等腰三角形的性质 万能通用篇
发表时间:2022-01-20一、教学目的
使学生熟练地掌握等腰三角形的性质.
二、教学重点、难点
重点:等腰三角形性质的应用.
难点:添加合适的辅助线.
三、教学过程
复习提问
1.等腰三角形的性质.
2.等腰三角形的底角一定是_角?
3.等腰三角形的底角为20°,求它的顶角度数.
引入新课
等腰三角形一腰上的中线把它的周长分为15cm和6cm的两部分,求这三角形各边的长.
学生可能利用算术的方法,计算出腰长为10底边长为1.也可能算不出来,这里教师可作如下引导:
在图1中,AB=AC,D为AB的中点(即AD=DB),设AD=xcm,则AB=AC=2cm(中线定义).由AC+AD=15cm,得
2x+x=15.
解得x=5,……
本题是利用列方程的方法解得的,此法对于某些几何计算题来说,简捷而有效.
新课
例2已知:图2,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数.
分析:欲求三角形各角度数.只需求出∠A度数,把∠A度数作为一个未知数x,则∠A=∠1=x°,∠2=∠A+∠1=2x°,∠ABC=∠C=∠2=2x°.应用三角形内角和定理于△ABC,求出方程所对应的几何等式:∠A+∠ABC+∠C=180°,即可得出关于x的方程.
例3已知:如图3,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.
通过分析使学生发现,要作AF⊥BC即底边上的高这条辅助线(这是证明的关键所在),并告诉学生这是等腰三角形中一种常见的辅助线.利用这条辅助线就很容易证得结论.并说明,这是利用等腰三角形的“三线合一”性质来证明的题目.
小结
1.列方程解几何计算题是几何计算题的一种重要解法,在这种解法中,寻求几何等式(如例2中∠A+∠ABC+∠C=180°)是基础,把几何等式的各项转化为未知数x的代数式是关键(如∠A=x°,∠ABC=∠C=2x°).
2.对于等腰三角形的”三线合一”性要灵活运用.
练习:略
作业:略
思考题:例3中辅助线改为△ABC的顶角平分线AF,写出证明过程.
四、教学注意问题
1.等腰三角形性质的灵活、综合应用,防止依赖于全等三角形证明线段或角相等的思维定势.
2.要防止“三线合一”性在应用中出现的错误.
jk251.cOm扩展阅读
高中教案不等式的性质(三)__万能通用篇
探究活动
能得到什么结论
题目已知且,你能够推出什么结论?
分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。
思路一:改变的范围,可得:
1.且;
2.且;
思路二:由已知变量作运算,可得:
3.且;
4.且;
5.且;
6.且;
7.且;
思路三:考虑含有的数学表达式具有的性质,可得:
8.(其中为实常数)是三次方程;
9.(其中为常数)的图象不可能表示直线。
说明从已知信息能够推出什么结论?这是我们经常需要思考的问题,这里给出的都是必要非充分条件,读者可以考虑是否能够写出充要条件;另外,运用推出关系的传递性,在推出结论的基础上进一步进行推理,还可得出很多结果,请读者考虑.
探究关系式是否成立的问题
题目当成立时,关系式是否成立?若成立,加以证明;若不成立,说明理由。
解:因为,所以,所以,
所以,
所以或
所以或
所以或
所以不可能成立。
说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的分析,不仅说明结论不成立,而且得出,必须同时大于1或同时小于1的结论。
探讨增加什么条件使命题成立
例适当增加条件,使下列命题各命题成立:
(1)若,则;
(2)若,则;
(3)若,,则;
(4)若,则
思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。
解:(1)
(2)。当时,
当时,
(3)
(4)
引申发散对命题(3),能否增加条件,或,,使其成立?请阐述你的理由。
万能通用篇
第一章集合与简易逻辑
第一教时
教材:集合的概念
目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。
过程:
一、引言:(实例)用到过的“正数的集合”、“负数的集合”
如:2x-1>3x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合0,1,2,3,……
如:高一(5)全体同学组成的集合。
结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示:{…}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N*或N+
整数集Z
有理数集Q
实数集R
集合的三要素:1。元素的确定性;2。元素的互异性;3。元素的无序性
(例子略)
三、关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作aÎA,相反,a不属于集A记作aÏA(或aÎA)
例:见P4—5中例
四、练习P5略
五、集合的表示方法:列举法与描述法
列举法:把集合中的元素一一列举出来。
例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}
例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}
描述法:用确定的条件表示某些对象是否属于这个集合的方法。
1语言描述法:例{不2是直角三角形的三角形}再见P6例
3数学式子描述法:例不4等式x-3>2的解集是{xÎR|x-3>2}或{x|x-3>2}或{x:x-3>2}再见P6例
六、集合的分类
1.有限集含有有限个元素的集合
2.无限集含有无限个元素的集合例题略
3.空集不含任何元素的集合F
七、用图形表示集合P6略
八、练习P6
小结:概念、符号、分类、表示法
九、作业P7习题1.1