和重视的,怎样利用定义来证明函数的单调性等等,来引导学生更好、更深刻、更准确的理解新的知识。当然还必须结合一些典型例题来巩固新知,尤其是一些注意点,及时纠正才能不致错误根深蒂固。

    函数的单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观感知到数学符号语言描述的一个过程,充分反映了数学的理性精神,其中还结合了数学思想方法的渗透。这在我们的教学过程中需要长期坚持。

    参加了高中数学“函数单调性”教学研讨的网络学习后,有以下几点想法与思考,流露出来与同行们一起探讨:

    (1)在教学过程中学生经常会有不同见解产生、有新问题“萌生”、甚至有错误频繁出现,往往与教师的教学预设合不上拍,让教师出乎意料.然而在这些课堂现象中恰恰存在着生长性,潜藏着稍纵即逝的生成点,是值得引起重视的宝贵教学资源.现代教学理论认为:“课堂教学不在于教师讲得如何精彩,重要的'是能适时激起学生的认知冲突,制造一种‘不和谐’,通过互动生成教学过程.”这种互动会让教师、学生双方都面临知识的、智慧的挑战,从而更能促进教与学的有效相长。

    (2)当预设与生成有出入时,教师不能粗暴地忽略学生的“草根”观念.有时若用“这个问题我们下课再讨论”等言语来搪塞学生将会失去难得宝贵的一次探索机会.认真倾听学生的发言,为课堂营造一种宽松氛围,用心来呵护生成、善待意外,是师者修养之一.只有当你静静蹲下来时,你才能走进孩子的世界,知道在他们的高度能看见什么,才能和孩子有效地沟通和交流.在平时的教学活动中,我们却很少注意到这点.(3)课堂是学生学习、成长的第一摇篮,在课堂教学中采取什么样的教学思想指导课堂教学,对学生数学素养的形成起着至关重要的作用.只有关注课堂生成、正确处理课堂生成,为学生适时搭建探索的平台,课堂教学才能焕发生命力、绽放思维的火花。

    高中数学教学个人总结 篇7

    以前上课时,我经常只顾自己的想法,觉得讲的题目越多越好,很少顾及学生的思维与感受。慢慢地,发现学生上课听得懂,自己做却不会,可怕的是,到后来连学数学的信心也没有了。我一直很困惑……。

    在不断反思和与同事探讨的过程之中,我发现在数学教学中存在着较为普遍的问题:

    其一,对教学工作的困难认识不足,没有耐心;

    其二,对学生的了解不够,缺少爱心;

    其三,对数学教学的特点把握不好,不够细心;

    其四,对数学教学的目的理解不清,不务根本。

    因此,高中数学教学应该注意以下几个方面的问题:

    1、耐心引导,关注学生的意志品质。不少学生对数学的印象是枯燥、难懂,教师则信奉“严师出高徒”的古训,对待学生的学习缺乏耐心细致的引导,造成一部分学生讨厌数学,甚至产生“破罐子破摔”的 心理,更谈不上使学生具备克服学习过程中所遇到的困难的意志力。因此,教师在教学中应考虑培养学生克服困难的自信心和意志力,注意给学生提供具有挑战性的 问题,让学生有机会经历克服困难的学习活动,使每个学生都能在学习中既获得成功的体验,又有面临挑战的机会和经历,从而锻炼克服困难的意志,建立学好数学 的自信心。这对教师来说是一个持之以恒、潜移默化的过程,需要一定的时间,也应该有足够的耐心。

    2、耐心辅导,关注后进生的发展。后进生是迟绽的花蕾,是待开的资源。后进生是相对的,是变化发展的,没有一成不变的后进生,后进生是可以转化为好学生的。那么,如何转化后进生呢? 对后进生要充满爱心,只有热爱后进生,才能做好他们的转化工作。这就是说,对后进生要动之以情,要细致耐心地进行辅导,使他们的心在温暖的关怀中渐渐融化,点燃他们追求上进、成为优秀生的希望之火。

    3、耐心答疑,培养学生好问的学习习惯。高中数学是基于问题的理论与实践相结合的学科,要让学生在学习的过程中能够在提出问题的前提下解决问题。其实,提出问 题比解决问题在一定程度上更为重要,这就要求教师能够在教学的过程中认真、细致、耐心地回答好各种学生提出的各种问题,使每一位同学的每一个问题都能够得 到满意的答复,甚至对于学生提出的一些古怪的莫名其妙的问题都应该引起足够的重视,千万不可敷衍了事,更不能置之不理。作为高中数学教师,应该在答疑上多 花时间、多下功夫。

    心理学研究表明,任何认识活动都是在情感的动力影响下进行的。学生的学习兴趣往往以教师的情感为转移,如果教师把爱心寓于教学之中,通过富有情感的语言、动作、表情,使学生对教师产生一种信任佩服的感觉,学生就会以积极主动、勤奋向上的精神状态投入学习。

    因此在教学过程中教师要多一些真诚的关怀和帮助,给学生以学习的信心和勇气,使学生变“厌学”为“肯学”、变“肯学”为“好学”。这样学生就会积极性高涨、兴趣浓厚,从而产生学习的激情和动力。因此,调控教学的情感,创设一种民主交流、亲切和谐、师生情感思维共鸣的课堂气氛,是全面提高课堂效率的一个重要途径。

    不 细心、粗心马虎是学生的通病,也算是非智力性错误的一种,这一直都是一个问题。其实克服粗心大意、培养严谨细致的思维品质是学习数学的目的之一。首先,教 师要做好示范和表率。教师的板演,批改作业的字迹、符号,一定要规范、整洁,以便对学生起到潜移默化的作用。其次,教师要善于总结经验、归纳方法。比如我 教给学生计算的检查方法是:审题的方法是两看两想,即:先看一看整个算式是由几部分组成的,想一想,按一般方法应如何计算;再看一看有没有某些特别的条 件,想一想能不能用简便方法计算。不要盲目地进行简便运算。再次,要教育学生养成验证的习惯。看所得结果是否符合实际、是否符合题目要求,代数式的变形是 否符合逻辑,考虑问题是否全面周到。另外,对于常见的易于马虎的地方要经常性地强调,并要提出要求,这样有利于学生形成良好的思维习惯,比如分式的分母不 为零、对数式真数位置大于零、直线的斜率等问题。然而,培养学生细致、严谨的思维品质是一件费时、费力的工作,在这个过程中老师的潜移默化作用是相当重要 的,老师自身的教学必须是细心的、严谨的。

    身为教师,首先要务本,本立则万法可成。何谓本?

    其一是以德为本,修身立德,这也是教师的社会责任所决定的。

    其二,以培养学生的学习能力为本,只要学生有了一定的学习能力,那么,他们就能随时获取知识。但我们在教学过程中都想亟不可待地教会学生必要的知识,忽略了他们获取知识的过程,忽略了学生在学习中的主体地位,这样,我们在无形中就偏离了教学之本。

    其 三,以教本为本。这是一个更加具体的教学要求,然而也是十分重要的。近几年来,受社会各种综合因素的影响,不管是老师还是学生都忽视了课本在教学和学习过 程中的重要性,将大量的时间花费在课外的资料上。而大多数资料都有大量总结的公式和所谓的捷径,表面是省时省力,其实质是在浪费时间、浪费精力,到时候还 是一无所获,这就是舍本逐末所带来的后果。因此,我们教学时要以课本为本,让学生在学习、钻研、挖掘课本的同时,提高他们的学习能力。教学和学习都是务实 的工作,不能走任何的捷径。

    总 之,数学教学工作任重道远,是一个循序渐进的过程,不能操之过急,更不能想着一蹴而就,应该以高度的工作热情,抱着对学生负责的态度和细心严谨的工作作 风、务本求实的工作精神,以学生的发展作为自身的工作使命,扎扎实实、一丝不苟地上好每一节课、批好每一本作业、关注每一位同学,只有这样,我们的数学教 学才能收到预期的效果。

    课件精选: 高中数学优秀课件最新模板


    我们在上学时也会去读一些范文,优秀的范文可以让我们积累相关的知识,阅读范文可以让我们进行无声的思考与交流。能在一定程度提升我们的语文水平,那么,您看过哪些值得借鉴的教师相关优秀范文吗?急您所急,小编为朋友们了收集和编辑了“课件精选: 高中数学优秀课件最新模板”,欢迎阅读,希望您能够喜欢并分享!

    一。教材分析

    1.本节课内容在整个教材中的地位和作用

    概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

    2.教学目标定位

    根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目标。

    (1)基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;

    (2)过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;

    (3)情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

    3.教学重难点

    重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。

    二。教法学法分析

    数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。为此,我设计了5个环节:①创设情景——引入新课;②交流探究——发现规律;③启发引导——形成结论;④训练小结——深化巩固;⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。

    三。教学过程分析

    1.创设情景—引入新课

    教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x?图像为引子,让学生画y=x?和y=2x?图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x?与y=ax?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。

    由浅入深,下面让学生画y=2x?,y=2(x+1)?与y=2(x+1)?+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。

    2.探究交流—发现规律

    从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x?与y=2x?+4x-1的图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=ax?+bx+c,先将其化成y=a(x+h)?+k的形式,从而判断出y=ax?+bx+c的图像是如何由y=ax?变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)?+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。

    3.启发引导—形成结论

    前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x?到y=ax?,y=ax?到y=a(x+h)?+k,y=ax?到y=ax?+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a

    4.练习小结——巩固深化

    为了巩固和加深二次函数y=ax?+bx+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。这个过程中会产生学生之间的三次竞争:①看谁解的快、用时最短;②看谁书写的整齐;③看谁做的对。这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生"考试什么都不会,考完后什么都会"以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。

    5.延伸拓广——提高能力

    课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。

    高中数学教学设计案例精选


    作为一位杰出的教职工,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。

    高中数学教学设计案例精选 篇1

    函数的奇偶性

    函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的.联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.

    教学目标:

    1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.

    2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

    3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析

    这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.

    一、问题情景

    1.观察如下两图,思考并讨论以下问题:

    (1)这两个函数图像有什么共同特征?

    (2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

    对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.

    2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

    22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

    二、建立模型

    由上面的分析讨论引导学生建立奇函数、偶函数的定义

    1.奇、偶函数的定义

    如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.

    2.提出问题,组织学生讨论

    (1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)

    (2)奇、偶函数的图像有什么特征?

    (奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

    三、解释应用[例题]

    1.判断下列函数的奇偶性.

    注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

    2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

    解:(1)任取x0,∴f(-x)=-x(1-x),

    而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).

    (2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

    3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.

    解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

    任取x1>x2>0,则-x1

    ∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).

    ∴f(x)在(0,+∞)上是增函数.

    思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

    [练习]

    1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

    2. f(x)=-x3|x|的大致图像可能是()

    3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

    四、拓展延伸

    1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

    3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

    4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

    高中数学教学设计案例精选 篇2

    重点难点教学:

    1.正确理解映射的概念;

    2.函数相等的两个条件;

    3.求函数的定义域和值域。

    教学过程:

    1.使学生熟练掌握函数的概念和映射的定义;

    2.使学生能够根据已知条件求出函数的定义域和值域; 3.使学生掌握函数的三种表示方法。

    教学内容:

    1.函数的定义

    设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的.取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

    注意:

    ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

    2.构成函数的三要素定义域、对应关系和值域。

    3、映射的定义

    设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

    4.区间及写法:

    设a、b是两个实数,且a

    (1)满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];

    (2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b);

    5.函数的三种表示方法

    ①解析法

    ②列表法

    ③图像法

    高中数学教学设计案例精选 篇3

    一、教材分析

    数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。本课是数学归纳法的第一节课,前面学生对等差数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进学生从有限思维发展到无限思维的一个重要环节,同时本节内容又是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。

    二、教学目标

    学生通过数列等相关知识的学习,已经基本掌握了不完全归纳法,已经由一定的观察、归纳、猜想能力。

    根据教学内容特点和教学大纲,结合学生实际而制定以下教学目标:

    1、知识目标

    (1)了解由有限多个特殊事例得出的一般结论不一定正确。

    (2)初步理解数学归纳法原理。

    (3)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。

    (4)会用数学归纳法证明与正整数相关的简单的恒等式。

    2、能力目标

    (1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。

    (2)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。

    3、情感目标

    (1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。

    (2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。

    (3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。

    三、教学重点与难点

    1、教学重点

    借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。

    2、教学难点

    (1)如何理解数学归纳法证题的严密性和有效性。

    (2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。

    四、教学方法

    本节课采用交往性教学方法,以学生及其发展为本,一切从学生出发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力。既重视教师的组织引导,又强调学生的主体性、主动性、交流性和合作性。

    五、教学过程

    (一)创设情境,提出问题

    情境一:根据观察某学校第一个到校的女同学,第二个到校的也是女同学,第三个到校的还是女同学,于是得出:这所学校的学生全部是女同学。

    情境二:平面内三角形内角和是,四边形内角和是,五边形内角和是,于是得出:凸边形内角和是。

    情境三:数列的通项公式为,可以求得,于是猜想出数列的通项公式为。

    结论:运用有限多个特殊事例得出的一般性结论,即不完全归纳法不一定正确。因此它不

    能作为一种论证的方法。

    提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课所要学习的数

    学归纳法就是解决这一问题的方法之一。

    (二)实验演示,探索解决问题的方法

    1、几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必

    须具备那些条件呢?(学生可以讨论,加以教师点拨)

    ①第一块骨牌必须倒下。

    ②两块连续的骨牌,当前一块倒下,后面一块必须倒下。

    (启发学生转换成数学符号语言:当第块倒下,则第块必须倒下)

    教师总结:数学归纳法的原理就如同多米诺骨牌一样。

    2、学生类比多米诺骨牌原理,探究出证明有关正整数命题的方法,从而导出本课的重心:数学归纳法的原理及其证明的两个步骤。(给学生思考的`时间,教师提问,学生回答,教师补充完善,对学生的回答给予肯定和鼓励)

    数学归纳法公理:(板书)

    (1)(递推基础)当取第一个值(例如等)结论正确;

    (2)(递推归纳)假设当时结论正确;(归纳假设)

    证明当时结论也正确。(归纳证明)

    那么,命题对于从开始的所有正整数都成立。

    教师总结:

    步骤(1)是数学归纳法的基础,步骤(2)建立了递推过程,两者缺一不可,这就是数学归纳法。

    (三)迁移应用,理解升华

    例1:用数学归纳法证明:等差数列中,为首项,为公差,则通项公式为.①

    选题意图:让学生注意:

    ①数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题;

    ②两个步骤,一个结论缺一不可,否则结论不成立;

    ③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。

    此时学生心中已有一个初步的证明模式,教师应该规范板书,给学生提供一个示范。

    证明:(1)当时,等式左边,等式右边,等式①成立.

    (2)假设当时等式①成立,即有

    那么,当时,有所以当时等式①也成立。

    根据(1)和(2),可知对任何,等式①都成立。

    例2:用数学归纳法证明:当时

    选题意图:通过师生共同活动,使学生进一步熟悉数学归纳法证题的两个步骤和一个结论。

    例3:用数学归纳法证明:当时

    选题意图:

    ①进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识上升为理性认识;

    ②掌握从到时等式左边的变化情况,合理的进行添项、拆项、合并项等。

    (四)反馈练习,巩固提高

    课堂练习:用数学归纳法证明:当时

    (练习让学生独立完成,上黑板板演,要求书写工整,步骤完整,表述清楚,如果发现学生证明过程中的错误,教师及时纠正、剖析,同时对学生板演好的方面予以肯定和鼓励。)

    教师总结:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不可少,归纳假设要用到,结论写明莫忘掉。

    (五)反思总结

    学生思考后,教师提问,让同学相互补充完善,教师最后总结,这一环节可以培养学生抽象、归纳、概括、总结的能力,同时教师也可以及时了解学生的掌握情况,以便弥补和及时调整下节课的教学方向。

    小结:

    (1)归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;

    (2)数学归纳法作为一种证明方法,用于证明一些与正整数n有关数学命题,它的基本思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可;

    (3)递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。

    (六)作业布置

    选修2-2习题2.3第1题第2题

    高中数学教学设计案例精选 篇4

    一、教学目标

    1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

    2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

    3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

    4、初步培养学生反证法的数学思维。

    二、教学分析

    重点:四种命题;难点:四种命题的关系

    1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

    2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

    3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

    三、教学手段和方法(演示教学法和循序渐进导入法)

    1、以故事形式入题

    2、多媒体演示

    四、教学过程

    (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

    设计意图:创设情景,激发学生学习兴趣

    (二)复习提问:

    1.命题“同位角相等,两直线平行”的条件与结论各是什么?

    2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

    3.原命题真,逆命题一定真吗?

    “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

    学生活动:

    口答:(l)若同位角相等,则两直线平行;

    (2)若一个四边形是正方形,则它的四条边相等.

    设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

    (三)新课讲解:

    1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

    2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

    3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

    (四)组织讨论:

    让学生归纳什么是否命题,什么是逆否命题。

    (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

    (六)课堂小结:

    1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

    原命题若p则q;

    逆命题若q则p;(交换原命题的条件和结论)

    否命题,若¬p则¬q;(同时否定原命题的条件和结论)

    逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

    2、四种命题的关系

    (1).原命题为真,它的逆命题不一定为真。

    (2).原命题为真,它的否命题不一定为真。

    (3).原命题为真,它的逆否命题一定为真。

    (七)回扣引入

    分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

    第一句:“该来的没来”其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

    第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

    第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

    五、作业

    1.设原命题是“若断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判。

    2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假。

    高中数学教学设计案例精选 篇5

    教学目标:

    1.掌握基本事件的概念;

    2.正确理解古典概型的两大特点:有限性、等可能性;

    3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

    教学重点:

    掌握古典概型这一模型.

    教学难点:

    如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.

    教学方法:

    问题教学、合作学习、讲解法、多媒体辅助教学.

    教学过程:

    一、问题情境

    1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

    二、学生活动

    1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

    2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

    (2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

    这6种情况的可能性都相等;

    三、建构数学

    1.介绍基本事件的概念,等可能基本事件的'概念;

    2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

    3.得出随机事件发生的概率公式:

    四、数学运用

    1.例题.

    例1

    有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

    探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

    探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

    学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

    探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

    (设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

    例2

    一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

    一次摸出2只球,则摸到的两只球都是白球的概率是多少?

    问题:在运用古典概型计算事件的概率时应当注意什么?

    ①判断概率模型是否为古典概型

    ②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

    教师示范并总结用古典概型计算随机事件的概率的步骤

    例3

    同时抛两颗骰子,观察向上的点数,问:

    (1)共有多少个不同的可能结果?

    (2)点数之和是6的可能结果有多少种?

    (3)点数之和是6的概率是多少?

    问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

    学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.

    问题:点数之和是3的倍数的可能结果有多少种?

    (介绍图表法)

    例4

    甲、乙两人作出拳游戏(锤子、剪刀、布),求:

    (1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.

    设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

    2.练习.

    (1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

    (2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

    (3)第103页练习1,2.

    (4)从1,2,3,…,9这9个数字中任取2个数字,

    ①2个数字都是奇数的概率为_________;

    ②2个数字之和为偶数的概率为_________.

    五、要点归纳与方法小结

    本节课学习了以下内容:

    1.基本事件,古典概型的概念和特点;

    2.古典概型概率计算公式以及注意事项;

    3.求基本事件总数常用的方法:列举法、图表法.

    高中数学教学设计案例精选 篇6

    一、教学内容分析

    圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

    二、学生学习情况分析

    我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

    三、设计思想

    由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

    四、教学目标

    1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

    2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

    3.借助多媒体辅助教学,激发学习数学的兴趣。

    五、教学重点与难点:

    教学重点

    1.对圆锥曲线定义的理解

    2.利用圆锥曲线的定义求“最值”

    3.“定义法”求轨迹方程

    教学难点:

    巧用圆锥曲线定义解题

    六、教学过程设计

    【设计思路】

    (一)开门见山,提出问题

    一上课,我就直截了当地给出——

    例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

    (A)椭圆 (B)双曲线 (C)线段 (D)不存在

    (2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

    (A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线

    【设计意图】

    定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

    为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

    【学情预设】

    估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

    5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5

    入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

    在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

    (二)理解定义、解决问题

    例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。

    (2)在(1)的条件下,给定点P(-2,2), 求|PA|

    【设计意图】

    运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

    【学情预设】

    根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

    (三)自主探究、深化认识

    如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——

    练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

    引申:若将点A移到圆C外,点M的轨迹会是什么?

    【设计意图】 练习题设置的目的'是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

    可借助“多媒体课件”,引导学生对自己的结论进行验证。

    【知识链接】

    (一)圆锥曲线的定义

    1. 圆锥曲线的第一定义

    2. 圆锥曲线的统一定义

    (二)圆锥曲线定义的应用举例

    1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

    2.|PF1||PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

    3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

    4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

    x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

    (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

    5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

    七、教学反思

    1.本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

    2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

    总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

    高中数学教学设计案例精选 篇7

    提出问题:

    新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

    教材中的地位:

    本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

    设计背景:

    在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

    教学目标:

    一、知识:

    理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

    二、过程与方法:

    由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

    三、能力:

    1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

    2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

    教学过程:

    由实际问题引入:

    问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

    分裂次数与细胞个数

    1,2;2,2×2=22;3,2×2×2=23;x,2×2×……×2=2x

    归纳:y=2x

    问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

    经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=

    寻找异同:

    你能从以上的两个例子中得到的关系式里找到什么异同点吗?

    共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

    那么,今天我们来学习新的一个基本函数:指数函数

    得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

    在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

    般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

    若a

    若a=1,则=1,是一个常量,也没有研究的必要。

    所以有规定且a>0且a≠1。

    由定义,我们可以对指数函数有一初步熟悉。

    进一步理解函数的定义:

    指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的.定义域为R。

    研究函数的途径:由函数的图像的性质,从形与数两方面研究。

    学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

    首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。

    我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

    要求学生描述出指数函数图像的特征,并试着描述出性质。

    数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

    虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

    教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

    高中数学教学设计案例精选 篇8

    一、概述

    教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式

    二、教学目标分析

    1. 知识目标

    1)

    2) 掌握等比数列的定义 理解等比数列的通项公式及其推导

    2.能力目标

    1)学会通过实例归纳概念

    2)通过学习等比数列的通项公式及其推导学会归纳假设

    3)提高数学建模的能力

    3、情感目标:

    1)充分感受数列是反映现实生活的模型

    2)体会数学是来源于现实生活并应用于现实生活

    3)数学是丰富多彩的而不是枯燥无味的`

    三、教学对象及学习需要分析

    1、 教学对象分析:

    1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

    2)对归纳假设较弱,应加强这方面教学

    2、学习需要分析:

    四. 教学策略选择与设计

    1.课前复习

    1)复习等差数列的概念及通向公式

    2)复习指数函数及其图像和性质

    2.情景导入

    高中数学教学设计案例精选 篇9

    一、课题:

    人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

    二、指导思想与理论依据:

    《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

    三、教材分析:

    本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的`始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

    四、学情分析:

    在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

    五、教学目标:

    (一)教学知识点:

    1.对数的概念。

    2.对数式与指数式的互化。

    (二)能力目标:

    1.理解对数的概念。

    2.能够进行对数式与指数式的互化。

    (三)德育渗透目标:

    1.认识事物之间的相互联系与相互转化,

    2.用联系的观点看问题。

    六、教学重点与难点:

    重点是对数定义,难点是对数概念的理解。

    七、教学方法:

    讲练结合法八、教学流程:

    问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

    八、教学反思:

    对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

    对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

    高中数学必修一课件


    您的需求是我们最大的关注点所以我们编辑了“高中数学必修一课件”。教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师都要用心的考虑自己的教案课件。教案是教师教学表现的直接体现。希望你喜欢我的分享别忘了把它收藏起来哦!

    高中数学必修一课件 篇1

    一、创设情境,激趣导入

    师:前段时间老师去了黄河附近旅游,祖国山川的美景,让我留连忘返。给我留下印象最深的是黄河边上一个以摆渡为生的老人。他生活在黄河边,工作在黄河边,他那勤劳勇敢的精神,让我难以忘怀。同学们,知道什么是“摆渡”吗?(生看课件,理解“摆渡”一词。)

    (做“你说我猜”的游戏,摆渡船开始状态在南岸。学生说数,教师猜测船在哪一岸?)

    师:其实老师掌握了数的奇偶性的规律。(师板书:数的奇偶性。)这节课我们就来研究数的奇偶性的规律,等你们把它的规律找出来了,你猜得会比我还要准、还要快!

    【设计意图:通过试讲发现:学生虽然已经上5年级了,但对“摆渡”一词还是理解不透。为了解决这个问题,创设了去黄河旅游的情境,使学生在不知不觉中理解了“摆渡”一词的词义,也为继续学习扫清了障碍。从学生熟悉的生活情境中提出数学问题,在学生理解“摆渡”一词后,教师引导学生做“你说我猜”的游戏,学生由此产生疑问。这大大地激发了他们的学习兴趣,为后面的学习探究奠定了坚实的基础。】

    二、观察思考,发现规律

    (同桌研讨:用什么方法可以知道船在哪岸呢?)

    【设计意图:根据学生的年龄特征以及学生的需要,应着重引导学生掌握学习方法,会运用恰当的方法解决数学问题。】

    学生汇报:1.数数的方法。随着学生的回答,师适时演示课件。2.列表方法。师演示列表方法,生完成手中的表。

    让学生观察“画示意图”、“列表”两种解题方法,引导他们从中发现规律。

    学生总结:船摆渡奇数次,船在北岸。船摆渡偶数次,船在南岸。

    师:老师就是用这个规律,很快判断出小船在哪侧岸边。现在你们也想试一试吗?(教师说数,学生猜船在哪侧的岸边。)

    师:你们猜得可真快,如果有人说小船开始状态在南岸,摆渡100次,小船在北岸,这种说法对吗?为什么?(指生说理由。)

    师:通过解决这些问题,观察板书,你有什么发现?

    (学生尝试总结出规律:开始状态在南岸,奇数次与开始状态相反,偶数次与开始状态相同。)

    师:像这样的规律在我们生活中随处可见。下面我们来看翻杯子游戏。请看大屏幕:有一个杯子开始状态是杯口朝上,那么翻动1次杯口朝下,翻动2次杯口朝上,用你自己喜欢的方法,想一想、做一做,翻动10次后,杯口的方向朝哪个地方?19次呢?(生回答并说明理由。)

    师:你还能提出其他问题吗?(生提问题并互相解决。)

    【设计意图:在此环节,只让学生看演示并没有动手去翻杯子。目的在于让学生内化体会,学会运用解决问题的方法。5年级学生不应只停留在动手操作上,更多的应该是训练思维的发展。另外,在此环节设计提问题,目的为下一环节的提问作铺垫。】

    师:生活中有许多这样具有奇偶性规律的事物,你能举几个例子吗?你还能提出类似的数学问题吗?

    【设计意图:在有趣的互动活动中反馈所学知识,让学生明白数学是服务于生活的。学生兴趣盎然,积极参与探究活动。在数学活动中探索数的特征,体验研究方法,提高学生的推理能力。】

    师:我们今天利用数的奇偶解决了身边的许多问题,老师很高兴,所以,想送给你们一些礼物。不过,这些礼物需要你们用智慧才能获得,大家有信心获得礼物吗?

    (师出示两个盒子,让学生观察两个盒子里的数有什么特点。)

    师:从两个盒子里各抽一张卡片,然后把它们加起来,结果是多少,礼物图中相应数字的礼物就是你的。(礼物兑奖表略。)

    (在抽奖过程中学生发现:偶数加奇数都得奇数,奖品都在偶数上,所以怎么抽也抽不到奖品。)

    师:是不是所有的偶数加奇数都得奇数,大家来验证一下。(小组讨论,并交流。)

    (生寻找原因,总结发现:奇数+偶数=奇数。)

    师:老师,现在想让每个前来抽奖的同学都能获得奖品,让你们改变规则,会怎样改?

    (学生积极想办法,得出结论:偶数+偶数=偶数、奇数+奇数=偶数。)

    【设计意图:通过此游戏激发学生的学习兴趣,让学生带着愉悦的心情探索新知,使枯燥的数学课注入了新鲜的活力,调动了学生兴奋的神经,数学探究将事半功倍。】

    三、运用规律,拓展延伸

    (课件出示:不用计算,判断算式的结果是奇数还是偶数?)

    10389+20__11387+131

    268+1024 38946+3405

    学生判断算式的结果是奇数还是偶数?说明理由。

    (课件出示:不用计算,判断算式的结果是奇数还是偶数?)

    3721-20__22280-10238800-345

    学生先判断结果是奇数还是偶数,再根据上面减法算式找出减法中数的奇偶性的变化规律。(小组研讨,寻找规律。)

    学生汇报后,课件出示:

    奇数-奇数=偶数偶数-偶数=偶数

    奇数-偶数=奇数偶数-奇数=奇数

    【设计意图:在已有知识的基础上,根据学生的实际情况,进行拓展。目的在于开发学生的潜能,提高和训练学生的思维能力。】

    高中数学必修一课件 篇2

    1.知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积的求法.

    2.能运用公式求解柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.

    通过学习空间几何体的结构特征,空间几何体的三视图和直观图,了解了空间几何体和平面图形之间的关系,从中反映出一个思想方法,即平面图形和空间几何体的互化,尤其是空间几何问题向平面问题的转化。该部分内容中有些是学生已经熟悉的,在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想——化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用。

    重点:知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积公式。

    难点:会求柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.

    4教学过程 4.1 第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积

    (一)、基础自测:

    1.棱长为a的正方体表面积为__________.

    2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.

    3.长方体、正方体的侧面展开图为__________.

    4.圆柱的侧面展开图为__________.

    5.圆锥的侧面展开图为__________.

    (1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.

    (2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.

    (1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.

    (2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.

    (1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.

    (2)面积:台体的表面积S表=S侧+S上底+S下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.

    例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )

    例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )

    (2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积.

    例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )

    A.B.2 C. D.

    (四).巩固练习:

    1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.

    2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).

    3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )

    (1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.

    (2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.

    (3)求圆柱的侧面积只需利用公式即可求解.

    1.(·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )

    2.(·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )

    3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )

    1第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积

    (一)、基础自测:

    1.棱长为a的正方体表面积为__________.

    2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.

    3.长方体、正方体的侧面展开图为__________.

    4.圆柱的侧面展开图为__________.

    5.圆锥的侧面展开图为__________.

    (1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.

    (2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.

    (1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.

    (2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.

    (1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.

    (2)面积:台体的表面积S表=S侧+S上底+S下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.

    例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )

    例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )

    (2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积.

    例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )

    A.B.2 C. D.

    (四).巩固练习:

    1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.

    2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).

    3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )

    (1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.

    (2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.

    (3)求圆柱的侧面积只需利用公式即可求解.

    1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )

    2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )

    3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )

    高中数学必修一课件 篇3

    讲义1: 空 间 几 何 体

    一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、

    锥体、台体、球体及简单组合体的结构特征,并

    能运用这些特征描述现实生活中简单物体的结

    构.

    二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.

    三、教学难点:柱、锥、台、球的结构特征的概括.

    四、教学过程:

    (一)、新课导入:

    1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.

    (二)、讲授新课:

    1. 教学棱柱、棱锥的结构特征:

    ①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力

    推斜后,仍然有哪些公共特征?

    ②、定义:有两个面互相平行,其余各面都是四边形,且

    每相邻两个四边形的公共边都互相平行,由这些面所围成

    的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).

    结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.

    ③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.

    表示:棱柱ABCDE-A’B’C’D’E’

    ④、讨论:埃及金字塔具有什么几何特征?

    ⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.

    结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?

    ⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?

    ★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都

    是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形

    ★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

    2. 教学圆柱、圆锥的结构特征:

    ① 讨论:圆柱、圆锥如何形成?

    ② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.

    →结合图形认识:底面、轴、侧面、母线、高. → 表示方法 ③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体.

    ④ 观察书P2若干图形,找出相应几何体;

    三、巩固练习:

    1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.

    2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.

    3.正四棱锥的底面积为46cm,侧面等腰三角形面积为6cm,求正四棱锥侧棱.

    (四)、 教学棱台与圆台的结构特征:

    ① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?

    ② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.

    结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得?

    ③ 讨论:棱台、圆台分别具有一些什么几何性质? 22

    ★ 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.

    ★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.

    ④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? (以台体的上底面变化为线索)

    2.教学球体的结构特征:

    ① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→ 球的表示.

    ② 讨论:球有一些什么几何性质?

    ③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)

    3. 教学简单组合体的结构特征:

    ① 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?

    ② 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.

    4. 练习:圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)

    (五)、巩固练习:

    1. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?

    2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高

    3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.

    ★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。

    ●解:考查其截面图,利用平行线的成比例,可得所求为9厘米。

    ★ 例题2:已知三棱台ABC—A′B′C′ 的上、下两底均为正三角形,边长分别为3和6,平行于底面的截面将侧棱分为1:2两部分,求截面的面积。(4)

    ★ 圆台的上、下度面半径分别为6和12,平行于底面的截面分高为2:1两部分,求截面的面积。(100π)

    ▲ 解决台体的平行于底面的截面问题,还台为锥是行之有效的一种方法。

    讲义2、空间几何体的三视图和直视图

    一、教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体. 掌握斜二测画法;能用斜二测

    画法画空间几何体的直观图.

    二、教学重点:画出三视图、识别三视图.

    三、教学难点:识别三视图所表示的空间几何体.

    四、教学过程:

    (一)、新课导入:

    1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?

    2. 引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远

    近高低各不同。不识庐山真面目,只缘身在此山中。” 对

    于我们所学几何体,常用三视图和直观图来画在纸上.

    三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形. 用途:工程建设、机械制造、日常生活.

    (二)、讲授新课:

    1. 教学中心投影与平行投影:

    ① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上

    产生影子。人们将这种自然现象加以的抽象,总结其

    中的规律,提出了投影的方法。

    ② 中心投影:光由一点向外散射形成的投影。其投影的大小随

    物体与投影中心间距离的变化而变化,所以其投影不

    能反映物体的实形.

    ③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.

    →讨论:点、线、三角形在平行投影后的结果.

    2. 教学柱、锥、台、球的三视图:

    ① 定义三视图:正视图(光线从几何体的前面向后面正投影);

    侧视图(从左向右)、俯视图

    ② 讨论:三视图与平面图形的关系? → 画出长方体的三视图,

    并讨论所反应的长、宽、高

    ③ 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自

    左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. → 正视图、侧视图、俯视图

    ③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (

    ④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)

    正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

    俯视图反映了物体左右、前后的`位置关系,即反映了物体的长度和宽度;

    侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

    ⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.(试变化以上的三视图,说出相应几何体的摆放)

    3. 教学简单组合体的三视图:

    ① 画出教材P16 图(2)、(3)、(4)的

    三视图.

    ② 从教材P16思考中三视图,说出几何体.

    4. 练习:

    ① 画出正四棱锥的三视图.

    ④ 画出右图所示几何体的三视图.

    ③ 右图是一个物体的正视图、左视图和俯视图,

    试描述该物体的形状.

    (三)复习巩固

    高中数学必修一课件 篇4

    一. 学习目标

    (1)通过实例体会分布的意义与作用; (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图,频率折线图; (3)通过实例体会频率分布直方图,频率折线图,茎叶图的各自特点,从而恰当的选择上述方法分析样本的分布,准确的作出总体估计。

    二. 学习重点

    三.学习难点

    能通过样本的频率分布估计总体的分布。

    四.学习过程 (一)复习引入

    (1 )统计的核心问题是什么?

    (2 )随机抽样的几种常用方法有哪些?

    (3)通过抽样方法收集数据的目的是什么?

    (二)自学提纲

    1.我们学习了哪些统计图?不同的统计图适合描述什么样的数据?

    2.如何列频率分布表?

    3.如何画频率分布直方图?基本步骤是什么?

    4.频率分布直方图的纵坐标是什么?

    5.频率分布直方图中小长方形的面积表示什么?

    6.频率分布直方图中小长方形的面积之和是多少?

    (三)课前自测

    1.从一堆苹果中任取了20只,并得到了它们的质量(单位:g)数据分布表如下:

    分组 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 频数 1 2 3 10 1 则这堆苹果中,质量不小于120g的苹果数约占苹果总数的__________%. 2.关于频率分布直方图,下列说法正确的是( ) A.直方图的高表示该组上的个体在样本中出现的频率 B.直方图的高表示取某数的频率 C.直方图的高表示该组上的样本中出现的频率与组距的比值 D.直方图的高表示该组上的个体在样本中出现的频数与组距的比值 3.已知样本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么频率为0.2的范围是( ) A、5.5-7.5 B、7.5-9.5 C、9.5-11.5 D、11.5-13.5 (四)探究教学 典例:城市缺水问题(自学教材65页~68页)

    问题1.你认为为了较为合理地确定出这个标准,需要做哪些工作? 2.如何分析数据?根据这些数据你能得出用水量其他信息吗? 知识整理: 1.频率分布的概念: 频率分布: 频数: 频率:

    2.画频率分布直方图的步骤: (1).求极差: (2).决定组距与组数 组距: 组数: (3).将数据分组 (4).列频率分布表 (5).画频率分布直方图 问题: .

    1.月平均用水量在2.5—3之间的频率是多少?

    2.月均用水量最多的在哪个区间?

    3.月均用水量小于4.5 的频率是多少?

    4.小长方形的面积=?

    5.小长方形的面积总和=?

    6.如果希望85%以上居民不超出标准,如何制定标准?

    7.直方图有那些优点和缺点?

    例题讲解: 例1有一个容量为50的样本数据的分组的频数如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出样本的频率分布表; (2)画出频率分布直方图; (3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少? (4)数据小于21.5的百分比是多少?

    3.频率分布折线图、总体密度曲线 问题1:如何得到频率分布折线图 ? 频率分布折线图的概念:

    问题2:在城市缺水问题中将样本容量为100,增至1000,其频率分布直方图的情况会有什么变化?假如增至10000呢?

    总体密度曲线的概念:

    注:用样本分布直方图去估计相应的总体分布时,一般样本容量越大,频率分布直方图就会无限接近总体密度曲线,就越精确地反映了总体的分布规律,即越精确地反映了总体在各个范围内1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。

    4. 茎叶图 茎叶图的概念: 茎叶图的特征:

    小结:.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。

    课堂小结:

    当堂检测:

    1. 一个社会调查机构就某地居民的月收入调查了10000人, 并根据所得数据画了样本的频率分布直方图(如下图)。 为了分析居民的收入与年龄、学历、职业等方面的关系, 要从这10000人中再用分层抽样方法抽出100人作进一步 调查,则 [2500,3000)(元)月收入段应抽取 人。

    2、为了解某校高三学生的视力情况,随机抽查了该校200名高三学生的视力情况,得到频率分布直方图(如图),  由于不慎将部分数据丢失,但知道前四组的频数成等比数 列,后6组的频数成等差数列,设最多一组学生数为a,视 力在4.6到5.0之间的频率为b,则

    a+b= . 3.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则ba=______. 4.为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181

    (1)列出样本的频率分布表。

    (2)画出频率分布直方图。

    (3)画频率分布折线图;

    高中数学必修一课件 篇5

    一、目标认知 学习目标:

    1.理解函数的单调性、奇偶性定义;

    2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.会利用图象和定义判断函数的奇偶性;

    4.掌握利用函数性质在解决有关综合问题方面的应用. 重点、难点:

    1.对于函数单调性的理解;

    2.函数性质的应用.

    二、知识要点梳理 1.函数的单调性

    (1)增函数、减函数的概念

    一般地,设函数f(x)的定义域为A,区间

    如果对于M内的任意两个自变量的值x

    1、x2,当x1

    如果对于M内的任意两个自变量的值x

    1、x2,当x1f(x2),那么就说f(x)在区间M上是减函数.

    如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间.

    要点诠释:

    [1]“任意”和“都”;

    [2]单调区间与定义域的关系----局部性质;

    [3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;

    [4]不能随意合并两个单调区间.

    (2)已知解析式,如何判断一个函数在所给区间上的单调性?

    基本方法:观察图形或依据定义.

    2.函数的奇偶性

    偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数.

    奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数.

    要点诠释:

    [1]奇偶性是整体性质;

    [2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;

    [3]f(-x)=f(x)的等价形式为:,

    f(-x)=-f(x)的等价形式为:;

    [4]由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;

    [5]若f(x)既是奇函数又是偶函数,则必有f(x)=0;

    [6]

    , .

    三、规律方法指导

    1.证明函数单调性的步骤:

    (1)取值.设是

    定义域内一个区间上的任意两个量,且

    ;

    (2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;

    (3)定号.判断差的正负或商与1的大小关系;

    (4)得出结论.

    2.函数单调性的判断方法:

    (1)定义法;

    (2)图象法;

    (3)对于复合函数在区间

    或者

    ,若

    在区间上是单调函数;若

    为增函数;若

    上是单调函数,则

    与与单调性相同(同时为增或同时为减),则单调性相反,则

    为减函数. 3.常见结论:

    (1)若

    (2)若是增函数,则和

    为减函数;若

    是减函数,则

    为增函数;

    均为增(或减)函数,则在的公共定义域上为增(或减) 函数;

    (3)若且为增函数,则函数为增函数,为减函数;

    (4)若奇函数数,且有最小值 且在

    为减函数,则函数为减函数,

    ,则

    为增函数. 在

    是增函是增函数.

    上是增函数,且有最大值

    在;若偶函数是减函数,则

    2 经典例题透析

    类型

    一、函数的单调性的证明

    1.证明函数上的单调性.

    证明:

    总结升华:

    [1]证明函数单调性要求使用定义;

    [2]如何比较两个量的大小?(作差)

    [3]如何判断一个式子的符号?(对差适当变形)

    举一反三:

    【变式1】用定义证明函数

    总结升华:可以用同样的方法证明此函数在

    上是减函数.

    上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

    类型

    二、求函数的单调区间

    2. 判断下列函数的单调区间;

    (1)y=x2-3|x|+2; (2)

    举一反三:

    【变式1】求下列函数的单调区间:

    (1)y=|x+1|; (2)

    总结升华:

    [1]数形结合利用图象判断函数单调区间;

    [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.

    [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.

    类型

    三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)

    3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与

    的大小.

    4. 求下列函数值域:

    (1); 1)x∈[5,10]; 2)x∈(-3,-2)∪(-2,1);

    (2)y=x2-2x+3;

    1)x∈[-1,1]; 2)x∈[-2,2].

    4 举一反三:

    【变式1】已知函数.

    (1)判断函数f(x)的单调区间;

    (2)当x∈[1,3]时,求函数f(x)的值域.

    思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.域.

    ,第二问即是利用单调性求函数值

    5. 已知二次函数f(x)=x2-(a-1)x+5在区间

    上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.

    类型

    四、判断函数的奇偶性

    6. 判断下列函数的奇偶性:

    (1)

    (2)

    (3)f(x)=x2-4|x|+3

    (4)f(x)=|x+3|-|x-3|

    (5)

    (6)

    (7)

    思路点拨:根据函数的奇偶性的定义进行判断.

    举一反三:

    【变式1】判断下列函数的奇偶性:

    (1)

    ;

    (2)f(x)=|x+1|-|x-1|;

    (3)f(x)=x2+x+1;

    (4).

    思路点拨:利用函数奇偶性的定义进行判断.

    举一反三:

    【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.

    类型

    五、函数奇偶性的应用(求值,求解析式,与单调性结合)

    7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).

    8. f(x)是定义在R上的奇函数,且当x

    6 9. 设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)

    类型

    六、综合问题

    10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象重合, 设a>b>0,给出下列不等式,其中成立的是_________.

    ①f(b)-f(-a)>g(a)-g(-b);

    ②f(b)-f(-a)

    ③f(a)-f(-b)>g(b)-g(-a);

    ④f(a)-f(-b)

    (1)11. 求下列函数的值域:

    (2)

    (3)

    的图象与f(x)

    思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t范围.

    解:

    12. 已知函数f(x)=x2-2ax+a2-1.

    (1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;

    (2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.

    7 13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.

    证明:

    14. 判断函数上的单调性,并证明.

    15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.

    解:

    学习成果测评 基础达标

    一、选择题

    1.下面说法正确的选项( )

    A.函数的单调区间就是函数的定义域

    B.函数的多个单调增区间的并集也是其单调增区间

    C.具有奇偶性的函数的定义域定关于原点对称

    D.关于原点对称的图象一定是奇函数的图象

    2.在区间上为增函数的是( )

    A.

    C.

    B.

    D.

    8

    3.已知函数

    A.

    B.

    4.若偶函数在

    上是增函数,则下列关系式中成立的是( )

    C.

    D.

    为偶函数,则

    的值是( )

    A.

    B.

    C. 5.如果奇函数是( )

    A.增函数且最小值是

    C.减函数且最大值是

    6.设是定义在在区间

    D.

    上是增函数且最大值为,那么

    在区间

    B.增函数且最大值是

    D.减函数且最小值是

    上的一个函数,则函数,在上一定是( )

    A.奇函数

    B.偶函数

    C.既是奇函数又是偶函数

    D.非奇非偶函数.

    7.下列函数中,在区间

    上是增函数的是( )

    A.

    B.

    C.

    D.

    8.函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上是减函数,则( )

    A. f(3)+f(4)>0

    B. f(-3)-f(2)

    C. f(-2)+f(-5)

    D. f(4)-f(-1)>0

    二、填空题

    1.设奇函数的定义域为

    ,若当的解是____________.

    时,

    的图象

    如右图,则不等式

    2.函数

    3.已知

    4.若函数____________.

    5.函数____________.

    三、解答题

    的值域是____________. ,则函数的值域是____________.

    是偶函数,则的递减区间是在R上为奇函数,且,则当,

    1.判断一次函数

    2.已知函数(2)在定义域上

    反比例函数,二次函数的单调性.

    的定义域为,且同时满足下列条件:(1)是奇函数;

    单调递减;(3)

    3.利用函数的单调性求函数

    4.已知函数

    ① 当

    求的取值范围.

    的值域;

    . 时,求函数的最大值和最小值;

    在区间

    上是单调函数.

    ② 求实数的取值范围,使

    10 能力提升

    一、选择题

    1.下列判断正确的是( )

    A.函数数

    C.函数函数

    2.若函数

    A.

    C.

    3.函数

    A.

    C.

    4.已知函数围是( )

    A.

    B.

    是奇函数

    B.函数是偶函

    是非奇非偶函数

    D.函数既是奇函数又是偶

    在上是单调函数,则的取值范围是( )

    B.

    D.

    的值域为( )

    B.

    D.

    在区间上是减函数,则实数的取值范

    C.

    D.

    5.下列四个命题:(1)函数增函数;(2)若 函数的递增区间为正确命题的个数是( )

    在时是增函数,与;(4)

    也是增函数,所以

    是;(3)

    轴没有交点,则

    表示相等函数.其中

    A.

    B.

    C.

    D.

    6.定义在R上的偶函数则( )

    A.

    C.

    二、填空题

    1.函数

    2.已知定义在______. 上的奇函数

    ,满足,且在区间上为递增,

    B.

    D.

    的单调递减区间是____________________.

    ,当时,,那么时,

    3.若函数

    4.奇函数

    5.若函数

    三、解答题

    1.判断下列函数的奇偶性 在区间

    在上是奇函数,则的解析式为________.

    上是增函数,在区间__________.

    上的最大值为8,最小值为-1,

    在上是减函数,则的取值范围为__________.

    (1)

    (2)

    2.已知函数且当时,

    的定义域为,且对任意

    ,都有

    上的减函数;(2)函数

    ,恒成立,证明:(1)函数是奇函数.

    3.设函数与

    的定义域是

    是偶函数,

    是奇函数,且

    4.设为实数,函数

    (1)讨论

    ,求和的解析式.

    ,的最小值.

    . 的奇偶性;(2)求综合探究

    1.已知函数,的奇偶性依次为( )

    A.偶函数,奇函数

    B.奇函数,偶函数

    C.偶函数,偶函数

    D.奇函数,奇函数

    2.若是偶函数,其定义域为

    ,且在

    ,则

    上是减函数,则

    的大小关系是( )

    A.>

    B.

    C.

    D.

    3.已知_____.

    ,那么=

    4.若

    在区间上是增函数,则的取值范围是________.

    5.已知函数果对于

    6.当

    7.已知

    的定义域是,且满足,(1)求

    ;(2)解不等式

    ,,如

    . ,都有时,求函数的最小值.

    在区间内有一最大值,求的值.

    8.已知函数的值. .

    的最大值不大于,又当,求 14

    高中数学教学个人总结集合


    你认为的范文应该怎么去写?文档写作让人忧心忡忡,对于提高写作水平范文的地位和作用愈发突出,经过小编长期的筛选和精心编辑我们呈现了最新的“高中数学教学个人总结”。

    高中数学教学个人总结 篇1

    在一年的数学教学中,我深深感到高一是数学学习的一个关键时期,有必要探索高一数学学习障碍形成的因素,以便寻找解决对策。

    一、高一数学学习的障碍有以下几个方面原因

    1、教材的原因。

    高中数学的教学内容与初中相比有一个很大的飞跃。首先,与初中数学相比高中数学的难度一下子增加了许多,正体现了知识发展的加速现象;第二,从内容的表述上看,初中数学比较重视从贴近日常生活实际的方式形象地引入,因此显得比较简单,语言通俗易懂,直观性、趣味性强,结论容易记忆,高中数学则越来越以数学的规范形式进行表述。而且,高一数学一开始触及到集合语言、函数语言、逻辑语言这些内容,因此概念抽象、定理严谨、逻辑性强。教材叙述比较严谨、规范,抽象思维明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了“起点高、难度大和容量多”的特点。再加上高一第一学期的课时紧,故教学进度一般较快,从而增加了教与学的难度,这样,不可避免地造成学生不适应高中数学学习。

    2、教法的原因。

    初中数学教学内容少,知识难度不大,教学要求较低,因而教学进度较慢,对于某些重点、难点,教师可以有充裕的时间反复讲解,多次演练,从而各个击破;但是进入高一以来,教材内涵丰富,教学要求高,教学进度快,知识信息广泛,题目难度加深,知识的重点和难点也不可能象初中那样通过反复强调来排难释疑,且高一教学往往通过设导、设问、设陷和设变,启发引导,开拓思路,然后由学生自己思考去解答,比较注意知识的发生过程,这使得刚入高一的学生不容易适应这种教学方法。

    3、学法原因。

    这里既有方式上的原因:在初中,教师讲得细,类型归纳得全,反复练习,考试时,学生只要记忆概念、公式及例题类型,一般都可以取得好成绩,因此,学生习惯于围着教师转,不需要独立思考和对规律进行归纳总结,学生满足于你讲我听,缺乏学习的主动性。而到了高一,数学学习要求学生勤于思考,善于归纳,总结规律,掌握数学的思想方法,做到举一反三,触类旁通。而刚入学的大部分高一学生往往沿用时的初中学法,致使学习出现困难。也有思维方法上的原因:不少高一学生还是沿袭初中的思维方式,初中数学教学中常把许多问题的解决建立为统一固定模式,如解方程分几步,因式分解先看什么,后看什么,证线段或角相等,三角形全等或相似的模式有哪几种等等。初中生习惯于这种机械、便于操作的思维定势;而高中数学知识要求在思维方式上产生变化:在灵活性、可拓展性、创造性方面提出了高要求。所以高一学生较难在很短时间就适应这种对思维能力要求的突变不能尽快适应新的学习生活。

    二、帮助高一学生消除数学学习障碍的对策

    1、搞好初高中教学衔接。

    教师在教学初始应控制进度,不能求快而增大学习难度,要注意数学知识相经联系的,高中数学知识要涉及初中的内容,很多地方是初中知识的延拓和提高,但不是简单的重复。因此在教学中正确处理好二者的衔接,深入研究两者彼此潜在的联系和区别;做好新旧知识的串联和沟通,为此,在高一教学中必须采用“低起点,小步于”的指导思想,帮助学生温习旧知识,恰当地进行铺垫,以减缓坡度,分解教学过程,分散教学难点,让学生在己有的水平上,通过努力能够理解和掌握知识,并引导学生对知识加以区别和联系,每涉及到新的概念。定理等都要结合初中己学过的知识,以激发学生的兴趣和求知欲。为了使高一学生很快从初中的方法中走出来,作为联结,“直观化”是高一数学起始教学必须遵循的原则,通过实物直观、模型直观和语言直观等直观化的方法,使学生对抽象的概念形成鲜明的表象,减少学生理解过程中的障碍。对于知识含量较大,学生记忆效果不佳的部分内容,教师必要进行梳理,作表格化、类化、链式递进的处理等,使内容易懂易记。这样,不仅可以激发学生的求知欲,而且可以培养他们的创造能力。教师在处理教学内容,引导学生思维时,可以将思维的目标问题分解为若干个循序渐进的环节,让学生的思维水平从形象思维沿着小坡度的台阶向抽象思维步步升华,在处理问题时,一个问题各环节之间、问题与问题之间要注意避免脱节、跳跃,注意铺平道路,减少学生思维发展障碍。这样学生从己有的经验出发,用特殊对象描述一般对象就可以在己有的思维水平基础上有所进步和发展。总之,教师在教学时做到抽象概念形象化,抽象结论具体化,抽象方法通俗化,给学生有一段适应的过渡缓冲期,学生就可以很快形成良好的抽象思维能力,消除学习数学的障碍。

    2、加强学法指导,培养良好的学习习惯。

    良好学习习惯是学好高中数学的重要因素,它包括制定计划、课前复习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习这几个方面,改进学生的学习方法,可以这样进行:引导学生养成认真制定计划的习惯,合理安排时间,从盲目的学习中解放出来,引导学生养成课前预习的习惯,可布置一些思考题和预习作业,保证听课时有针对性,还要引导学生学会听课,要“心到”即注意力高度集中,对知识能触类旁通,多方联想,当学生听到“增函数”,就应该联想起增函数性质图像,函数在单调区间内,函数值随着自变量的增大而增大,图象在单调区间从左到右单调上升趋势。“眼到”即仔细看清老师每一步板演、“手到”即适当做好笔记、“口到”即随时回答老师的提问,以提高听课效率,引导学生养成及时复习的习惯,下课后要反复阅读书本,回顾每堂课上老师所讲内容,查阅有关资料,或向教师同学请教,以强化对基本概念、知识体系的理解和记忆;引导学生养成独立作业的习惯,要独立地分析问题、解决问题,切记有点小问题或习题不会做,就不假思索地请教老师同学;引导学生养成系统复习小结的习惯,将所学新知识融人有关的体系和网络中,以保持知识的完整性。引导学生养成阅读有关报刊和资料问题,以进一步充实大脑,拓展眼界,保持可持续发展的后劲,加强学法指导应富于知识讲解、作业评讲、试卷分析等教学活动中。另外,还可以通过举办讲座介绍学习方法和进行学习目的及学法交流,学生掌握科学的学习方法,学会学习,提高学习效率,变被动为主动,从而不断地消除学习数学的障碍。

    3、培养学生的数学兴趣。

    心理学研究成果表明,推动学生进行学习的内部动力是学习动机,而兴趣即是构建学习动机中最现实、最活跃成分,浓厚的学习兴趣无疑会使人的各种感受尤其是大脑处于最活跃的状态,使感知更清晰、观察更细致、思维更深刻,想象更丰富、记忆更牢固,能够最佳地接受教学信息,不少学生之所以视数学学习为苦役,为畏途,主要原因还在于缺乏对数学的兴趣,因此教师要着力于培养和调动学生学习数学的兴趣。课堂教学的导言,需要教师精心构思,一开头,就能把学生的思维活跃起来使他们对数学学习产生了浓厚的兴趣。还可通过介绍古今中外数学史,数学方面的伟大成就,阐明数学在自然科学和社会科学研究中,尤其在工农业生产、军事、生活等方面的巨大作用,来引导学生对数学的兴趣。在课堂教学中,要针对不同层次的学生进行分层教学,从学生的实际情况出发,兼顾学习有困难的和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能。让他们有所得,发现自己的学习成效,体会探索知识的乐趣,才能使学生学习数学的兴趣得到持续。

    4、学生能力的培养。

    培养学生能力,消除高一学习数学障碍的重要环节,主要有:

    (1)培养学生独立学习的能力;

    (2)培养学生分析问题和解决问题的能力;

    (3)培养学生的准确计算能力;

    (4)培养学生推理和转换能力;

    (5)培养良好的心理素质,发挥非智力因素的作用。

    总之,高一数学的起步教学阶段,分析清楚学生学习数学的障碍,只要教师采取正确的措施,适当地处理教学内容,便能使学生尽快适应高中数学的学习,从而更高效、更顺利地接受新知和发展能力,高中数学教学就能取得成功,为全面推进素质教育作出应有的贡献

    高中数学教学个人总结 篇2

    一眨眼,已经过了18个春秋的教学生涯,回想这18年,经历过困惑,也收获了成功的喜悦,深刻感受到了教学工作责任重大,教学生活的清苦,但是当一批批的学生满怀喜悦迈入高等学府继续深造,我们成功完成了自己的间断性使命的时候,又感觉我们的付出是多么的值得。自从大学毕业走上工作岗位,就一直从事高中数学教育,对这门学科有了深刻的了解和深厚的感情,也对数学教育做了深刻的思考。数学是基础学科,是自然科学,技术科学的基础,并在其他领域中也发挥出越来越大的作用,与计算机技术的结合,能直接为社会创造价值,所以,它是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。但是从初中迈入高中以后,感觉很多同学学习数学,越来越吃力,甚至说初中感觉数学还是优势科目的同学,到了高中以后,数学却成了差科,我深刻思考过这个问题,导致这个的原因是什么?除了学科抽象的特点,我们的教学似乎哪个地方不太对劲。

    一、因材施教。

    多少年以来,我们一直在说这个问题,课程标准明确指出,高中数学教育有基础性,其一:在义务教育以后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养。其二,为学生进一步学习提供必要的数学储备。两个方面很好的阐述了高中数学的教育目标。但是我们在实际操作中,往往就忽略了不同学生在这一科上的差异,只怕少讲一点,

    学生就不会。记得1997年的课改,高一分班后,我带了两个文科班,因为当时也是课改第一批,对教材的难度把握不够,而且当时平时考试文理同卷,这样,对文科生是个严峻的考验。只怕学生学的简单,无法应付考试,就和理科一样去要求,我讲的很累,同学却听得一头雾水,有个别同学甚至有放弃数学的想法,前几次考试下来,一塌糊涂,难的不对能理解,但是感觉基础的题目做的也不好,就无法理解了,静下来细细反思,从教师角度想,是想去拔高同学,结果适得其反。经过深思熟虑以后,决定改变策略,第一是针对班内文科生特点,适当降低难度,抓基础,给同学更多练习的机会。高三复习时,根据内容,适当的抛开教学资料,自己出题,往往要加班到晚上12点多,然后在课堂上进行限时训练,及时点评,后来同学反映,这一招很管用,对同学的促进、触动都很大。其次,针对班内同学参差不齐,又做出了不同要求,在抓大局的同时,做好促优补差工作,具体做法是,每天布置的作业,学差生可以做其中的80%,难的放掉,但是要保证80%要彻底懂了,教师对这部分同学要专门对待,随时抽查,促进其不掉队。同时,对学优生要注意拔高,每天另外出两个综合度比较大的题目,一天后,就将标准答案给出,供同学参考。实践证明,这个办法很管用,全班都有所提高,半个学期过后的高考中,同学都感觉这一科比较理想,两个班在太原市学科排名第6,事实胜于雄辩,我更加坚信了这个做法的可行性,在以后的教学中,我敢于根据实际情况及时调整战略,该放的要放,该抓的要抓紧,后来连续多年带毕业班,高考成绩在太原市排名第4,第3后来根据这个体会写了论文《课堂改革分层教学》。

    二、课堂主体的定位

    数学的逻辑性、抽象性、严谨性,使得有的同学在心理上首先对数学有了畏惧感,想到数学课堂,就是教师占领三尺讲台,在那滔滔不绝的讲,在黑板上有条不紊的推理,学生在下面坐着听,时不时记点笔记,时间长了有同学在打盹,有同学东张西望,感觉数学课堂枯燥且冗长,十分无聊。教师时不时还得叫醒打盹的同学,很生气。实际上,这种教学模式颠倒了课堂的主体与客体,学生才是课堂的主体,教师的主导是以学生的主体为前提的,教师只是帮助学生,促使其发展。所以,要让学生动起来,一般地,给出题目以后,往往留出几分钟时间给同学,让同学先分析解决,而教师则走下讲台,和同学去交流,给同学提供帮助,了解同学解题过程中共性问题及闪光点,在进行点评时,针对性强了,同学听得有兴趣,特别是对典型解法的展示,补充,同学显得很踊跃,同学间的沟通也多了,互相交流,学生教学生,教师省力,同学也能互相促进。经常看到后排的同学都站起来,直着脖子,你都能感受同学那种强烈的求知欲。同科的教师,经常进行互听课,有时候我去听一节数学课,一节课,教师都没有从讲台下来一次,我都感觉昏昏欲睡,盼着尽快下课,想想学生的感受吧!所以让学生去参与课堂教学,让他感受到他才是课堂的主人,他得动起来,教师是来帮助他学习的。这样的课堂,睡觉的同学基本上没有了,更多的是同学间的互相交流,师生间的对话,是我要做什么?我在做什么?怎么做?结合自己的切身体会,我写了论文《创造和谐数学课堂》。

    三、数学思维的培养

    数学是‘思维的体操’,你得教同学做操,而且经常性的让同学去做,学生才能会做操,做好操。数学感觉“难”,是因为它对学生的思维能力要求高,数学又感觉易,那就是“万变不离其宗”,那么,我们的课堂,如果仅仅是在教师的搀扶下,让学生学会做题了,真正让学生独立面对时,他们还是否有能力能“独挡一面”?所以我们的课堂,教给学生的不仅是会做题,更重要的是学会思考,并将这个工作渗透到我们日常教学的每一个环节里面,把这个工作做细了,做到位了,学生成绩不提高都是不可能的。新课程特别指出,我们的教学就是要学生在获取基础知识、基本技能的同时,要学会学习,学会做人,学会生存,学会合作。因为,一个没有自己思想的人是永远不会成功的。所以在日常的教学中,有意识的在思维方面引导,就像前面说的,把练习的时间给学生了,就能集中集体的智慧,倡导一题多解,但是落足点是最优解,是思维挖掘的过程,不要怕在一道题上费得时间多,收获可不仅仅是一个题,所以选题时要特别注意,既要关注基础知识,基本技能,还要发展同学的思维的广度,并注重挖掘一种解法背后的思维过程,能借题发挥,这样就能发挥一道题的所有价值,日积月累,“活中找死”,让学生形成解题套路,同时“死中求活”,提升思维能力。

    四,师生关系

    在课堂上,教师是学生的伙伴,帮助同学改进学习方法,提高学习效率,走出课堂,师生还应该是朋友,很多时候,学生还渴望在课堂教学以外,和教师做朋友,分担学习中的困惑,成长的烦恼,和成功的喜悦。所以,良性的师生关系,应该是亦师亦友,我的手机里面,有很多是自己的学生,他们愿意和我交流,分享一个小小的秘密,有时候也能从自己的角度,给他们提供一些建议。直到毕业很多年了,还能保持联系,时不时开个玩笑,送个祝福,感觉也很温馨。关键的是,通过和同学的交流,了解他们所需,能更好的帮助他们,学生也会因为喜欢你,进而喜欢你所带的课程。

    高中数学教学个人总结 篇3

    新的高考形势下,高三数学怎么去教,学生怎么去学?无论是教师还是学生都感到压力很大,针对这一问题高三数学备课组制定了严密的教学计划,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求。即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展、培养学生的能力,为其自身的进一步发展打下良好的基础。在集体备课中,注重充分发挥各位教师的长处,集体备课前,每位教师都准备一节课,集体备课时,每位教师都进行说课,然后对每位教师的教学目标的制定,重点、难点的突破方法及课后作业的布置等逐一评价。集体备课后,我根据自己班级学生的具体情况进行自我调整和重新精心备课,这样,总体上,集体备课把握住了正确的方向和统一了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教。

    研究《考试说明》中对考试的性质、考试的要求、考试的内容、考试形式及试卷结构各方面的要求,并以此为复习备考的依据,也是复习的指南,做到复习不超纲,同时,从精神实质上领悟《考试说明》,具体说来是:

    (1)细心推敲对考试内容三个不同层次的要求。准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用。这样既明了知识系统的全貌,又知晓了知识体系的主干及重点内容

    (2)仔细剖析对能力的要求和考查的数学思想与教学方法有哪些?有什么要求?明确一般的数学方法,普遍的数学思想及一般的逻辑方法(即通性通法)。

    良好的知识结构是高效应用知识的保证。以课本为主,重新全面梳理知识、方法,注意知识结构的重组与概括,揭示其内在的联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识、方法,而是自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,融会代数、三角、立几、解析几何于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。如面对代数中的“四个二次”:二次三项式,一元二次方程,一元二次不等式,二次函数时,以二次方程为基础,二次函数为主线,通过联系解析几何、三角函数、带参数的不等式等典型重要问题,建构知识,发展能力。

    精心选题,针对性讲评。我们发扬数学组的优良传统,落实“以练为主线”的教学特色。认真抓好每周的“周练”。“每周一练”、既要注重重点基础知识,出“小,巧,活”的题目;又要注意培养学生的能力,出有新意的题目,只要能抓住这两点,就是好题。

    对每次测验和练习,我都坚持认真批改,全面统计。为发挥学生的学习自主性,还要求学生对自己做错了的习题进行改错,提高习题课讲评的针对性与课堂教学的效率性。

    高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。

    虽然高考中选择填空题占分的比例接近50%,高考考它们的方向是基础与全面,为顾及到各层次的考生,高考一定要考基础,考试的知识点覆盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有1-2道难度大的题就足够了。这是很重要的一部分,所以复习时应用花大的精力去抓选择填空题,实际上,实践告诉我们,对于难的选择填空题,遇到时只能依靠学生自己的数学能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我们除了平时的训练,还应该多作选择填空题的专题训练以提高学生的解题技巧。

    高考采用新的模式,学生选修的科类不同,因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求每位教师要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同班级、不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。

    对尖子生时时关注,不断鼓励。对学习上有困难的学生,更要多给一点热爱、多一点鼓励、多一点微笑。关爱学生,激起学习激情。热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。

    心理教育,助长学习成绩。学好数学,除了智力因素以外,还有非智力因素特别是心理方面,一些同学害怕学不好数学,或者以前数学成绩一直不好,现在也一定学不好等,我采用了个别交流学习方法、学习心得等,告诉学生只要做好老师上课讲解的,课后加强领会、总结,一定会有进步的,不断关怀、帮助、指导,学生的积极性提高了,问的问题也多了起来,学习成绩也渐渐提高了。

    高中数学教学个人总结 篇4

    一直以来,我都在不断反思、探索,寻觅一条如何才能使学生学好数学,通向高考成功之路。在一段时期的实践中,我发现学生在学习过程中存在着几点问题:

    1、很多问题都要靠我讲他们听,我讲得多学生做得少,同学们不善于挤时间,独立动手能力比较差,稍微变个题型就不知所措,问其原因,回答不会,做题没思路,一没思路就不想往下做。平时做题少,很多题型没有见过,以致于思维水平还没有达到一定高度,做起题来有困难。

    2、基础知识掌握的不扎实,有些该记忆的公式没有记注该理解的概念没有理解,尤其是立体几何基本问题的求法,复合函数的求导法则等,导致做题时不知该用哪个公式,还得去翻书。

    3、上课听课的效果不好。大部分同学都说,课堂上我讲的东西极大部分能听懂,但一到自已做题就不会。其实这部分同学听懂的只是对某一道题表面上的东西,其实质的东西,它所蕴含的思想方法,没有融入到大脑中,不会举一反三,没有从问题的表面看到本质,思维没有得到升华,课下又不巩固复习,导致讲过的题型仍然不会做。

    4、现在有少数学生比较懒,没有养成良好的学习习惯,有些问题他知道思路后,就只知道说不动手,数学课桌子上不准备草稿纸,以致于每次考试都犯了眼高手低的毛病,得不了高分。你最好的选择!!

    对于以上学生存在的问题,我借用了以下的一些基本办法:

    1、关爱学生,激起学习激-情。我知道热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。

    2、每天除了把资料书的作业做完后还做3道典型的高考题,当天批改,对没有完成作业进行批评教育直到其改进为止。

    3、强化基础知识的记忆,对一些重点知识、一些性质进行不定时的测验,及时检查他们对基础知识的掌握程度,以便因材施教。

    4、提高课堂45分钟效率。课前尽量认真备课,把可能遇见的情况逐一解决,并时常练一些题同时归纳近几年高考的主要题型和所有的知识点。在课堂上我尽量把一些解题的主要思想方法和基本技巧,比如数形结合思想、函数方程的思想、化归与转化思想,选择题中的直接法,排除法,特殊值法,极值法等教给他们,既使他们不能立刻学会,但时间久了,自然而然的就能把方法融入解题当中了。

    5、高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。课下个别辅导,通过辅导能知道哪些知识存在问题,或者是我上课遗漏的问题,都能及时得到解决。

    6、认真分析数学临界内的临界生和临界外的临界生的学习数学的状态。比如说每次测试都能在90分以上的同学,应建议他们课后可做一些适合自己的题目。对一些数学学困生,鼓励他们多问问题,多思考。采用低起点,先享受一下成功,然后不断深入提高,以致达到适合自己学习情况的进步和提高。

    看过的人还:

    高中数学教学个人总结 篇5

    怎样学好高中数学

    一、 高中数学课的设置

    高中数学内容丰富,知识面广泛,将有:《代数》上、下册、《立体几何》和《平面解析几何》四本课本,高一年级学习完《代数》上册和《立体几何》两本书。高二将学习完《代数》下册和《平面解析几何》两本书。一般地,在高一、高二全部学习完高中的所有高中三年的知识内容,高三进行全面复习,高三将有数学“会考”和重要的“高考”。

    二、初中数学与高中数学的差异。

    1、知识差异。

    初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

    2、学习方法的差异。

    (1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

    (2)模仿与创新的区别。

    初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

    3、学生自学能力的差异

    初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

    其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

    4、思维习惯上的差异

    初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

    5、定量与变量的差异

    初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2 bx c=0 (a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

    三、如何学好高中数学

    良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。

    1、 有良好的学习兴趣

    两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

    (1)课前预习,对所学知识产生疑问,产生好奇心。

    (2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

    (3)思考问题注意归纳,挖掘你学习的潜力。

    (4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

    (5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

    2、 建立良好的学习数学习惯。

    习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

    3、 有意识培养自己的各方面能力

    数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

    四、其它注意事项

    1、注意化归转化思想学习。

    人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

    2、学会数学教材的数学思想方法。

    数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。

    课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是 的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。

    五、学数学的几个建议。

    1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。

    2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

    3、记忆数学规律和数学小结论。

    4、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。

    5、争做数学课外题,加大自学力度。

    6、反复巩固,消灭前学后忘。

    7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类

    高中数学学习方法谈

    进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。

    一、 高中数学与初中数学特点的变化

    1、数学语言在抽象程度上突变

    初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。

    2、思维方法向理性层次跃迁

    高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

    3、知识内容的整体数量剧增

    高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。

    4、知识的独立性大

    初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。

    二、如何学好高中数学

    1、养成良好的学习数学习惯。

    建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

    2、及时了解、掌握常用的数学思想和方法

    学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

    解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。

    3、逐步形成 “以我为主”的学习模式

    数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

    4、针对自己的学习情况,采取一些具体的措施,记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再

    犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

    经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

    及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

    对新初三学生来说,学好数学,首先要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。

    其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

    在新学期要上好每一节课,数学课有知识的发生和形成的概念课,有解题思路探索和规律总结的习题课,有数学思想方法提炼和联系实际的复习课。要上好这些课来学会数学知识,掌握学习数学的方法。

    概念课

    要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

    习题课

    要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

    复习课

    在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。

    最后,要有意识地培养好自己个人的心理素质,全面系统地进行心理训练,要有决心、信心、恒心,更要有一颗平常心。

    高三复习计划

    把高三的复习计划分为三大阶段。每个阶段有不同的任务、不同的目标和不同的学习方法。

    第一阶段,是整个高三第一学期时间。这个阶段时间大约五个月,约占整个高三复习的一半时间左右。这个阶段可以称为基础复习阶段。学校里每一个科目都在逐册逐章节地进行复习,我们自己也应该和学校的教师步伐一致,进行各科的细致复习。我们要充分利用这五个月,把每一科在高考范围内的每个知识点都逐章逐节、逐篇逐段,甚至农逐句地复习到,应做到毫无遗漏。这个阶段,复习中切忌急躁、浮躁,要知道“万丈高楼增地起”,只有这时候循序渐进、查缺被漏、巩固基础,才能在高考中取得好成绩;只有这时候把边边沿沿、枝枝杈杈的地方都复习到,才能在今后更多的时间去攻克一些综合性、高难度的题目。

    这个阶段,还有一项重要任务,这就是高三第一学期的期末考试。这次考试十分重要,它既可以检验自己一学期来的复习效果,又可以查找自己急待解决的问题漏洞,还可以向你提出新的挑战。因此,我们把它戏称为一次“小高考”。这次考试还有一层特殊的涵义:它是高校招生中保送、推荐、评选市级三好学生的重要依据。我这里,特别提醒学习较好的高三同学,要格外重视这次考试。

    第二阶段从寒假至第一次模拟考试前,时间大约四个月。这个阶段是复习工作中的最宝贵的时期,堪称复习的“黄金期”。之所以这样说,是因为这个时期复习任务最重,也最应该达到高效率的复习。也可以将这个阶段称为全面复习阶段。 我们的任务是把前一个阶段中较为零乱、繁杂的知识系统化、条理化,找到每科中的一条宏观的线索,提纲挈领,全面复习。这个阶段的复习,直接目的就是第一次模拟考试。第一次模拟教育是高考前最重要的一次学习检验和阅兵,是你选报志愿的重要依据。一模成功,可以使自己信心倍增,但不要沾沾自喜;一模受挫,也不要恢心丧气,妄自菲薄。应该为一模恰当定位,在战略上藐视它,在战术上重视它。

    第三阶段从一模结束至高考前,时间大约两个月。这是高考前最后的一段复习时间,也可以称为综合复习阶段。随着高考的日益迫近,有些同学可能心理压力会越来越重。因此,这个时期应当以卸包袱为一个重要任务。要善于调节自己的学习和生活节奏,放松一下绷得紧紧的神经。古人云:“文武之道,一张一弛”,在此时,第天不必复习得太晚,要赶快调整高三一年紧张复习中形成的不当的生物钟,以保证充沛的精力。另外,这个时期不必再做过多的过量的习题,更不应死抠难题和偏题,应该做少而精的练习。比如,花些工夫研究研究历年高考的题目,因为这些题目既是经过千锤百炼的精品,又是高考命题人意志的直接体现,可谓珠玑。在复习中,我们中做题应先易后难,选择题拿不准也不要放弃,选一个最可能的空填上等等。

    以上我介绍的是我在高三时的复习计划和体会。我想,我们在复习中,更重要的是从一点一滴做起。“千里之行,始于足下”,我们也应该重视日常每天每周的复习安排。

    在高三一年的复习中,我们应该注意合理安排每一天的复习时间。在紧张的复习过程中,每天可供我们自己利用的时间并不多,其中最长的一段时间大约就是每天晚饭后至睡觉前的三个多小时时间。能否利用好这段时间,是高三复习成败的关键。在这方面,我的体会是不要在一个晚上把五科全复习到,这样做只会不分主次、自找麻烦。试想,仅仅是不足四小时的短短的一段宝贵时间,怎么能经得起五科的轮番轰炸呢?因此,我建议大家在一个晚上专攻一门到两门,抓住重点,集中精力,以争取达到较高的学习效率。我在高三每天晚上复习时,周一定为数学日,周二定为英语日,周三定为物理日,周四定为语文日,周五定为化学日,每晚集中精力复习一门功课,长期坚持,效果不错。

    很多人在考试时总考不出自己的实际水平,拿不到理想的分数,究其原因,就是心理素质不过硬,考试时过于紧张的缘故,还有就是把考试的分数看得太重,所以才会导致考试失利,你要学会换一种方式来考虑问题,你要学会调整自己的心态,人们常说,考试考得三分是水平,七分是心理,过于地追求往往就会失去,就是这个缘故;不要把分数看得太重,即把考试当成一般的作业,理清自己的思路,认真对付每一道题,你就一定会考出好成绩的;你要学会超越自我,这句话的意思就是,心里不要总想着分数、总想着名次;只要我这次考试的成绩比我上一次考试的成绩有所提高,哪怕是只高一分,那我也是超越了自我;这也就是说,不与别人比成绩,就与自己比,这样你的心态就会平和许多,就会感到没有那么大的压力,学习与考试时就会感到轻松自如的;你试着按照这种方式来调整自己,你就会发现,在不经意中,你的成绩就会提高许多;

    这就是我的经验之谈,妈妈教给我的道理,使我顺利地度过了中学阶段,也使我的成绩从高一班上的30多名到高三时就进入了年级的前10名,并且没有感到丝毫的压力,学得很轻松自如,你不妨也试一试,但愿我的经验能使你的压力有所减轻、成绩有所提高,那我也就感到欣慰了;

    最后祝你学习进步!

    高中数学教学个人总结 篇6


     高中数学课后教学反思篇一

    在教学活动中,离不开学生活动,因此,教学反思中,对学生在教学中的参与活动,应该深刻反思,不能沿用满堂灌的教学方式,而应该逐步展开以学生参与为主的教学活动,作好记录,课后就教学效果进行反思,哪些活动采用的得当,哪些需要改进,教师一定要结合教学目的,以及学生们的切身感受深刻思考,及时听取学生们的意见,这是非常宝贵的声音。我认为,教学反思不只是停留在教师的层面,更应该多吸收学生的反馈意见,因为,要看效果,最终还得落实到学生身上,学生的声音,是最真实的声音。

    高中数学重在具备良好的数学思维,因而,在教学反思中,应该重点思考如何在教学中使学生具备数学思维。学生中只见树木不见森林的是大多数,头脑里容下的是过多的题,这些题显得杂乱无章,经过反思,我是这让学生把握数学题、知识点的规律,将其科学的分类,这样,知识有了条理,学习效率自然自然就上去了,教师的指导也就有了明确目标。

     高中数学课后教学反思篇二

    随着社会经济时代的迅速发展,普通高中新课改主动适应了时代的需要,最终反映在高中生的素质发展上,因而,“以人为本”是高中新课改的根本理念,通过这两个月在工作实践中的学习,深深地感知,高中新课程要求尊重高中生的人生历程的发展需要,尊重他们作为人的人格和尊严,尊重他们的个体差异和个性发展的需要,从课程设计到课程实施都应体现选择性和多样性。

    高中生面对的最根本的问题是人生道路的选择问题,那么高中课程的设计与实施突出引导学生思考并规划人生,形成合理的人生观,具有基本的职业意识和创新意识。比九年义务教育课程更关注学生深层次的生活需要。

    首先,谋求课程的基础性、多样化和选择性的统一。其次,将学术性课程与学生的经验和职业发展有机结合。第三,适应时代要求,增设新的课程。除了在传统的学科课程中引进与课程目标相匹配的、鲜活的、有时代感的课程内容外,适时增加新的课程领域或门类。第四,倡导学生自定学习计划。那么每一学生在入学的时候,根据自己的兴趣、爱好、特点以及学校所提供的课程信息,制定个人的学习计划。随着学习进程的深入,学生可以根据自己的内部和外部的情景变化,不断调整所形成的计划,以尽可能适应自己的需要和特点。第五,实行学生选课指导制度,为了帮助学生形成合理的学习计划。最后,实行学分制管理。总之,都强调对高中学生公民的责任感,个性发展与适应时代要求的基本能力、创造力与批判性的思维、交流、合作与团队精神和信息素养的培养,并要求学生具有国际视野。教材的设计更注重学生学会学习、学会合作、学会研究,充分发挥自己的独特潜能与创造性。我们知道每一个学生因为生活环境,智力发展,性格特点等多种原因会造成,每个人对知识的理解和接受有差异,表现出学习的效果不尽相同。这种现象是切实存在的,而教师应充分尊重学生的这种差异,对每个学生提出合理的要求,使每个学生都学有价值的数学,不同的人在数学上获得不同的发展。新课程通过问题的解决进行学习是信息技术教学的主要途径之一,可以激发学生的学习动机,发展学生的思维能力、想象力以及自我反思与监控能力,其次贴近学生的日常的学习和生活实际。还要引导学生通过交流,评价和反思问题解决问题的各个环节以及效果,在“做中学”、“学中做”的过程中提升他们的信息素养。

    课程改革前途光明,但眼下困难与阻力也不容忽视。高中与初中的数学衔接问题,高考的问题;课程标准与教材中的问题;市场上大量充斥的滥编滥印的教辅教材问题;教师的素质水平和对课程改革的认识以及培训的一些问题??特别是课改后课堂上又要求让学生通过自己的探知和研究获取知识,老师不能直接告知,要重视学生探求的过程。这就需要耗费大量的时间,虽然这对提高学生的能力大有好处,但是课改后数学实际任务加重但课时又明显减少,要如何协调两者之间的矛盾,目前是我们很多老师都很困惑的一个问题。同时高考将会如何考,传统的重点,新增的内容,在高考中将如何体现,如何协调的存在,如何既要考到学生对知识点的掌握又要考到学生的能力,改革要如何推行并坚持下去,始终还是要围绕着高考这个指挥棒进行。

    新课程想要达到理想的状态,我认为应该从以下几个方面加强自身的修养:

    1 加强业务学习,提高业务能力,坚持自学不懈的精神,努力提高自身的业务能力,不断提高利用现代化信息技术继续学习的能力和水平,掌握信息技术应用的基础和操作技能,学会上网学习,学会利用多媒体课件演示等现代化教学手段,为提高教学质量服务。

    2 认真学习、研究教学大纲和新教材,领会大纲,教材的编写意图,把握教材内容、编写特点,要求及教学方向,有效、合理、创造性的指导新教材的教学,我们每一个人都要积极的从新课程中寻找“自我”寻找新课程对“自我”的意义,并主动地把“自我”融入到新课程中,敢于承担责任,善于解决问题。

    3 教学中,努力实现三个转变:

    (1)教师“学生观”的转变。做到用学生的心看待一切,不歧视学生,多赏识学生,达到班上“没有差生,只有差异”。

    (2)教师角色的转变。教学过程中,老师是学生的朋友,是学习活动的组织者、引导着, 开题报告而不是统治者、长官。教学过程是师生平等对话的过程,是师生双方交往共同发展的互动过程。

    (3)教学方式的转变。教师课堂上教学过程是师生互动过程,学生学习过程不仅要用脑子想而且要用眼睛看,用耳朵听,用嘴说,

    用手操作。即用自己的亲身经历、用自己的心灵去感悟,教师要积极参与学生的学习过程。学生才能无拘无束的置身于其中,尝试学习,享受学习的乐趣。课堂才能焕发无限的生命力,学生思维活跃,热情高涨,真正成为了学习的主人、课堂的主角。

    (4)在教学过程中做到:给学生一些权利,让他们自己去选择。给学生一些机会,让他们自己去体验。给学生一点困难,让他们自己去解决。给学生一个问题,让他们自己去找答案。给学生一片空间,让他们自己向前走。

    总之,新课程改革势在必行,作为一名高中数学教师,一定要把握好尺度,与时俱进, 必须要更新教育观念。为了课程改革的成功,我们每一个数学教师都要行动起来,都应关注,都应思考,都应探索,都应付出。为了课程改革的成功,让我们共同努力,在新课程的土地上辛勤耕耘。让我们共同努力迎接新课程,实践新课程,直面新课程,为数学教育事业的发展贡献智慧与力量.

     高中数学课后教学反思篇三

    2______年8月24-25日我们所有高一教师参加了这次的课改培训,为即将开始的教学工作做了初步的准备。新课改是一种新理念,新思想,这对我来说是一个不小的挑战,我必须进行各种尝试,在不断的探索中成长。通过这几天的培训,我对新课程有了初步的了解,下面就此谈几点体会:

    一、整体把握

    新课改要求教师能够做到整体把握课程目标,整体把握数学的素养和能力,整体理解课程内容(如:课程主线和知识结构)等等。作为青年教师,要做到这几点确实有很大的难度,但经过培训,我或多或少也有一定的收获,陈老师的讲解,两位备课组长的经验传授,使我心里开朗了许多。

    做到整体把握虽说难度大,但对学生来讲,教师能不能做到整体把握对他们影响深远。因为在整体把握中体现着教师的知识水平和素养能力,只有能做到整体把握的老师,讲起课来才能做到有条有理,思路清晰,学生也才能听得津津有味。因此,我一定会努力进入状态,做到整体把握!

    二、学生的主体地位

    在新课程的实施过程中,学生主体地位的确立是通过教师的主导作用来实行的,教学中教师的激发作用、启迪作用、组织作用和熏陶作用是学生主动学习的重要前提,因此教师的角色转换是关键。

    学生要成为学习的主人,教师必须从“主导者”成为“组织者”、“引导者”。数学知识不是独立于学生之外的“外来物”而是在学生熟悉的事物和情境之中,与学生已有的知识和生活经验相关联的内容。因此,在数学教学中,教师一定要注意贴近学生的生活实际,适当引入他们喜欢的活动,如讲故事、做游戏、表演等,使他们产生乐学、好学的动力,从而增强学生探究的欲望,培养起他们学习数学的兴趣。

    三、激发学生的探究性、创新性思维

    新课改后,增加了很多探究性的题型,这一反传统教学中,教师与学生面对面的问答或对话形式,教师牵着学生鼻子走,而要把学习的主动权交还于学生。在探究式教学中,要鼓励学生的集体参与,并非只有好学生才有能力开展探究,应该给每个学生参与探究的机会。尤其是那些在班级或小组中极少发言的学生,应多给予他们特别的关照和积极的鼓励,使他们有机会、有信心参与到探究中来。通过探究,可利用学生集思广益、思维互补、思路开朗、分析透彻、各抒己见的特点,使获得的概念更清楚、结论更准确。

    从学生和教学内容的实际出发,创造性地组织数学智力活动,为学生创设一种动手操作、独立观察、引起思考的实际活动,激起学生自主地钻研和创新,经过群体的交流,完成对信息的加工过程,使知识变成学生自己的精神财富,让学生在真实思考和创新的体验中构建知识,学习方法,增长智慧。

    要做到这一点,教师也必须转变角色,真正从权威的讲授者变为与学生共同探讨问题的好朋友和引导者。要解决这个问题,应彻底改变传统的课堂教学结构,建立起一套新的课堂教学结构。例如,过去上复习课,老师系统整理知识,学生听完后,完成一些相应的习题,总结一下,就算是复习告终了。现在我们则将知识的脉络由学生分小组独立整理,练习题在教师的引导下互相设计,交流练习。而且在交流过程中,还允许同学们提出问题,进行答辩,关键的环节还要能举例说明,再加上巧妙的练习设计,使复习课上出情趣,上出深度。让学生们在学习潜力和学习方法上有出色表现。

    此外,要积极营造自然和谐的学习氛围,让学生敞开思想参与学习活动。学生乐意在游戏和活动中学知识,有着强烈的求知欲望。我提倡办好三件事:一是保证学生在探讨问题时,有宽松的气氛,必要时,可以下位,可以重组小组,甚至大声争辩;二是理解学生,允许学生用自然的语言表达思想,交流意见;三是鼓励学生大胆提出问题,发表与众不同的见解。这样就可以大大解放了学生,也大大解放了老师,课堂上呈现出一种积极的、向上的、自然的、和谐的新景象。

    总之,这次培训让我意识到肩上的担子很重,我必须努力提高自身的素养和能力,进一步拓宽自己的知识面 ,为教学工作的顺利进行打下坚实的基础!

    高中数学教学个人总结 篇7

    传统的数学教学注重教师的教,而学生则是被动接受、重复记忆、题海训练、强化储存,根本没有学生主体活动过程,新课程则提倡培养学生独立思考能力、发现问题与解决问题的能力以及探究式学习的习惯,把关注学生的发展作为新课程的核心理念,新课程下的教师只不过是学生自我发展的引导者和促进者,因此一个称职的初中数学教师,要以“课标”精神为指导,要在教学中不断反思,不断学习,与时共进。我校“新课程课堂教学改革”实施两年来,不断的学习、实践、总结、反思。教师的教学行为应有以下的转变:

    (1)、由过去重“教”转变为现在重“学”;

    (2)、由过去重“结果”转变为现在重“过程”;

    (3)、由过去重“问答”转变为现在重“对话”;

    (4)由过去重“讲解”转变为现在重“引导”;

    (5)、由过去重“程式化”转变为现在重“个性化”;

    (6)由过去重“强记”转变为现在技能的拓展。总而言之,评价教师课堂教学行为是否改变,不仅要看教师讲课的水平,更重要的是要仔细考察学生学会和会学的程度以及学生的精神状态。到本学期期中考后,我校制定出了自己新课改的实施方案。

    以学习“洋思”、“杜朗口”模式为课改突破口,坚持正确的办学方向,以全面提高教育质量,树立良好学校形象为目标,结合学校实际,实现办学水平的发展,最终走出和平中学特色的课程教学改革之路。

    以“课堂教学”为教研核心,贯彻落实新课改理念。相信教师的教学智慧不在于自己使劲教,而在于引导学生勤奋学,每个学生都有可发展的潜力,只是表现的领域不同而已。对课堂教学要“目标明确、教程简明、指令清晰、训练到位、调动有效、习惯养成”。坚持精讲精炼、分段讲授、讲练结合、五官并用、师生互动、生生互助等,科学地、创造性地、灵活多变地落实这一教学原则;坚持凡是学生可以自己完成的事,教师绝不替代;凡是属于学生自己的时间,教师绝不占用。防止对任何教学主张的简单化、一刀切地理解与套用。无论是平时教学还是复习课,学生基础知识、基本技能、基本方法、基本习惯、基本情感五基的落实,教师要有爱心、耐心与信心,课堂要学会微笑、学会激励、学会宽容。教师都要明确课堂教学的目的是:从不会到会,从少数会到多数会,从多数会到全部会,从口头会到笔头会,从学会到会学。要让教学过程变成“调动课堂、评价课堂、激励课堂、唤醒课堂”的过程,让学生充分地去表现课堂、体验课堂、感悟课堂、享受课堂,让课堂成为不仅是师生增长智慧的地方,更是师生共同感悟人生、享受生活的场所。

    一、主要实施的教学模式:“自主合作,分层互助”教学模式。

    对学生进行因材施教、分层测试、分层评价,使不同层次的学生都能建立信心,看到希望,主动学习,形成自我发展的能力,以实现让优等生“吃得饱”、中等生“吃得好”、学困生“吃得了”的教学要求,从而大面积提高班级各层次学生的学习成绩。

    操作流程:课前复习 ——展示学习任务(目标、要求),指定自学时间———课堂互动(学生自学,教师指导)——课堂展示与评价——学生讨论、更正,教师点拨———当堂训练

    课堂教学操作流程的六个步骤可以灵活处理、灵活应用。另外数学组每周进行教学反思一次。每位数学教师都要有教学反思内容。反思要到位。具体的反思内容如:

    (1)、目标明确、重点突出吗?

    (2)、结构科学、训练落实吗?

    (3)、帮助有效、评价到位吗?

    (4)、学生有多少思维空间?

    (5)、学生的课堂表现还存在那些不足?

    (6)、本节课有哪些创新?

    (7)、多数学生能够适应吗?

    (8)、你是否指导、分析过课堂中不认真学习的学生?

    (9)课堂中那些教学环节还落实不到位?。

    二、主要措施:

    1、课堂实施分层教学。年级组长、班主任及任课教师根据班级学生实际情况对学生进行分组,每组约4—6人好、中、差搭配,实行小组长负责制,下达学困生辅导指标,体现“学科小先生”、“兵教兵”活动,实现团组竞争、组内合作、共同提高的学习意识。对学生进行因材施教、分层测试、分层评价,使不同层次的学生都能建立信心,看到希望,主动学习,形成自我发展的能力,以实现让优等生“吃得饱”、中等生“吃得好”、学困生“吃得了”的教学要求,从而大面积提高班级各层次学生的学习成绩。

    2、以教研组、年级组为单位深入学习课改模式和分层教学方法,并在课堂教学中加以尝试。

    3、落实和平中学课堂教学“四项制度”改革。即:课堂开放制度、转课制度、教学反思制度、过关制度

    课堂开放制度:即允许全校教师(含外校参观教师)进入任何一个课堂听课,可整节听完,也可听其中一部分。各班教室前后门必须能够打开。

    转课制度:即学校成立转课组,每个星期转课不少于3节,打出综合评分,与学期末教学常规考核挂钩。

    教学反思制度:即由教研组长组织,每教研组一星期开教学反思会一次,对教学中的优点或缺点给予及时学习和总结。时间各组确定安排上报教务考勤。

    过关制度:即根据转课对教师课堂教学随机听课打分或评定等级,对教师进行综合评价,最后算出平均分,60分以下或“差”的不过关。

    目前学校正在严格执行学校的各项课改制度,课堂教学改革正在向正轨化步入。

    三、下阶段计划与措施

    1、存在的问题与不足:

    少部分教师教学观念,教学思想和教学行为仍被传统方式所束缚,导致少部分教师课改实验工作开展的不够彻底。过多地进行了知识性的传授,对于过程目标和情感态度价值观关注的程度不够。

    学生的学习热情培养不够,主动学习的意识在多数同学身上有所显现,有少部分学生在学习上仍处于被动接受的状态。

    2、下一步计划与措施

    (1)对于课堂教学改革的真正内涵还要进一步加深理解,并通过思想认识的提升进一步转变自己的教学行为,对课程改革工作要充满信心,坚定信念。

    (2)对“自主合作,分层互助”教学模式开展再学习活动,站在更高的层面上去解读洋思教学模式的精髓,以便其更好地指导教师的教学思想和教学行为。

    (3)也要合理地、创造性地发展“自主合作,分层互助”教学模式,将它与本校学生实际情况紧密相结合。找到真正适合我校的教学模式”

    总之,尽管我们的课改实施实践时间不长,但取得的绩效是显著和令人满意的。缘于诸多因素的影响与制约,我校的学科课堂教学改革活动还存在着这样那样的不足甚至缺憾,但我们有信心、有决心,依赖上级坚强的领导和强有力的引领,多借鉴、多实践、多反思,一定会把我校的课堂教学改革引向深入、搞得更好。

    高中数学教学个人总结 篇8

    繁忙而有序的一学期教学工作即将结束,回顾一学期的工作,在收获与缺憾中追求完美,在经验与教训中追求完善,在得与失中走向更加成熟。

    我在本学期深入学习教学理念,根据每一个单元教学内容和学生的实际情况,我进行了不同模式的摸索,时时刻刻都是用新教学理念武装自己,彻底更新观念,打破常规教学,走新路。在学校和本组的集体学习中,对新教学有了全面的了解,做到了与时俱进,更新观念,切实做到了在实际教学中更新观念,走出一条有自己特色的教学之路。

    数学概念是数学基础知识,是学生必须牢固而又熟练掌握的内容之一。它也是高考数学科所重点考查的重点内容。对于重要的数学概念,考生尤其需要正确理解和熟练掌握,达到运用自如的程度。从这几年的职业高考来看,有相当多的考生对掌握不牢,对一些概念内容的理解只浮于表面,甚至残缺不全,因而在解

    题中往往无从下手或者导致各种错误。

    数学中的定理、公式是数学的基础知识,学生必须认真对待,熟练掌握。对于重要定理、重要公式尤其如此。要使学生懂得正确理解,熟练掌握定理、公式,并能正确灵活运用定理公式去解题,往往会化繁为间、化难为易,达到事半功倍的目的。

    运算的快速、准确是职业高考的考查的内容之一,同时见于职业班学生计算能力差,更应该多练习,在选好的练习题的前提之下,要多练习,提高运算能力、以练取胜。

    基于上述见解,下面简单谈谈我的具体做法。讲到方法,这是一个很具体很灵活懂得问题,它对不同基础的学生而采用的手段。我的教学特点是“高、难、细

    高:用职业高考的高度、高考的题目所达到的水平进行教学。每讲一个概念、定理、公式,每讲一道例题或布置作业,都站在或尽量站在高考的高度来要求。难:教学的起点较高,例题和布置练习,不论低、中、高档题,都要求有一定思考性,即有一定的难度。力求多选一些重点突出难点适当,知识覆盖较大的题目。

    细:要做到高与难,细就显得尤其重要和突出。教学要扎实,狠抓三基。要不惜花力气教好每个概念、定理、公式。掌握每节知识的内在联系和各种题型的基本解法,对重要概念、定理、公式一定要弄懂其内涵和外延,只有细,才可能达到高和难。

    总结一学期的教学工作,有收获的快乐,也有不足的缺憾,本人力争在今后的工作中继续努力,取他人之长补己之短,力求在本职工作中日臻完善,更上一层楼。

    高中数学教学个人总结 篇9

    “函数的单调性”问题既是函数概念的延续与拓展,又是后续指数函数、对数函数、三角函数研究的基础,在本节课的讲解中,还渗透了探索发现、数形结合等数学思想方法。为此我们从熟悉的实际生活出发,结合熟悉的一次函数、二次函数的图象,为学生学习函数的单调性创设教学情境,拉近与未知知识的距离,调动积极性,增加参与度。在学生自主探索的过程中,教师可给予一定的引导,如设置一些问题:指出函数图象变化的趋势,数学当中如何描述,如何用符号化的数学语言来刻画,如何给出严格的定义,定义中哪些是值得注意和重视的,怎样利用定义来证明函数的单调性等等,来引导学生更好、更深刻、更准确的理解新的知识。当然还必须结合一些典型例题来巩固新知,尤其是一些注意点,及时纠正才能不致错误根深蒂固。

    函数的单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观感知到数学符号语言描述的一个过程,充分反映了数学的理性精神,其中还结合了数学思想方法的渗透。这在我们的教学过程中需要长期坚持。

    参加了高中数学“函数单调性”教学研讨的网络学习后,有以下几点想法与思考,流露出来与同行们一起探讨:

    (1)在教学过程中学生经常会有不同见解产生、有新问题“萌生”、甚至有错误频繁出现,往往与教师的教学预设合不上拍,让教师出乎意料.然而在这些课堂现象中恰恰存在着生长性,潜藏着稍纵即逝的生成点,是值得引起重视的宝贵教学资源.现代教学理论认为:“课堂教学不在于教师讲得如何精彩,重要的'是能适时激起学生的认知冲突,制造一种‘不和谐’,通过互动生成教学过程.”这种互动会让教师、学生双方都面临知识的、智慧的挑战,从而更能促进教与学的有效相长。

    (2)当预设与生成有出入时,教师不能粗暴地忽略学生的“草根”观念.有时若用“这个问题我们下课再讨论”等言语来搪塞学生将会失去难得宝贵的一次探索机会.认真倾听学生的发言,为课堂营造一种宽松氛围,用心来呵护生成、善待意外,是师者修养之一.只有当你静静蹲下来时,你才能走进孩子的世界,知道在他们的高度能看见什么,才能和孩子有效地沟通和交流.在平时的教学活动中,我们却很少注意到这点.(3)课堂是学生学习、成长的第一摇篮,在课堂教学中采取什么样的教学思想指导课堂教学,对学生数学素养的形成起着至关重要的作用.只有关注课堂生成、正确处理课堂生成,为学生适时搭建探索的平台,课堂教学才能焕发生命力、绽放思维的火花。

    高中数学教学个人总结 篇10

    教育的基本任务是教给学生思维方法,培养学生的思维习惯,影响学生的思维方式。数学教学的重点,加强和改进思维的心理训练,以提高学生的智力,培养思维良好的品质,使学生从“知识型”到“智力型”的转换。只有创造性思维能力,学生不仅学会教师传授知识,实践自己的思想中学到的知识,教师不教,或者甚至创造新的知识,这样的学生才会青出于蓝而胜于蓝的。那么,如何培养学生良好的思维习惯呢?

    一、强调正确、快速的运算能力

    培养学生良好的思维敏捷性在计算教学中,注重培养学生快速计算能力,是发展学生思维的敏捷。在一定的学习“正常”的速度计算每天约五分钟,听取操作人员的培训,使学生养成认真看一个适度的问题,准确地计算出检查主动,积极订正错题的基础上“强化“培训的做法是,让学生计算思想的速度。通常的计算或运动的做法,但也抓住适当的机会,鼓励学生使用他们的大脑,合理,巧妙,快速使用操作法,培养学生良好的思维的一种有效形式。

    二、要加强“一题多说”,“一题多变”、一题多解,培养学生思维灵活性

    在一般情况下,发散思维能力,解决了开放式的想法,可以产生更多的思考的出发点,解决问题的方法是更多,更灵活,相反,这个想法是比较狭窄,思维的起点往往是缺乏灵活性,解决问题的方式方法往往比刚性,而不是“多解”。在他们的日常教学中,通过一个标题说,一个问题的多种解决方案,“标题的变化,引导学生发散和灵活的思维。

    1.一题多说,让学生从不同的角度来描述。这让学生们学会理解更深刻,更灵活的思维。

    例如:32÷8=?“这个公式可以描述为:?①32人分为八,各是多少②32,其中包含几个8③32除以8,企业是多少④8除32,业务是多少⑤?股息是32,除数是8,业务是多少?⑥32是8几倍?2.“一题多解”供学生使用各种不同的方式来回答。这可以开阔学生们学习掌握思想,培养学生的发散思维和灵活性。

    例如:“光华小学有900名学生,其中女孩是男孩的2/3,男,女学生的人数分别为何?”这个问题有多种解决方案:

    (1)女生人数男生的数量作为单位“1”900÷(1+2/3)=540(人)......男生人数900-540=360(人)......

    (2)女学生的数量作为单位“1”900÷(1+3/2)=360(人)...女生人数,900-360=540(人)...男孩的数量

    作为单位“1”900×(3)所有学生的女生人数3/5=540(人)...男生人数900×2/5=360(人)......

    3.一题多变,第一个题为基本问题,然后改变条件或问题,使其成为新的课题。因此,发挥知识迁移的作用,有助于培养学生思维的灵活性,这种培训方式,尤其是在教学的应用程序的标题,例如,“果园500苹果树,350梨,苹果和梨树,总多少棵树?”例如,你可以改变的问题的基本问题:

    高中数学教学个人总结 篇11

    1、对学生进行启发诱导,调动学生的学习热情和主动性,是一种高效率的课堂教学方法。学生是学习的主体,课堂教学中应引导他们独立思考,积极探索,创设生动活泼的学习情境,使学生自觉能动地掌握知识,从而提高他们分析问题和解决问题的能力。1、学生自己能学会的,相信学生──引导学生学。对于一些比较容易或浅显的教学内容,可以引导学生自己去学。“先学后讲”对于一些比较简单的知识点来说,不失为一种行之有效的方法。

    2、新旧知识有直接联系的,迁移类比──诱导学生学。数学是一门系统性很强的学科,它的每一章节之间都互相联系。任何新知识的学习,总是在学生原有的知识基础上进行的。因此,我们可以利用知识的迁移规律,找准新旧知识的连接点和新知识的生长点,诱导学生利用旧知识去学习新知识。例如学习空间向量的知识时,让学生类比平面向量的相关知识(如向量的加减、数量积、夹角等),从而理解新知识。

    3、学生难于理解或不易接受的,动手操作──指导学生学。建构主义理论认为,学习不是由教师向学生传递知识,而是学生建构自己的知识的过程,学习者不是被动的信息吸收者,相反,它要对外部信息主动地选择和加工。对于一些稍难一点的内容,可以适当创设机会,调动学生多种感官参与学习活动。

    4、学生独立学习有困难的,小组合作──互相帮助学。“学会与人合作,并能与他人交流思维的过程和结果”是课程标准的目标之一。所以,我在设计教案时,十分重视培养学生合作意识,指导他们怎样与同伴合作。我个人认为最方便的合作伙伴就是自己的同桌,从关心自己到关心同桌,从独立学习到同桌的互帮互学。同桌既是学习的合作者,又是评价者。值得注意的是,不要让合作流于形式,要追求合作学习形式与效果的统一。

    5、教师在教学实践中不断进行自我反思。教师在每一堂课结束后,要进行认真的自我反思,思考哪些教学设计取得了预期的效果,哪些精彩片断值得仔细品味,哪些突发问题让你措手不及,哪些环节的掌握有待今后改进等等。

    课堂教学作为中学数学教学过程中的关键环节,历来受到数学教育工作者的高度重视。古今中外的数学教育家通过探索都形成了自己一套独特的方法,并被继续完善和发展。正是因为其永恒前进发展的规律,课堂教学成为了一项亘古不变的研究课题,促使一代又一代辛勤的“园丁”为之冥想苦思,为之呕心沥血。

    高中数学教学设计模板及案例


    作为一位无私奉献的人民教师,总不可避免地需要编写教学设计,教学设计是一个系统化规划教学系统的过程。那么问题来了,教学设计应该怎么写?以下是小编精心整理的高中数学教学设计,希望对大家有所帮助。

    高中数学教学设计模板及案例 篇1

    教学目标:

    1.掌握基本事件的概念;

    2.正确理解古典概型的两大特点:有限性、等可能性;

    3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

    教学重点:

    掌握古典概型这一模型.

    教学难点:

    如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.

    教学方法:

    问题教学、合作学习、讲解法、多媒体辅助教学.

    教学过程:

    一、问题情境

    1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

    二、学生活动

    1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

    2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

    (2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

    这6种情况的可能性都相等;

    三、建构数学

    1.介绍基本事件的概念,等可能基本事件的概念;

    2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

    3.得出随机事件发生的概率公式:

    四、数学运用

    1.例题.

    例1

    有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

    探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

    探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

    学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

    探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

    (设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

    例2

    一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

    一次摸出2只球,则摸到的'两只球都是白球的概率是多少?

    问题:在运用古典概型计算事件的概率时应当注意什么?

    ①判断概率模型是否为古典概型

    ②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

    教师示范并总结用古典概型计算随机事件的概率的步骤

    例3

    同时抛两颗骰子,观察向上的点数,问:

    (1)共有多少个不同的可能结果?

    (2)点数之和是6的可能结果有多少种?

    (3)点数之和是6的概率是多少?

    问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

    学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.

    问题:点数之和是3的倍数的可能结果有多少种?

    (介绍图表法)

    例4

    甲、乙两人作出拳游戏(锤子、剪刀、布),求:

    (1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.

    设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

    2.练习.

    (1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

    (2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

    (3)第103页练习1,2.

    (4)从1,2,3,…,9这9个数字中任取2个数字,

    ①2个数字都是奇数的概率为_________;

    ②2个数字之和为偶数的概率为_________.

    五、要点归纳与方法小结

    本节课学习了以下内容:

    1.基本事件,古典概型的概念和特点;

    2.古典概型概率计算公式以及注意事项;

    3.求基本事件总数常用的方法:列举法、图表法.

    高中数学教学设计模板及案例 篇2

    一、教学内容分析:

    本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

    二、学生学习情况分析:

    任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

    三、设计思想

    本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

    四、教学目标

    通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

    五、教学重点与难点

    重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。

    六、教学过程设计

    (一)知识准备、新课引入

    提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示)a??

    提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

    [设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]

    (二)判定定理的探求过程

    1、直观感知

    提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?

    生1:例举日光灯与天花板,树立的电线杆与墙面。

    生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。

    2、动手实践

    教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。

    3、探究思考

    (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:

    ①平面外一条线

    ②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线

    ③这两条直线平行

    (2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?

    4、归纳确认:(多媒体幻灯片演示)

    直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。

    (三)定理运用,问题探究(多媒体幻灯片演示)

    1、想一想:

    (1)判断下列命题的真假?说明理由:

    ①如果一条直线不在平面内,则这条直线就与平面平行()

    ②过直线外一点可以作无数个平面与这条直线平行()

    ③一直线上有二个点到平面的距离相等,则这条直线与平面平行()

    (2)若直线a与平面?内无数条直线平行,则a与?的位置关系是()a、a||b、a、c、a||或a、d、a[学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]

    2、作一作:

    设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?

    先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。

    [设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]

    3、证一证:

    例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef||平面bcd。

    变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。

    [设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef||平面bdd1b1分析:根据判定定理必须在平

    面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。

    思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。

    思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。

    [知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]

    4、练一练:

    练习1:见课本6页练习1、2

    练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn||平面bce。

    变式:若将练习2中m、n改为ac、bf分点且am=fn,试问结论仍成立吗?试证之。

    [设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]

    (四)总结

    先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):

    1、线面平行的`判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。

    2、定理的符号表示:ba||?a||b??简述:(内外)线线平行则线面平行

    3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。

    七、教学反思

    本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。

    本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。

    本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。

    本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。

    高中数学教学设计模板及案例 篇3

    前言

    为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

    在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

    不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

    1、集合与函数概念实习作业

    一、教学内容分析

    《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

    二、学生学习情况分析

    该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的`题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

    三、设计思想

    《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

    四、教学目标

    1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

    2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

    3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

    五、教学重点和难点

    重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

    难点:培养学生合作交流的能力以及收集和处理信息的能力。

    六、教学过程设计

    【课堂准备】

    1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

    2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

    高中数学教学设计模板及案例 篇4

    重点难点教学:

    1.正确理解映射的概念;

    2.函数相等的两个条件;

    3.求函数的定义域和值域。

    教学过程:

    1.使学生熟练掌握函数的概念和映射的定义;

    2.使学生能够根据已知条件求出函数的定义域和值域; 3.使学生掌握函数的三种表示方法。

    教学内容:

    1.函数的定义

    设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的.取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

    注意:

    ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

    2.构成函数的三要素定义域、对应关系和值域。

    3、映射的定义

    设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

    4.区间及写法:

    设a、b是两个实数,且a

    (1)满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];

    (2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b);

    5.函数的三种表示方法

    ①解析法

    ②列表法

    ③图像法

    高中数学教学设计模板及案例 篇5

    教学目的:

    1.在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

    2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

    教学重点:

    理解比例尺的意义

    教学难点:

    把线段比例转换成数值比例尺

    教学过程:

    一、激发兴趣,引入比例尺

    脑筋急转弯

    师:坐公共汽车从沙市红星路到荆州火车站,一共要用50分钟,但有只蚂蚁从沙市红星路爬到荆州火车站却只用了40秒钟。你知道是怎么回事吗?

    生猜:蚂蚁可能在地图上爬。

    师:对了。蚂蚁爬的是从沙市红星路至荆州火车站的图上距离,而人们坐车所行的是从沙市红星路到荆州火车站的实际距离。

    师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。

    二、动手操作,认识比例尺

    1、操作计算。

    师:你们喜欢画画吗?那我们来个最简单的——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?

    ①橡皮长5厘米

    ②圆规长11厘米

    ③米尺长1米

    师:咦?怎么不画了?

    生:画不下。

    师:那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?

    生:可以把1米缩小若干倍后画在纸上。

    师:这个办法不错。就用这种方法画吧。

    学生画完,集体交流。

    师:你是用图上几厘米的线段来表示实际1米的呢?

    教师有选择的板书:

    师:像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。

    师:你能用比表示出图上距离与实际距离的关系吗?

    教师指名回答,并板书计算过程。

    2、揭示比例尺的意义。

    (1)初步理解比例尺的意义

    师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离/实际距离=比例尺。(板书)

    师:下面每位同学算出自己的比例尺。

    (生独立计算后汇报结果,师板书)

    师:同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)

    师:同学们,你们还记得我们上课前所说的最后一道脑筋转弯的题目吗?原来坐车是从沙市红星路到荆州的火车站实际距离约是18千米,而蚂蚁行的是30厘米的图上距离,怪不得只要3秒呢!那么,你能求出这副地图的比例尺吗?

    (学生做前先交流)

    师:大家交流一下,谁能告诉大家首先要做什么事情?

    师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先写出比,再把单位统一起来,最后化简比。(板书1. 写出比。2. 单位统一。3. 化简比)

    学生汇报计算结果

    让能说说求一幅图的比例尺的方法是怎样的.?

    对应练习:

    完成课本第49页“做一做”

    (2)联系生活,进一步理解比例尺

    师:你还在哪里见过比例尺?

    生1:大型建筑。

    生2:房屋装修。

    师:根据这幅图的比例尺,你能用另一种说法说出图上距离和实际距离的关系吗?

    (让学生说出图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)

    三、认真比较,深刻理解

    1、比较比例尺,揭示数值比例尺的意义。

    师:像1:1000000这样的比例尺是数值比例尺。它也可以写成1/1000000你。能说说比例尺1:100000000所表示的意思吗?

    生:距离是实际距离的一百万分之一,实际距离是图上距离的一百万倍。

    师: 你还见过怎样的比例尺?(出示中国地图)引出线段比例尺。

    2、认识线段比例尺。

    师:把上面的线段比例尺改写成数值比例尺。

    1厘米:60千米

    =1厘米:6000000厘米

    =1:6000000

    小结:

    线段比例尺和数值比例尺是比例尺的两种基本形式。它们之间可以进行转换。把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了。

    3、认识把实际距离放大后的比例尺

    同学们,刚才我们把米尺的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等,在实际生活中有没有要把实际距离放大后再画在图上的呢(有)

    (出示三年级科学书中蚂蚁图)

    师:这是同学们三年级科学书中蚂蚁图,他是把蚂蚁放大后画在书上,图上蚂蚁长6厘米,而蚂蚁实际长6毫米。你能算出这幅图的比例尺吗?

    (学生尝试算出这幅图的比例尺,指名板演)

    出示一些精密零件的图和图纸,介绍把实际距离放大后的比例尺。

    纵观这节课所认识的比例尺,思考下列问题:

    1、比例尺与一般的尺相同吗?化简后的比例尺带不带单位?

    2、求比例尺时,通常要做什么?

    3、化简后的比例尺,它的前项和后项一般是什么形式?

    四、巩固练习,灵活运用

    1、小结看书。

    2、练习:

    (一)填一填

    (1)在比例尺是1:20xx的地图上,图上距离1厘米表示实际距离( )

    (2)在比例尺是1:4000000的地图上,图上距离是实际距离的( ),实际距离是图上距离的( )倍。

    (3)出示一个线段比例尺表示图上1厘米相当于实际距离( )米,把这个比例尺改写成数值比例尺是( )。

    (二)判断

    (1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。

    (2)某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

    (3)一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 .

    六、谈学后体会。

    这节课你学到了什么?

    高中数学教学设计模板及案例 篇6

    一、指导思想与理论依据

    数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

    二.教材分析

    三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、 、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

    三.学情分析

    本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

    四.教学目标

    (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

    (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

    (3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

    (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

    五.教学重点和难点

    1.教学重点

    理解并掌握诱导公式.

    2.教学难点

    正确运用诱导公式,求三角函数值,化简三角函数式.

    六.教法学法以及预期效果分析

    “授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

    1.教法

    数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

    在本节课的`教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

    2.学法

    “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题.

    在本节课的教学过程中,本人引导学生的学法为思考问题共同探讨解决问题简单应用重现探索过程练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

    3.预期效果

    本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.

    七.教学流程设计

    (一)创设情景

    1.复习锐角300,450,600的三角函数值;

    2.复习任意角的三角函数定义;

    3.问题:由,你能否知道sin2100的值吗?引如新课.

    设计意图

    自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

    (二)新知探究

    1.让学生发现300角的终边与2100角的终边之间有什么关系;

    2.让学生发现300角的终边和2100角的终边与单位圆的交点为、的坐标有什么关系;

    3.Sin2100与sin300之间有什么关系.

    设计意图

    由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.

    (三)问题一般化

    探究一

    1.探究发现任意角的终边与的终边关于原点对称;

    2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;

    3.探究发现任意角与的三角函数值的关系.

    设计意图

    首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

    (四)练习

    利用诱导公式(二),口答下列三角函数值.

    (1). ;(2). ;(3). .

    喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

    (五)问题变形

    由sin300=出发,用三角的定义引导学生求出sin(-300),Sin1500值,让学生联想若已知sin = ,能否求出sin( ),sin( )的值.

    学生自主探究

    1.探究任意角与的三角函数又有什么关系;

    2.探究任意角与的三角函数之间又有什么关系.

    设计意图

    遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.

    展示学生自主探究的结果

    高中数学教学设计模板及案例 篇7

    一、单元教学内容

    (1)算法的基本概念

    (2)算法的基本结构:顺序、条件、循环结构

    (3)算法的基本语句:输入、输出、赋值、条件、循环语句

    二、单元教学内容分析

    算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

    三、单元教学课时安排:

    1、算法的基本概念3课时

    2、程序框图与算法的基本结构5课时

    3、算法的基本语句2课时

    四、单元教学目标分析

    1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

    2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

    3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

    4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

    五、单元教学重点与难点分析

    1、重点

    (1)理解算法的含义

    (2)掌握算法的基本结构

    (3)会用算法语句解决简单的实际问题

    2、难点

    (1)程序框图

    (2)变量与赋值

    (3)循环结构

    (4)算法设计

    六、单元总体教学方法

    本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的'认真领会及一定的练习才能掌握本节知识。

    七、单元展开方式与特点

    1、展开方式

    自然语言→程序框图→算法语句

    2、特点

    (1)螺旋上升分层递进

    (2)整合渗透前呼后应

    (3)三线合一横向贯通

    (4)弹性处理多样选择

    八、单元教学过程分析

    1、算法基本概念教学过程分析

    对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

    2、算法的流程图教学过程分析

    对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

    3、基本算法语句教学过程分析

    经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

    4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

    九、单元评价设想

    1、重视对学生数学学习过程的评价

    关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

    2、正确评价学生的数学基础知识和基本技能

    关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

    高中数学教学设计模板及案例 篇8

    一、学习目标与任务

    1、学习目标描述

    知识目标

    (A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。

    (B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。

    能力目标

    (A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。

    (B)通过知识的再现培养学生的创新能力和创新意识。

    (C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。

    德育目标

    让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。

    2、学习内容与学习任务说明

    本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。

    学习重点:圆锥曲线的第一定义和统一定义。

    学习难点:圆锥曲线第一定义和统一定义的应用。

    明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。

    抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。

    充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。

    二、学习者特征分析

    (说明学生的学习特点、学习习惯、学习交往特点等)

    l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。

    高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在

    l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。

    高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。

    三、学习环境选择与学习资源设计

    1.学习环境选择(打√)

    (1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)

    (6)其它

    2、学习资源类型(打√)

    (1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库

    (5)案例库(6)题库(7)网络课程(8)其它

    3、学习资源内容简要说明

    (说明名称、网址、主要内容等)

    《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134)

    用Flash5、几何画板和Authorware6制作可操作且具有交互性的'网络课件放在专题网站里。

    四、学习情境创设

    1、学习情境类型(打√)

    (1)真实性情境(√)(2)问题性情境(√)

    (3)虚拟性情境(√)(4)其它

    2、学习情境设计

    真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。

    问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。

    虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。

    五、学习活动的组织

    1、自主学习设计(打√并填写相关内容)

    (1)抛锚式

    (2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。

    使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

    学生活动:分析、操作、协作讨论、总结、提交结论。

    教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

    (3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。

    使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

    学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。

    教师活动:讲解例题,总结点评学生做题过程中的问题。

    (4)其它

    2、协作学习设计(打√并填写相关内容)

    (1)竞争

    (2)伙伴(√)

    相应内容:圆锥曲线的第一定义和统一定义

    使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

    分组情况:每组三人

    学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。

    教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

    (3)协同(√)

    相应内容:圆锥曲线定义的典型应用。

    使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

    分组情况:每组三人。

    学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。

    教师活动:总结点评学生做题过程中的问题。

    (4)辩论

    (5)角色扮演

    (6)其它

    4、教学结构流程的设计

    六、学习评价设计

    1、测试形式与工具(打√)

    (1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它

    2、测试内容

    教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。

    学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。

    (附)圆锥曲线专题网站设计分析

    (1)设计思路

    (A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。

    (B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。

    (C)突出知识的再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。

    (D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。

    (E)突出和各学科的联系:如斜抛运动和行星运动等等。

    (F)强调分层次的教学:

    如在知识应用中的配置不同层次的例题和练习:

    (2)网站导航图

    高中数学教学设计模板及案例 篇9

    一、课程说明

    (一)教材分析:

    此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。

    (二) 学生分析:

    此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。

    (三) 教学目标:

    1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。

    2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。

    3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。

    4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。

    5、让她在学习中发现数学的.独特的美,能够爱上数学这门课。并且认真对待,自主学习。

    (四)教学重点

    1、让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。

    2、能够灵活运用公式并且能把相应公式与题相结合。

    (五) 教学难点:

    1、让学生掌握公式的推导及其意义。

    2、如何把所学知识运用到相应的题中。

    二、课前准备

    (一) 教学器材

    对于一对一教教采用传统讲课。一张挂历。

    (二) 教学方法

    通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先独立的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。

    (三) 课时安排

    课时大致分为五部分:

    1、联系实际提出相关问题,进行思考。

    2、以我教她学的模式讲授相关章节知识。

    3、让学生练习相关习题,从所学知识中找其相应解题方案。

    4学生对知识总结概括,我再对其进行补充说明。 5布置作业,让她课后多做练习。

    三、课程设计

    (一)提出问题

    【引入】

    根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?

    思考 1 2 3 13579......246810......66666......

    这些每一行有什么规律?

    (二) 分析问题并讲解

    1、通过观察每一个数与前一个数相差为同一个常数。再结合前一节所学数列的定义总结出“每一项与前一项的差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”

    2、设首项为 a1 ,公差为d。由思考题 1 2 3可观察出什么?由学生通过她的发现来推导总结出

    ana1n1dnda1d

    3、通过分析通项公式的特点,做下题(学生自己分析,思考来做。) 例:已知在等差数列{an}中,a520a20xx,试求出数列的通项公式?

    通过学生做题再分析总结,用详细的语言讲解总结等差数列的性质

    4、由以上公式,性质,让学生总结。

    讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。

    5、总结,串讲当日所学

    给出题目:12349899100 让她求其和Sn,并思考如何快速计算?

    (三) 布置作业

    1、总结当日所学。

    2、做练习册上章节习题。

    3、根据当日所学以及课上所讲求 的思考题,找出快速运算方法,并引导预习等差数列前n项和。

    四、设计理念

    以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。

    五、教学设计反思

    本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。

    高中数学教学设计模板及案例 篇10

    教学目标:

    1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

    2、通过练习,巩固对正比例意义的认识。

    3、情感、态度与价值观:初步渗透函数思想。

    重点难点:

    能根据数量关系式或图象判断两种量是否成正比例。

    教学准备:

    投影仪。

    教学过程:

    一、新课讲授

    教学第46页内容。

    教师出示表格(见书),依据表中的数据描点。(见书)

    师:从图中你发现了什么?

    生:这些点都在同一条直线上。

    看图回答问题

    ①如果铅笔的数量是7支,那么铅笔的总价是多少?

    ②总价是4.0的铅笔,数量是多少?

    ③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

    你还能提出什么问题?有什么体会?

    组织学生分小组汇报,学生汇报时可能会说出

    ①正比例关系的图象是一条经过原点的直线。

    ②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

    二、练习讲授

    1、基本练习。

    (1)投影出示教材第49页第1题。

    教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

    教师要求学生从两个方面说明为什么成正比例。

    a.电是随着用电量的增加而增加;

    b.电费与用电量的比值总是相等的。

    师生共同订正。

    (2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

    ①出示下表,填表。

    一列火车行驶的时间和路程

    ②填表并思考发现了什么?

    ③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

    ④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

    ⑤用式子表示它们的关系: 路程÷时间 =速度(一定)。

    教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

    2、指导练习。

    (1)完成教材第49页第2题。

    (2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

    (3)解决教材49页第4题:

    ①投影出示书中的.表格,引导学生观察表中的数据。

    ②组织学生在小组中合作探究。

    a.动手画一画,指名汇报图象特点。

    b.组织学生说一说,相互交流。

    提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

    三、课堂作业

    1、根据x和y成正比例关系,填写表中的空格。

    2、看图回答问题。

    (1)在这一过程中,哪个量没变?

    (2)路程和时间有什么关系?

    (3)不计算,从图中看出4小时行驶多少千米?

    (4)7小时行驶多少千米?

    课堂小结:

    教师:判断两个相关联的量成正比例的三个要素是什么?

    通过这节课的学习,你有什么收获?

    课后作业:

    完成练习册中本课时的练习。

    板书设计:

    正比例图像

    图像:一条过原点的直线。

    高中数学教学设计模板及案例 篇11

    (一)创设情境导入新课

    不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

    如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

    设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

    (二)合作交流探究新知

    (活动一)探究角平分仪的原理。具体过程如下:

    播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

    设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

    (活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

    分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

    讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

    已知:∠AO B.

    求作:∠AOB的'平分线.

    作法:

    (1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

    (2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

    (3)作射线OC,射线OC即为所求.

    设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

    议一议:

    1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?

    2.第二步中所作的两弧交点一定在∠AOB的内部吗?

    设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

    学生讨论结果总结:

    1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

    2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

    3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

    4.这种作法的可行性可以通过全等三角形来证明.

    (活动三)探究角平分线的性质

    思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

    这样设计的目的是加深对全等的认识。

    高中数学教学设计模板及案例 篇12

    一、目标

    1.知识与技能

    (1)理解流程图的顺序结构和选择结构。

    (2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

    2.过程与方法:学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

    3.情感、态度与价值观:学生通过动手作图,用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

    二、重点、难点

    重点:算法的顺序结构与选择结构。

    难点:用含有选择结构的流程图表示算法。

    三、学法与教学用具

    学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

    教学用具:尺规作图工具,多媒体。

    四、教学思路

    (一)、问题引入揭示题

    例1尺规作图,确定线段的一个5等分点。

    要求:同桌一人作图,一人写算法,并请学生说出答案。

    提问:用字语言写出算法有何感受?

    引导学生体验到:显得冗长,不方便、不简洁。

    教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

    本节要学习的'是顺序结构与选择结构。

    右图即是同流程图表示的算法。

    (二)、观察类比理解题

    1、投影介绍流程图的符号、名称及功能说明。

    2、讲授顺序结构及选择结构的概念及流程图

    (1)顺序结构

    依照步骤依次执行的一个算法

    流程图:

    (2)选择结构

    对条进行判断决定后面的步骤的结构

    流程图:

    3.用自然语言表示算法与用流程图表示算法的比较

    (1)半径为r的圆的面积公式当r=10时写出计算圆的面积的算法,并画出流程图。

    解:

    算法(自然语言)

    ①把10赋与r

    ②用公式求s

    ③输出s

    流程图

    (2)已知函数对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

    算法:(语言表示)

    ①输入X值

    ②判断X的范围,若,用函数Y=x+1求函数值;否则用Y=2-x求函数值

    ③输出Y的值

    流程图

    小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

    学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

    (三)模仿操作经历题

    1.用流程图表示确定线段A.B的一个16等分点

    2.分析讲解例2;

    分析:

    思考:有多少个选择结构?相应的流程图应如何表示?

    流程图:

    (四)归纳小结巩固题

    1.顺序结构和选择结构的模式是怎样的?

    2.怎样用流程图表示算法。

    (五)练习P992

    (六)作业P991

    本文网址://www.jk251.com/jiaoshifanwen/44701.html

    【课件范文: 高中数学教学思考】相关推荐
    常用的对学生中考的祝福语集锦 【精】

    时间弹指一挥间,中考学生们的初中生活已经接近尾声,中考是一个公平竞技的平台,是改变命运最重要的一次机会,在临近时中考亲戚好友也都想把祝福送给中考学生,有哪些关于中考祝福语模板呢?教师范文大全小编特地为您收集整理“常用的对学生中考的祝福语集锦”,希望能对你有所帮助,请收藏。...

    单篇精选: 数学日记700字

    在平时的学习生活中,我们可能会按照个人习惯写一些文章,掌握范文的撰写对自己会有很大的帮助,在哪里可以找到相关的范文呢?下面是小编为您精心收集整理,为您带来的《单篇精选: 数学日记700字》,仅供参考,希望对您有帮助。今天是20xx年的春节,早晨一起床,我们一家三口就穿上了各自的新衣服,开始忙活了起来...