你的位置:
  • 范文大全
  • >教案
  • >高中教案
  • >导航
  • >等腰三角形的性质 万能通用篇
  • 等腰三角形的性质 万能通用篇

    发表时间:2022-01-20

    一、教学目的

    使学生熟练地掌握等腰三角形的性质.

    二、教学重点、难点

    重点:等腰三角形性质的应用.

    难点:添加合适的辅助线.

    三、教学过程

    复习提问

    1.等腰三角形的性质.

    2.等腰三角形的底角一定是_角?

    3.等腰三角形的底角为20°,求它的顶角度数.

    引入新课

    等腰三角形一腰上的中线把它的周长分为15cm和6cm的两部分,求这三角形各边的长.

    学生可能利用算术的方法,计算出腰长为10底边长为1.也可能算不出来,这里教师可作如下引导:

    在图1中,AB=AC,D为AB的中点(即AD=DB),设AD=xcm,则AB=AC=2cm(中线定义).由AC+AD=15cm,得

    2x+x=15.

    解得x=5,……

    本题是利用列方程的方法解得的,此法对于某些几何计算题来说,简捷而有效.

    新课

    例2已知:图2,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数.

    分析:欲求三角形各角度数.只需求出∠A度数,把∠A度数作为一个未知数x,则∠A=∠1=x°,∠2=∠A+∠1=2x°,∠ABC=∠C=∠2=2x°.应用三角形内角和定理于△ABC,求出方程所对应的几何等式:∠A+∠ABC+∠C=180°,即可得出关于x的方程.

    例3已知:如图3,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.

    通过分析使学生发现,要作AF⊥BC即底边上的高这条辅助线(这是证明的关键所在),并告诉学生这是等腰三角形中一种常见的辅助线.利用这条辅助线就很容易证得结论.并说明,这是利用等腰三角形的“三线合一”性质来证明的题目.

    小结

    1.列方程解几何计算题是几何计算题的一种重要解法,在这种解法中,寻求几何等式(如例2中∠A+∠ABC+∠C=180°)是基础,把几何等式的各项转化为未知数x的代数式是关键(如∠A=x°,∠ABC=∠C=2x°).

    2.对于等腰三角形的”三线合一”性要灵活运用.

    练习:略

    作业:略

    思考题:例3中辅助线改为△ABC的顶角平分线AF,写出证明过程.

    四、教学注意问题

    1.等腰三角形性质的灵活、综合应用,防止依赖于全等三角形证明线段或角相等的思维定势.

    2.要防止“三线合一”性在应用中出现的错误.

    jk251.cOm扩展阅读

    高中教案不等式的性质(三)__万能通用篇


    探究活动

    能得到什么结论

    题目已知且,你能够推出什么结论?

    分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。

    思路一:改变的范围,可得:

    1.且;

    2.且;

    思路二:由已知变量作运算,可得:

    3.且;

    4.且;

    5.且;

    6.且;

    7.且;

    思路三:考虑含有的数学表达式具有的性质,可得:

    8.(其中为实常数)是三次方程;

    9.(其中为常数)的图象不可能表示直线。

    说明从已知信息能够推出什么结论?这是我们经常需要思考的问题,这里给出的都是必要非充分条件,读者可以考虑是否能够写出充要条件;另外,运用推出关系的传递性,在推出结论的基础上进一步进行推理,还可得出很多结果,请读者考虑.

    探究关系式是否成立的问题

    题目当成立时,关系式是否成立?若成立,加以证明;若不成立,说明理由。

    解:因为,所以,所以,

    所以,

    所以或

    所以或

    所以或

    所以不可能成立。

    说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的分析,不仅说明结论不成立,而且得出,必须同时大于1或同时小于1的结论。

    探讨增加什么条件使命题成立

    例适当增加条件,使下列命题各命题成立:

    (1)若,则;

    (2)若,则;

    (3)若,,则;

    (4)若,则

    思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。

    解:(1)

    (2)。当时,

    当时,

    (3)

    (4)

    引申发散对命题(3),能否增加条件,或,,使其成立?请阐述你的理由。

    万能通用篇


    第一章集合与简易逻辑

    第一教时

    教材:集合的概念

    目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

    过程:

    一、引言:(实例)用到过的“正数的集合”、“负数的集合”

    如:2x-1>3x>2所有大于2的实数组成的集合称为这个不等式的解集。

    如:几何中,圆是到定点的距离等于定长的点的集合。

    如:自然数的集合0,1,2,3,……

    如:高一(5)全体同学组成的集合。

    结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

    指出:“集合”如点、直线、平面一样是不定义概念。

    二、集合的表示:{…}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}

    用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

    常用数集及其记法:

    非负整数集(即自然数集)记作:N

    正整数集N*或N+

    整数集Z

    有理数集Q

    实数集R

    集合的三要素:1。元素的确定性;2。元素的互异性;3。元素的无序性

    (例子略)

    三、关于“属于”的概念

    集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作aÎA,相反,a不属于集A记作aÏA(或aÎA)

    例:见P4—5中例

    四、练习P5略

    五、集合的表示方法:列举法与描述法

    列举法:把集合中的元素一一列举出来。

    例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}

    例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}

    描述法:用确定的条件表示某些对象是否属于这个集合的方法。

    1语言描述法:例{不2是直角三角形的三角形}再见P6例

    3数学式子描述法:例不4等式x-3>2的解集是{xÎR|x-3>2}或{x|x-3>2}或{x:x-3>2}再见P6例

    六、集合的分类

    1.有限集含有有限个元素的集合

    2.无限集含有无限个元素的集合例题略

    3.空集不含任何元素的集合F

    七、用图形表示集合P6略

    八、练习P6

    小结:概念、符号、分类、表示法

    九、作业P7习题1.1

    本文网址://www.jk251.com/jiaoan/6094.html

    【等腰三角形的性质 万能通用篇】相关推荐
    [year+]年高考地理季现象的经典总结 万能通用篇

    地理现象1月7月地球公转一月初,近日点附近,地球公转角速度、线速度最快,北半球冬半年较短七月初,远日点附近,地球公转角速度、线速度最慢,北半球夏半年较长正午太阳高度12月22日,南回归线及以南地区达最...

    关于化学反应中的能量变化的高中教案推荐

    教学目标知识目标使学生了解化学反应中的能量变化,理解放热反应和吸热反应;介绍燃料充分燃烧的条件,培养学生节约能源和保护环境意识;通过学习和查阅资料,使学生了解我国及世界能源储备和开发;通过布置研究性课...