你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >数学教案-圆的比例线初中教案精选
  • 数学教案-圆的比例线初中教案精选

    发表时间:2022-02-07

    【www.jk251.com - 初中数学教案】

    充分准备一份教案是一名教师的职责所在,教案是保证教学质量的基本条件,在教案中总结好经验与教训,我们才能逐步成熟起来。自己的初中教案如何写呢?小编为大家收集整理了数学教案-圆的比例线初中教案精选,希望能够帮助到您。

    教学建议

    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

    难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

    2、教学建议

    本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

    (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

    (2)在教学中,引导学生“观察——猜想——证明——应用”等学习,教师组织下,以学生为主体开展教学活动.

    第1课时:相交弦定理

    教学目标:

    1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

    2.学会作两条已知线段的比例中项;

    3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

    4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

    教学重点:

    正确理解相交弦定理及其推论.

    教学难点:

    在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

    教学活动设计

    (一)设置学习情境

    1、图形变换:(利用电脑使AB与CD弦变动)

    ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

    ②进一步得出:△APC∽△DPB.

    ③如果将图形做些变换,去掉AC和BD,图中线段PA,PB,PC,PO之间的关系会发生变化吗?为什么?

    组织学生观察,并回答.

    2、证明:

    已知:弦AB和CD交于⊙O内一点P.

    求证:PAPB=PCPD.

    (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

    (证明略)

    (二)定理及推论

    1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

    结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PAPB=PCPD.

    2、从一般到特殊,发现结论.

    对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互相垂直如图,AB是直径,并且AB⊥CD于P.

    提问:根据相交弦定理,能得到什么结论?

    指出:PC2=PAPB.

    请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

    推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

    3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PAPB.

    若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

    PC2=PAPB;AC2=APAB;CB2=BPAB

    (三)应用、反思

    例1已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

    引导学生根据题意列出方程并求出相应的解.

    例2已知:线段a,b.

    求作:线段c,使c2=ab.

    分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

    作法:口述作法.

    反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

    练习1如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

    变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是多少?

    将条件隐化,增加难度,提高学生学习兴趣

    练习2如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

    练习3如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC交⊙O于C.求证:PC2=PAPB

    引导学生分析:由APPB,联想到相交弦定理,于是想到延长CP交⊙O于D,于是有PCPD=PAPB.又根据条件OP⊥PC.易证得PC=PD问题得证.

    (四)小结

    知识:相交弦定理及其推论;

    能力:作图能力、发现问题的能力和解决问题的能力;

    思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

    (五)作业

    教材P132中9,10;P134中B组4(1).

    第2课时切割线定理

    教学目标:

    1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

    2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

    3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

    教学重点:

    理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

    教学难点:

    定理的灵活运用以及定理与推论问的内在联系是难点.

    教学活动设计

    (一)提出问题

    1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

    当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

    2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PAPB.

    3、证明:

    让学生根据图2写出已知、求证,并进行分析、证明猜想.

    分析:要证PT2=PAPB,可以证明,为此可证以PAPT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

    4、引导学生用语言表达上述结论.

    切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

    (二)切割线定理的推论

    1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

    观察图4,提出猜想:PAPB=PCPD.

    2、组织学生用多种方法证明:

    方法一:要证PAPB=PCPD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.(如图4)

    方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.因此△PAD∽△PCB.(如图5)

    方法三:引导学生再次观察图2,立即会发现.PT2=PAPB,同时PT2=PCPD,于是可以得出PAPB=PCPD.PAPB=PCPD

    推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

    (三)初步应用

    例1已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米,PO=10.9厘米,求⊙O的半径.

    分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

    (解略)教师示范解题.

    例2已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

    求证:AE=BF.

    分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.因此它们的积相等,问题得证.

    学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=ACCD和BF2=BDDC等.

    巩固练习:P128练习1、2题

    (四)小结

    知识:切割线定理及推论;

    能力:结合具体图形时,应能写出正确的等积式;

    方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

    (五)作业教材P132中,11、12题.

    探究活动

    最佳射门位置

    国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

    分析与解如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

    故,又,

    OB=30.34+7.32=37.66.

    OP=(米).

    注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

    jk251.coM小编推荐

    经典初中教案圆的比例线


    教学建议

    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

    难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

    2、教学建议

    本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

    (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

    (2)在教学中,引导学生“观察——猜想——证明——应用”等学习,教师组织下,以学生为主体开展教学活动.

    第1课时:相交弦定理

    教学目标:

    1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

    2.学会作两条已知线段的比例中项;

    3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

    4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

    教学重点:

    正确理解相交弦定理及其推论.

    教学难点:

    在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

    教学活动设计

    (一)设置学习情境

    1、图形变换:(利用电脑使AB与CD弦变动)

    ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

    ②进一步得出:△APC∽△DPB.

    ③如果将图形做些变换,去掉AC和BD,图中线段PA,PB,PC,PO之间的关系会发生变化吗?为什么?

    组织学生观察,并回答.

    2、证明:

    已知:弦AB和CD交于⊙O内一点P.

    求证:PA·PB=PC·PD.

    (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

    (证明略)

    (二)定理及推论

    1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

    结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD.

    2、从一般到特殊,发现结论.

    对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互相垂直如图,AB是直径,并且AB⊥CD于P.

    提问:根据相交弦定理,能得到什么结论?

    指出:PC2=PA·PB.

    请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

    推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

    3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA·PB.

    若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

    PC2=PA·PB;AC2=AP·AB;CB2=BP·AB

    (三)应用、反思

    例1已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

    引导学生根据题意列出方程并求出相应的解.

    例2已知:线段a,b.

    求作:线段c,使c2=ab.

    分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

    作法:口述作法.

    反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

    练习1如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

    变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是多少?

    将条件隐化,增加难度,提高学生学习兴趣

    练习2如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

    练习3如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC交⊙O于C.求证:PC2=PA·PB

    引导学生分析:由AP·PB,联想到相交弦定理,于是想到延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.

    (四)小结

    知识:相交弦定理及其推论;

    能力:作图能力、发现问题的能力和解决问题的能力;

    思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

    (五)作业

    教材P132中9,10;P134中B组4(1).

    第12页

    数学教案-比例线


    一、教学目标

    1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

    2.掌握比例基本性质和合分比性质.

    3.通过通过的应用,培养学习的计算能力.

    4.通过比例性质的教学,渗透转化思想.

    5.通过比例性质的教学,激发学生学习兴趣.

    二、教学设计

    先学后做,启发引导

    三、重点及难点

    1.教学重点比例性质及应用.

    2.教学难点正确理解成比例线段及应用.

    四、课时安排

    1课时

    五、教具学具准备

    股影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    1.什么是线段的比?

    2.已知这两条线段的比是吗,为什么?

    【讲解新课】

    1.比例线段:见教材P203页。

    如:见教材P203页图5-2。

    又如:

    即a、b、c、d是成比例线段。

    注:①已知问这四条线段成比例吗?

    (答:成比例。,这里与顺序无关)。

    ②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

    板书教材P203页比例线段的一些附属概念。

    2.比例的性质:

    (1)比例的基本性质:如果,那么。

    它的逆命题也成立,即:如果,那么。

    推论:如果,那么。

    反之亦然:如果,那么。

    ①基本性质证明了“比例式”和“等积式”是可以互化的。

    ②由,除可得到外,还可得到其它七个比例式。即由一个等积式,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。。再由等式的对称性写出另外四个比例式:。注意区别与联系。

    ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

    ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

    (2)合比性质:如果,那么

    证明:∵,∴即:

    同理可证:(找学生板演)

    (3)等比性质:如果

    那么

    证明:设;则

    等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

    例1(要求了解即可)

    (1)已知:,求证:。

    证明:∵,∴

    “通法”:∵,∴即

    (2)已知:,求证:。

    方法一:

    方法二:

    (1)÷(2)得:

    【小结】

    (1)比例线段的概念及附属概念。

    (2)比例的基本性质及其应用。

    八、布置作业

    (1)求

    ①②③

    (2)求下列各式中的x

    ①②③④

    九、板书设计

    比例线段(二)

    1.比例线段:

    教师板书定义

    ………

    比例线段的附属概念

    ………

    2.比例的性质

    (1)比例基本性质

    …………

    注意:(1)

    3.课堂练习

    圆的比例线教案模板


    教学建议

    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

    难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

    2、教学建议

    本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

    (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

    (2)在教学中,引导学生“观察——猜想——证明——应用”等学习,教师组织下,以学生为主体开展教学活动.

    第1课时:相交弦定理

    教学目标:

    1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

    2.学会作两条已知线段的比例中项;

    3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

    4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

    教学重点:

    正确理解相交弦定理及其推论.

    教学难点:

    在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

    教学活动设计

    (一)设置学习情境

    1、图形变换:(利用电脑使AB与CD弦变动)

    ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

    ②进一步得出:△APC∽△DPB.

    ③如果将图形做些变换,去掉AC和BD,图中线段PA,PB,PC,PO之间的关系会发生变化吗?为什么?

    组织学生观察,并回答.

    2、证明:

    已知:弦AB和CD交于⊙O内一点P.

    求证:PA·PB=PC·PD.

    (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

    (证明略)

    (二)定理及推论

    1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

    结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD.

    2、从一般到特殊,发现结论.

    对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互相垂直如图,AB是直径,并且AB⊥CD于P.

    提问:根据相交弦定理,能得到什么结论?

    指出:PC2=PA·PB.

    请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

    推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

    3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA·PB.

    若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

    PC2=PA·PB;AC2=AP·AB;CB2=BP·AB

    (三)应用、反思

    例1已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

    引导学生根据题意列出方程并求出相应的解.

    例2已知:线段a,b.

    求作:线段c,使c2=ab.

    分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

    作法:口述作法.

    反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

    练习1如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

    变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是多少?

    将条件隐化,增加难度,提高学生学习兴趣

    练习2如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

    练习3如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC交⊙O于C.求证:PC2=PA·PB

    引导学生分析:由AP·PB,联想到相交弦定理,于是想到延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.

    (四)小结

    知识:相交弦定理及其推论;

    能力:作图能力、发现问题的能力和解决问题的能力;

    思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

    (五)作业

    教材P132中9,10;P134中B组4(1).

    第2课时切割线定理

    教学目标:

    1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

    2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

    3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

    教学重点:

    理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

    教学难点:

    定理的灵活运用以及定理与推论问的内在联系是难点.

    教学活动设计

    (一)提出问题

    1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

    当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

    2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA·PB.

    3、证明:

    让学生根据图2写出已知、求证,并进行分析、证明猜想.

    分析:要证PT2=PA·PB,可以证明,为此可证以PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

    4、引导学生用语言表达上述结论.

    切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

    (二)切割线定理的推论

    1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

    观察图4,提出猜想:PA·PB=PC·PD.

    2、组织学生用多种方法证明:

    方法一:要证PA·PB=PC·PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.(如图4)

    方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.因此△PAD∽△PCB.(如图5)

    方法三:引导学生再次观察图2,立即会发现.PT2=PA·PB,同时PT2=PC·PD,于是可以得出PA·PB=PC·PD.PA·PB=PC·PD

    推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

    (三)初步应用

    例1已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米,PO=10.9厘米,求⊙O的半径.

    分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

    (解略)教师示范解题.

    例2已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

    求证:AE=BF.

    分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.因此它们的积相等,问题得证.

    学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC·CD和BF2=BD·DC等.

    巩固练习:P128练习1、2题

    (四)小结

    知识:切割线定理及推论;

    能力:结合具体图形时,应能写出正确的等积式;

    方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

    (五)作业教材P132中,11、12题.

    探究活动

    最佳射门位置

    国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足球门宽7.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

    分析与解如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

    故,又,

    OB=30.34+7.32=37.66.

    OP=(米).

    注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

    数学教案-平行线分线成比例定理初中教案精选


    (第二课时)

    一、教学目标

    1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

    2.使学生掌握三角形一边平行线的判定定理.

    3.已知线的成已知比的作图问题.

    4.通过应用,培养识图能力和推理论证能力.

    5.通过定理的教学,进一步培养学生类比的数学思想.

    二、教学设计

    观察、猜想、归纳、讲解

    三、重点、难点

    l.教学重点:是平行线分线段成比例定理和推论及其应用.

    2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具.

    六、教学步骤

    【复习提问】

    叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).

    【讲解新课】

    在黑板上画出图,观察其特点:与的交点A在直线上,根据平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:

    平行于的边BC的直线DE截AB、AC,所得对应线段成比例.

    在黑板上画出左图,观察其特点:与的交点A在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:

    平行于的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.

    综上所述,可以得到:

    推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.

    如图,(六个比例式).

    此推论是判定三角形相似的基础.

    注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知,DE是截线,这个推论包含了下图的各种情况.

    这个推论不包含下图的情况.

    后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)

    例3已知:如图,,求:AE.

    教材上采用了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即:.

    让学生思考,是否可直接未出AE(找学生板演).

    【小结】

    1.知道推论的探索方法.

    2.重点是推论的正确运用

    七、布置作业

    (1)教材P215中2.

    (2)选作教材P222中B组1.

    八、板书设计

    圆的比例线的教学方案


    教学建议

    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

    难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

    2、教学建议

    本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

    (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

    (2)在教学中,引导学生“观察——猜想——证明——应用”等学习,教师组织下,以学生为主体开展教学活动.

    第1课时:相交弦定理

    教学目标:

    1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

    2.学会作两条已知线段的比例中项;

    3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

    4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

    教学重点:

    正确理解相交弦定理及其推论.

    教学难点:

    在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

    教学活动设计

    (一)设置学习情境

    1、图形变换:(利用电脑使AB与CD弦变动)

    ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

    ②进一步得出:△APC∽△DPB.

    ③如果将图形做些变换,去掉AC和BD,图中线段PA,PB,PC,PO之间的关系会发生变化吗?为什么?

    组织学生观察,并回答.

    2、证明:

    已知:弦AB和CD交于⊙O内一点P.

    求证:PA·PB=PC·PD.

    (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

    (证明略)

    (二)定理及推论

    1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

    结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD.

    2、从一般到特殊,发现结论.

    对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互相垂直如图,AB是直径,并且AB⊥CD于P.

    提问:根据相交弦定理,能得到什么结论?

    指出:PC2=PA·PB.

    请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

    推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

    3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA·PB.

    若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

    PC2=PA·PB;AC2=AP·AB;CB2=BP·AB

    (三)应用、反思

    例1已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

    引导学生根据题意列出方程并求出相应的解.

    例2已知:线段a,b.

    求作:线段c,使c2=ab.

    分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

    作法:口述作法.

    反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

    练习1如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

    变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是多少?

    将条件隐化,增加难度,提高学生学习兴趣

    练习2如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

    练习3如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC交⊙O于C.求证:PC2=PA·PB

    引导学生分析:由AP·PB,联想到相交弦定理,于是想到延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.

    (四)小结

    知识:相交弦定理及其推论;

    能力:作图能力、发现问题的能力和解决问题的能力;

    思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

    (五)作业

    教材P132中9,10;P134中B组4(1).

    第2课时切割线定理

    教学目标:

    1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

    2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

    3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

    教学重点:

    理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

    教学难点:

    定理的灵活运用以及定理与推论问的内在联系是难点.

    教学活动设计

    (一)提出问题

    1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

    当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

    2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA·PB.

    3、证明:

    让学生根据图2写出已知、求证,并进行分析、证明猜想.

    分析:要证PT2=PA·PB,可以证明,为此可证以PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

    4、引导学生用语言表达上述结论.

    切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

    (二)切割线定理的推论

    1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

    观察图4,提出猜想:PA·PB=PC·PD.

    2、组织学生用多种方法证明:

    方法一:要证PA·PB=PC·PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.(如图4)

    方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.因此△PAD∽△PCB.(如图5)

    方法三:引导学生再次观察图2,立即会发现.PT2=PA·PB,同时PT2=PC·PD,于是可以得出PA·PB=PC·PD.PA·PB=PC·PD

    推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

    (三)初步应用

    例1已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米,PO=10.9厘米,求⊙O的半径.

    分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

    (解略)教师示范解题.

    例2已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

    求证:AE=BF.

    分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.因此它们的积相等,问题得证.

    学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC·CD和BF2=BD·DC等.

    巩固练习:P128练习1、2题

    (四)小结

    知识:切割线定理及推论;

    能力:结合具体图形时,应能写出正确的等积式;

    方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

    (五)作业教材P132中,11、12题.

    探究活动

    最佳射门位置

    国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

    分析与解如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

    故,又,

    OB=30.34+7.32=37.66.

    OP=(米).

    注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

    经典初中教案数学教案-圆


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.

    难点:①圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.

    2、教法建议

    本节内容需要4课时

    第一课时:圆的定义和点和圆的位置关系

    (1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));

    (2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.

    第二课时:圆的有关概念

    (1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;

    (2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.

    第三、四课时:点的轨迹

    条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.

    第一课时:圆(一)

    教学目标:

    1、理解圆的描述性定义,了解用集合的观点对圆的定义;

    2、理解点和圆的位置关系和确定圆的条件;

    3、培养学生通过动手实践发现问题的能力;

    4、渗透“观察→分析→归纳→概括”的数学思想方法.

    教学重点:点和圆的关系

    教学难点:以点的集合定义圆所具备的两个条件教学方法:自主探讨式教学过程设计(总框架):

    一、创设情境,开展学习活动

    1、让学生画圆、描述、交流,得出圆的第一定义:

    定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.

    2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.

    从旧知识中发现新问题

    观察:

    共性:这些点到O点的距离相等

    想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?

    (1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);

    (2)到定点距离等于定长的点都在圆上.

    定义2:圆是到定点距离等于定长的点的集合.

    3、点和圆的位置关系

    问题三:点和圆的位置关系怎样?(学生自主完成得出结论)

    如果圆的半径为r,点到圆心的距离为d,则:

    点在圆上d=r;

    点在圆内d

    点在圆外d>r.

    “数”“形”

    二、例题分析,变式练习

    练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.

    例1求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.

    已知(略)

    求证(略)

    分析:四边形ABCD是矩形

    A=OC,OB=OD;AC=BDOA=OC=OB=OD要证A、B、C、D4个点在以O为圆心的圆上证明:∵四边形ABCD是矩形∴OA=OC,OB=OD;AC=BD∴OA=OC=OB=OD∴A、B、C、D4个点在以O为圆心,OA为半径的圆上.符号的应用(要求学生了解)证明:四边形ABCD是矩形OA=OC=OB=ODA、B、C、D4个点在以O为圆心,OA为半径的圆上.小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)练习1求证:菱形各边的中点在同一个圆上.(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)练习2设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点A的距离等于2cm的点的集合;(2)和点B的距离等于2cm的点的集合;(3)和点A,B的距离都等于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)三、课堂小结问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;(3)注重对数学能力的培养四、作业82页2、3、4.第二课时:圆(二)教学目标1、使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判断真假命题。2、逐步培养学生阅读教材、亲自动手实践,总结出新概念的能力;进一步指导学生观察、比较、分析、概括知识的能力。3、通过动手、动脑的全过程,调动学生主动学习的积极性,使学生从积极主动获得知识。教学重点、难点和疑点1、重点:理解圆的有关概念.2、难点:对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解.3、疑点:学生容易把长度相等的两条弧看成是等弧。让学生阅读教材、理解、交流和与教师对话交流中排除疑难。教学过程设计:(一)阅读、理解重点概念:1、弦:连结圆上任意两点的线段叫做弦.2、直径:经过圆心的弦是直径.3、圆弧:圆上任意两点间的部分叫做圆弧.简称弧.半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;优弧:大于半圆的弧叫优弧;劣弧:小于半圆的弧叫做劣弧.4、弓形:由弦及其所对的弧组成的图形叫做弓形.5、同心圆:即圆心相同,半径不相等的两个圆叫做同心圆.6、等圆:能够重合的两个圆叫做等圆.7、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(二)小组交流、师生对话问题:1、一个圆有多少条弦?最长的弦是什么?2、弧分为哪几种?怎样表示?3、弓形与弦有什么区别?在一个圆中一条弦能得到几个弓形?4、在等圆、等弧中,“互相重合”是什么含义?(通过问题,使学生与学生,学生与老师进行交流、学习,加深对概念的理解,排除疑难)(三)概念辨析:判断题目:(1)直径是弦()(2)弦是直径()(3)半圆是弧()(4)弧是半圆()(5)长度相等的两段弧是等弧()(6)等弧的长度相等()(7)两个劣弧之和等于半圆()(8)半径相等的两个半圆是等弧()(主要理解以下概念:(1)弦与直径;(2)弧与半圆;(3)同心圆、等圆指两个图形;(4)等圆、等弧是互相重合得到,等弧的条件作用.)(四)应用、练习例1、已知:如图,AB、CB为⊙O的两条弦,试写出图中的所有弧.解:一共有6条弧.、、、、、.(目的:让学生会表示弧,并加深理解优弧和劣弧的概念)例2、已知:如图,在⊙O中,AB、CD为直径.求证:AD∥BC.(由学生分析,学生写出证明过程,学生纠正存在问题.锻炼学生动口、动脑、动手实践能力,调动学生主动学习的积极性,使学生从积极主动获得知识.)巩固练习:教材P66练习中2题(学生自己完成).(五)小结教师引导学生自己做出总结:1、本节所学似的知识点;2、概念理解:①弦与直径;②弧与半圆;③同心圆、等圆指两个图形;④等圆和等弧.3、弧的表示方法.(六)作业教材P66练习中3题,P82习题l(3)、(4).第三、四课时圆(三)——点的轨迹教学目标1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;2、培养学生从形象思维向抽象思维的过渡;3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。重点、难点1、重点:对圆点的轨迹的认识。2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。教学活动设计(在老师与学生的交流对话中完成教学目标)(一)创设学习情境1、对“圆”的形成观察——理解——引出轨迹的概念(使学生在老师的引导下从感性知识到理性知识)观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)理解:圆上的点具有两个性质:(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);(2)到定点距离等于定长的的点都在圆上;(结合下图)引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合.因此“到定点距离等于定长的点的轨迹”是圆.轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆”。(研究圆是轨迹概念的切入口、基础和关键)(二)类比、研究1(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;(三)巩固概念练习:画图说明满足下列条件的点的轨迹:(1)到定点A的距离等于3cm的点的轨迹;(2)到∠AOC的两边距离相等的点的轨迹;(3)经过已知点A、B的圆O,圆心O的轨迹.(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)(四)类比、研究2(这是第二次“类比”,目的:使学生的知识和能力螺旋上升.这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.(五)巩固训练练习题1:画图说明满足下面条件的点的轨迹:1.到直线l的距离等于2cm的点的轨迹;2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)练习题2:判断题1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.()2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的圆.()3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线.()4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.()(这组练习题的目的,训练学生思维的准确性和语言表达的正确性.题目由学生自主完成、交流、反思)(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)(六)理解、小结(1)轨迹的定义两层意思;(2)常见的五种轨迹。(七)作业教材P82习题2、6.探究活动爱尔特希问题在平面上有四个点,任意三点都可以构成等腰三角形,你能找到这样的四点吗?分析与解:开始自然是尝试、探索,主要应以如何构造出这样的点来考虑.最容易想到的是,使一个点到另三个点等距离,换句话说,以一个点为圆心,作一个圆,其他三个点在此圆上寻找,只要使这圆上的三点构成等腰三角形即可,于是得到如图中的上面两种形式.其次,取边长都相等的四边形,即为菱形的四个顶点(见图中第3个图).最后,取梯形ABCD,其中AB=BC=CD,且AD=BD=AC,但是这样苛刻条件的梯形存在吗?实际上,只要将任一圆周5等分,取其中任意四点即可(见图中的第4个图).综上所述,符合题意的四点有且仅有三种构形:①任意等腰三角形的三个顶点及其外接圆圆心(即外心);②任意菱形的4个顶点;③任意正五边形的其中4个顶点.上述问题是大数学家爱尔特希(P.Erdos)提出的:“在平面内有n个点,其中任意三点都能构成等腰三角形”中n=4的情形.当n=3、4、5、6时,爱尔特希问题都有解.已经证明,时,问题无解.

    【数学教案-圆的比例线初中教案精选】相关推荐
    铁的性质相关教学方案

    第六章铁第一节铁的性质一.知识教学点1.铁的物理性质。2.铁的化学性质(跟氧气、盐酸、稀硫酸和硫酸铜的反应)。3.钢铁的生锈和防锈。二.重、难、疑点1.重点:铁的化学性质。2.难点:对“铁的化学性质比...

    合理使用洗涤剂

    生活中,我们使用很多种类的洗涤剂,最常见的还是肥皂和洗衣粉。使用的时候要注意些什么问题呢?请听我们细细说来。一、少用洗涤剂原则无论是肥皂还是洗衣粉都有一定的碱性,若长期直接接触后,皮肤表面的弱酸性环境...