三角形的内角和教案
发表时间:2024-06-17最新三角形的内角和教案范文。
教师范文大全小编筛选出来的这篇“三角形的内角和教案”文章绝对值得你一看。老师工作中的一部分是写教案课件,但教案课件不是随便写写就可以的。 详细的教学教案能帮助教师掌握学生的学习情况。我的建议是基于我个人的经验和知识供您参考!
三角形的内角和教案 篇1
教学目标:
1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。
2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。
3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。
教学重、难点:
掌握三角形的内角和是180°。验证三角形的内角和是180°。
学生分析:
在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
教学流程:
一、创设情境,激发兴趣
(课件出示:两个三角形争论,大的对小的说,我的内角和比你大。)
(学生小声议论着,争论着。)
师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?
生:可以把这两个三角形的内角比一比。
生:它们不是一个角在比较,可怎么比呀?
生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。
师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)
【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】
二、动手操作,探索新知
1、初步感知。
师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)
生汇报测量的结果:内角和约等于180°。
师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)
【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】
2、用拼角法验证。
师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?
生:我们手里有一些三角形,可以动手拼一拼。
生:还可以剪一剪。
师:那同学们就开始吧!
(学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)
生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。
生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。
生:钝角三角形的内角和也是180°。
(师板书:三角形的内角和是180°。)
【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】
三、巩固新知,拓展应用
1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。
2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。
通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。
3.师:(出示一个大三角形)它的内角和是多少度?
生:180 °。
师:(出示一个很小的三角形)它的内角和是多少度?
生:180 °。
师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)
师:哪个对?为什么?
生:180°对,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)
生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。
生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。
师:你真聪明。(课件演示。)
四、小结
师:同学们,你们今天学了“三角形的内角和是180°”的新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)
师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?
五、探究性作业
求下面几个多边形的内角和。(图形略。)
【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】
反思:
1、重视动手操作,让学生在探究中收获知识。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养空间观念和动手操作能力。
2、小组合作学习是新课程倡导的学习方式,有利于培养学生的合作意识、探索能力、团队精神。我们要从平时抓起,在平常的课堂中开展小组合作学习,可以是前后四人为一组,深入探究合作学习的方法和途径。这样学生学习方式的转变才能落到实处,才不会变成某些公开课的摆设
三角形的内角和教案 篇2
(4)学生汇报量的方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)
师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?
学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的.平角解决的问题。
这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?
师:你认为这种方法好不好?我们看看是不是这么回事。
(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)
师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。
(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)
学生用的方法会非常多,但它们的思维水平是不平行的。
直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;
拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;
而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。
前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。
本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】
4.验证猜想“三角形的内角和是180度”
教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?
(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?
如果老师把一个角一直往下拽,猜一猜会怎样?
(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)
用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。
本节课的练习由易到难,设计成三个层次。
师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)
我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。
整个教学设计以《新课程标准》的基本理念为指导,做到“导入新课--新,引导探究--实,分层训练--活,新课总结--精”。
三角形的内角和教案 篇3
背景分析:
在学习“三角形的内角和”之前,学生已经学习了三角形的特性和分类,知道平角的度数是180°,并且能够用量角器测量角的大小。“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学习几何知识打下良好的学习基础。
教学目标:
1.通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。
2.会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。
3.体会数学学习的魅力,体验探究学习的乐趣。
教学重难点:
探索和发现三角形的内角和等于180°。
教具准备:
多媒体课件、一副三角板、量角器、三角形纸片。
学具准备:
每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。其中1号学具袋中,还装有表格纸一张。
同学们,今天,老师给大家带来一个小故事,想听吗?
师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学习数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。他常常背着父亲一个人偷偷琢磨。12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。从此以后,父亲不仅支持他学习数学,而且还尽全力帮助他。在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。
师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?
学贵有疑,看到这个课题,你想知道些什么?或者你有什么疑问?(什么是三角形的内角和?三角形的内角和是多少度?)
带着这些问题,我们一起走进今天的探究之旅,老师期待大家的.精彩表现,大家准备好了吗?。
〖评析〗教师用数学家生动的励志故事导入新课,从情绪上深深感染了学生,激发了学生的学习兴趣,唤起了学生的求知欲望,同时,也为数学文化的引入作了必要的铺垫。
师:同学们还认识这些三角形宝宝吗?三角形按角分,能分为锐角三角形、钝角三角形、直角三角形.
师:老师手里拿的是?(三角板)它是什么三角形?(直角三角形)老师把它打在白板上。
师:每个三角形的里面都有3个角,我们把它们称之为三角形的内角,为了方便,我们给他们分别编上编号∠1、∠2、∠3,
师:请同学们拿出2号袋中的三角形,快速找出三角形的三个内角,然后像老师这样给他们分别标上∠1、∠2、∠3
师:这个三角板上的三个内角分别是多少度呢?现在我们把这三个内角的度数加起来是(180°),算得真快,也就是说这个三角形的内角和180°这个三角形的内角和呢?也是180°也就是这两个三角形的内角和都是180°。
师:请大家看这里,如果把这个三角形的三个内角搬个家,都搬到一起,能拼成我们学过的什么叫?(平角)平角是多少度?(180°)
师:这是我们学过的特殊三角形,对吧,那么像黑板上这些一般的三角形内角和会是多少度呢?我们先来猜想一下好不好?谁来猜?同学们都认为三角形的内角和是180°,但口说无凭呀,到底是不是180°我们应该验证一下,对吧?
屏幕出示要求,指名学生读:
想一想,你打算怎样验证,在小组内交流你的想法,共同确定一种验证方法;
想用量的方法验证的小组,请取出1号袋中的表格和三角形,根据表格上的内容完成相应的测量、计算,并向小组长汇报,小组长负责填空汇总;
想用其它方法验证的小组,请取出2号袋中的三角形,小组长做好分工,每两个同学用一个三角形进行验证或一人单独验证,动手前,先讨论讨论该怎么做,然后试着拼一拼;
验证结束后,小组内交流你们的发现,回忆验证过程,做好汇报准备。
学生分组活动,教师巡视指导。(用量的方法的要填写学具袋中的表格)
师:来吧孩子们,该到全班交流的时候了.哪个小组愿意先把你们的成果与大家一起分享。
刚才拼的过程中,老师发现有个孩子特别的难过,因为他觉得这些三角形宝宝太可怜了,我们把这些三角形宝宝都大卸三块儿了,的确是这样,现在动脑筋想想,在不破坏三角形的情况下,能不能想办法把三角形的三个内角弄成一个平角?(折)那你们就试试,(行,不行)到底行不行,老师给大家演示一下,先标出三个内角,把∠1折下来,把∠2、∠3分别靠过来,现在观察一下,这三个角通过折的方法拼成平角了吗?行还是不行,刚才说不行的孩子一定没按这种方法折,下面请按老师的方法试试
用量的方法的小组,你们得出的三角形的内角和都是180°,不是180°的请举手,一样的三角形为何测量得出的结果不一样,是什么原因呢?(误差)由于测量工具测量方法等原因,会难免会有误差,正因为这些误差,导致测量结果五花八门,各不相同,现在你们的疑惑解开了吗?
刚才我们猜想三角形的内角和可能是180°,现在你想说什么?(一定、肯定、绝对、百分之百)
小结:通过刚才同学们的验证,得出了什么结论(板书:结论)三角形的内角和是180°。大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,都把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,都用了转化的策略(板书:转化)。希望大家能把转化的方法运用到今后的学习中去,去解决更多的数学问题。
〖评析〗探索三角形内角和的过程,既是解决数学问题的过程,也是培养学生动手实践能力和科学精神的过程。在这一过程中,学生既经历了新知的形成过程,又获得了成功的体验。
你们想知道12岁的帕斯卡是用什么方法研究的吗?谁来猜一猜?
生:
师:(边演示边介绍)他把长方形分成两个完全相同的直角三角形,其中一个直角三角形的内角和就是180°
师:接下来,他就想其他三角形的内角和是不是180°呢?于是,他任意画了一个三角形并做高,谁看懂他的意思了?
师:由此说明任意三角形的内角和都是180°。你们觉得帕斯卡的方法怎么样?
师:是的,他的方法太巧妙了。今天同学们用自己的聪明才智也研究出了三角形的内角和是180°,老师相信你们的父亲也会为你们感到骄傲!下面,我们就用这个结论,来解决一些数学问题。
〖评析〗通过对数学文化的介绍,让学生了解帕斯卡的证明过程,既开阔了学生的知识视野,要引导学生的思维由具体到抽象,培养了思维的严谨性,同时激发了学生对数学家的崇敬之情,让学生体验到数学逻辑的论证之美,进而产生了对数学的热爱。
(1)猜一猜:在一个三角形中,∠1=30°,∠2=50°,∠3等于多少度?师:让学生回答:说说怎么想的?
(2)2、算一算:三角形每个内角是多少度?师:课件出示后,请大家拿出答题纸快速解答下面的问题:
求出等边三角形每个角的度数?
等腰三角形顶角96°,底角是多少度?
直角三角形的一个锐角是40°,另一个锐角是多少度?
〖评析〗练习设计科学合理,层次清晰,针对性强,让学生较好地巩固了所学知识;拓展性练习不仅加深了学生对新知识的理解和掌握,而且要满足了不同层次学生的认知需要,同时培养了学生思维的灵活性,促进了思维的发展。
课外作业:那么四边形、五边形、六边形的内角和分别是多少呢?作为课后作业,课后探究。
回顾一下今天学的内容,你有什么收获?
大家真的非常了不起,不仅学到了数学知识,更重要的是经历了猜想、验证、得出结论、应用的科学探究的过程,老师送给大家一句话:“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的。——毕达哥拉斯”
其实在历史上有许多数学家都曾经研究过三角形的内角和,最早研究的谁,你们知道吗?
师:NO,另有其人,如果大家感兴趣,课后可以去查一查。
〖评析〗引导学生回顾本节课所学知识,有助于对所学内容的内化和提升。同时,将数学文化自然延伸到到课外,使数学文化贯穿整节课的始终。
三角形的内角和教案 篇4
教学目的:
1、学生通过量、折、拼、剪、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。在应用三角形内角和知识解决问题的过程中促进学生数学思维发展。
3、让学生在探究数学的过程中体验发现的乐趣,增强学好数学的信心。
教学重点:
让学生探究猜想并验证三角形内角和等于180°。
教学难点:
理解所有三角形的内角之和都是180°。
教学准备:
不同类型的三角形纸片,剪刀,量角器。
教学过程:
一、复习旧知,提示课题
1、一个平角是多少度?1个平角等于几个直角?
2、长方形有什么特征?(生汇报:长方形对边相等,有4个角,4个角都是直角)
3、三角形按角分可分成几类?
4、引出内角的概念,我们把图形里面的角叫做内角。三角形有几个内角?三角形三个内角的度数和叫做三角形的内角和。今天我们一起来研究三角形的内角和。(板书课题:三角形的内角和)
设计意图:学生对数学知识的学习,在很多时候都是对已有数学知识的延伸和发展。本节课,我充分认识到学生已有知识对新知的铺垫和孕伏作用,设计了三道复习题,把角的度数,长方形的特征,三角形的分类这些原本零散的数学知识纳入到一个整体,让旧知的复习、新知的孕伏和引入有机的结合起来。
二、创设情境,大胆猜想
1、长方形的内角和是多少度?为什么?如果沿长方形的一条对角线剪开,长方形就变成了两个什么图形?
2、出示三个三角形,说一说分别属于哪一类?(板书:锐角三角形 直角三角形 钝角三角形),判断这三个三角形的内角和谁大?为什么?(板书:内角和)
3、你猜三角形的内角和是多少度?(板书:是180°)
设计意图:数学教学最为重要的是要培养学生对数学的感觉,给学生一双数学的眼睛,由于学生已经知道长方形的内角和是360°,抓住时机,要求学生猜一猜三角形的内角和是多少度,以此培养学生的探索精神和创新意识。
三、动手操作,探究验证。
1、小组合作。
同学们能够用什么方法来验证三角形的内角和是180°,请同学们小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!
2、汇报交流。
谁愿意来给大家介绍你们小组是用什么方法来验证三角形的内角和是180°的?
量一量:
生:我们小组的方法是用量角器测量出三个内角的度数,再求出它们的和。
师:你们的方法是分别测量三个内角的度数,那你们测量的三个内角的度数分别是多少?(生汇报时吩咐学生记录下来并算出内角和)你觉得这个小组的方法怎样?(抽生评价)这种方法可出现误差吗?为什么?(生回答)
师:能不能因此否定我们刚才的猜想呢?还有不同的方法吗?
折一折:
生:我们是通过折一折的方法得出结论的。(边说边演示)。我将直角三角形的两个锐角折向直角,三个顶点重合,我发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°,所以我得出结论:直角三角形的内角和是 180°。
生:我拿一个锐角三角形,把上面的角沿虚线横折,使它的点落到底边上,再将剩下的两个角横折过来,使三个角正好拼在一起,这三个角组成了一个平角,所以我得出结论:锐角三角形的内角和是 180°。
生:我拿一个钝角三角形,用同样的方法去折,发现钝角三角形的三个角也正好拼在一起组成一个平角,所以我得出结论:钝角三角形的内角和是 180°。
生:直角三角形的三个角也可以用同样的方法折拼成一个平角。
师:真是心灵手巧的孩子,让我们把掌声送给他们!动脑筋的同学真多,请你说。
拼一拼:
生:我发现两个直角三角形正好可以拼成一个长方形,长方形的四个角都是直角,所以,长方形的内角和是 360°。再除以2,就得到直角三角形的内角和是180°。
师:能从不同的角度去思考问题,你真棒!
剪一剪,摆一摆:
生:我们将每个三角形的三个角都剪下来,再把每个三角形的三个角的顶点重合,发现每个三角形的三个角都组成了一个平角,这就证明了三角形的内角和是180°。
师:你们只验证了三个三角形,为什么从中能得出“三角形的内角和是180°”的结论呢?
生:因为三角形按角分可以分为三类,钝角三角形,直角三角形和锐角三角形。我们已经通过各种的方法证明了这三种类型的三角形的内角和是180°,所以可以得出“三角形的内角和是180°”的结论。
师:说得真好,我们给他鼓掌。
师概括小结。:刚才同学们用量、折、拼、计算、推理、剪等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,(师手指课题)你们真不错,我为你们成功的学习表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是180°”。
设计意图:新课标注重学生三维目标的培养,在这里,我要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。小组合作是课程改革所倡导的一种学习方式,本节课,我立足于学生的创新意识和实践能力的培养,把学习的时空还给学生,大胆地开展小组合作学习,使学生通过量、折、拼、剪、摆等操作学具活动主动掌握三角形内角和是180°,同时学生的发散思维也能得到有效培养。
四、实践应用,解决问题
1、那么同学们能不能根据三角形的内角和是180°求出三角形中任意一个角的度数,请完成书85页上“做一做”。
2、请完成书88页第9题
(提示:这一题只知道一个角的度数,另一个角是多少度,从哪看出来的?直角三角形中的一个锐角还可以怎样算?)
3、请完成书88页第10题
设计意图:“解决问题”,按学生的认知水平,是在感知、理解、掌握知识后,认知水平得已体现的最高层次。最后让学生运用结论解决实际问题,为学生把知识转化为能力起到积极的促进作用。
五、拓展延伸,活用新知
现在老师手中有一个三角形,我一刀把它剪成两个图形,你猜这两个会是什么图形,它们的内角和是多少度?
把刚才的四边形剪去一个角,得到一个五边形,它的内角和是多少度?
继续剪掉一个角,得到一个六边形,它的内角和是多少度?你发现有什么规律吗?
(学生猜测→动手操作→计算内角和→归纳多边形内角和计算公式)
六、课堂小结,内化知识
今天,你有什么收获?
板书设计:
锐角三角形
因为 直角三角形 内角和是180°
钝角三角形
所以 三角形的内角和是180°
三角形的内角和教案 篇5
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
2、判断
(1)一个三角形中最多有两个直角。 ( )
(2)锐角三角形任意两个内角的和大于90。 ( )
(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )
(4)三角形任意两个内角的和都大于第三个内角。 ( )
(5)直角三角形中的两个锐角的和等于90。 ( )
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形的内角和教案 篇6
教学设计
三角形的内角和定理
(一)一、教材分析
1、三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的重要定理之一。在解决四边形和多边形的内角和时都将转化为三角形的内角和来解决。其中辅助线的作法是把新知识转化为旧知识、用代数方法解决几何问题,为以后的学习打下良好的基础,三角形内角和定理在理论和实践中有广泛的应用。
2、三角形内角和定理的内容,学生在前面的学习中已经熟悉,但在前面的学习是通过实验得出的,要向学生说明证明的必要性,同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添辅助线是解决数学问题(尤其是几何问题)的重要思想方法,它同代数中设末知数是同一思想。
3、二、教学程序设计
1、学习目标
(1)知识与技能 :
掌握“三角形内角和定理”的证明过程,并能根据这个定理解决实际问题。
(2)过程与方法 :
通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:
通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。
2、教学重点:三角形内角和定理的证明思路及应用。
3、教学难点:三角形内角和定理的证明方法。
4、教学过程
(1)创设情境提出问题:我们在七年级曾经把一个三角形的三个内角撕下来拼在一起得到一个平角,由此得到三角形的内角和是180°。(用几何画板演示)定理探索一:用几何画板度量三角形的内角和是180°;
定理的探索二:折叠三角形的三个内角拼到一起,拼成一个平角;
定理的探索三:把三角形剪成三部分,然后把三个内角拼到一起,拼成一个平角。
教师指出:一个几何命题是否正确,需要经过合乎逻辑的推理论证才能得出结论,这样的推理论证过程叫做几何证明。观察、实验等是发现规律的重要途径,证明则是确定结论的必要步骤。
那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。(2)自主探究验证定理 学生回忆证明一个命题的步骤: ①画图
②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。③分析、探究证明方法。
教师引导:要证三角形三个内角和是180°,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?
学生思考与180°有关的角后回答,可拼成:①平角,②两平行线间的同旁内角。教师引导,要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢? 学生通过自主探究,可以得出以下几种辅助线的作法:(教师演示课件)① 如图1,延长BC得到一平角∠BCD,然后以CA为一边,在△ABC的外部画∠1=∠A。
② 如图1,延长BC,过C作CE∥AB
③ 如图2,过A作DE∥AB
④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。
⑤ 如图4,在△ABC内部任取一点P,过P点作QR∥BC,MN∥AB。ST∥AC。
⑥ 如图5,在△ABC外部任取一点P,过P点作QR∥BC,MN∥AB。ST∥AC。
学生可能还有其它画法。
“抓住根本” 抓住“把三个角‘搬’到一起,让三个顶点重合、两条边形成一条直线,以便利用平角的定义”这一基本思想,可以把三个角集中到三角形的某一个顶点;可以把三个角集中到三角形的某一边上;可以把三个角集中到三角形的内部的一点;可以把三个角集中到三角形的外部的一点。学数学要善于抓住不变的根本,又要灵活地在变化中认识、处理和解决问题。让学生学会“抓住根本”,而不在于有几种证明方法。培养学生的推理与证明能力。(3)、辨析与研讨
① 根据平行线的判定及性质,利用同位角把三角形三内角转化为一个平角。
② 根据平行线的性质,利用内错角和同位角,把三角形三内角转化为一个平角。③ 根据平行线的性质,利用内错角,把三角形三内角转化为一个平角。
④⑤ ⑥ 根据平行线的性质,利用内错角、同位角或同旁内角把三角形三内角转化为一个平角。(4)、反思与评价
① 弄清证明命题的必要性及步骤。② 如何将文字语言转化为几何语言。
③ 三角形内角和定理的证明是借助于什么获得(实验、观察、添加辅平行线),平行线是以后几何中常作的辅助线。
④ 添辅助线的技巧:通过平行线把三角形三个内角转化为平角或两平行线间的同旁内角,即把新知识转化为旧知识去解决。(5)、思维拓展(定理应用)
(6)、练习
(7)、小结
1知识内容:三角形内角和定理: 三角形三个内角的和等于180度 2思想方法: 添加辅助线方法;转化的思想;我们证明了三角形内角和定理,证明思想是,运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角。辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它。通过一题多解、一题多变等的训练,使学生养成“说理有据”的态度,尊重客观事实的精神,养成质疑、反思的习惯,并在此基础上增强证明的意识,理解证明的必要性和意义,体会证明的思想,掌握证明的基本方法,体味探索图形性质的过程。体验逻辑的力量,体会“公理化”的数学思想方法。
三角形的内角和教案 篇7
一、教学目标
【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180,并会应用这一知识解决生活中简单的实际问题。
【过程与方法】经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。
【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
二、教学重难点
【重点】三角形内角和定理。
【难点】三角形内角和定理推理的过程。
三、教学过程
(一)导入新课
复习三角形有关的特征,提问:三角形的内角和是多少,如何求。
(二)新课探究
1.猜想三角形的内角和
画几个不同类型的三角形。量一量,算一算,三角形3个内角的和各是多少度?同桌之间相互量一量,交流一下。
师:通过测量,你们发现了什么?
2.操作、验证一般三角形的内角和是180。
师:是不是所有的三角形的内角和都是180,如何验证呢?
(1)剪拼的方法验证jK251.CoM
分组进行剪拼。先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。
三角形的内角和教案 篇8
“三角形内角和”教学设计
教学内容:义务教育教科书《数学》(人教版) 四年级下册第67页例6。 教学目标:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。 教学重点:
学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。 教学难点:
学生理解不同探究方法的内涵和对所得结论的灵活运用。 设计思路:
三角形的内角和是三角形的一个重要特征,它是在学生已经熟悉长方形、平角等有关知识,并掌握了三角形的特征及分类之后的基础上学习的。四年级的学生已具备了初步的动手操作能力、主动探究能力以及合作学习的习惯,他们正处于由形象思维向抽象思维过渡的阶段。《课标》明确指出“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。因此,这节课我将重点引导学生从“猜测—验证—得出结论”展开学习活动,让学生感受这种重要的思维方式。并在教学中渗透“从特殊到一般”、“利用旧知解决新知”、“进行转化”等数学思想。
同时借助交互式电子白板的画图、手写、图片处理、屏幕捕获、隐藏、拖拽、链接及较好的交互功能等,让学生通过自主探索、实验、发现、讨论、交流获得知识,形成结论。
教学准备:多媒体课件、三角尺等。 教学过程:
一、激趣引入
(一)认识三角形内角
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点? 生1:三角形是由三条线段围成的图形。 生2:三角形有三个角,……
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(白板:画弧线,标上∠
1、∠
2、∠3),我们把三角形里面的这三个角分别叫做三角形的内角。 (利用交互式电子白板的画图、手写功能,直接演示找三角形三个内角的过程并标示出来,帮助学生理解三角形的内角的概念。)
(二)设疑,激发学生探究新知的心理 师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理) 生:能。 师:请听要求,画一个有两个内角是直角的三角形,开始。 师:有谁画出来啦? 生1:不能画。
生2:只能画两个直角,围不成三角形。 生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。 师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道? 生:想。
师:那就让我们一起来研究吧! (揭示矛盾,巧妙引入新知的探究)
(利用交互式电子白板的画图、手写功能,让学生直观感受三角形中不可能有2个90度的内角。设置认知矛盾,使学生在矛盾中去发现问题、探究问题。)
二、动手操作,探究新知
(一)研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形) 师:也就是这个三角形各角的度数。它们的和怎样? 生:是180°。
师:你是怎样知道的?
生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么? 生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。 (利用交互式电子白板的手写功能,直接在由三角板抽象出来的三角形上标出各个角的度数并列式求出其内角和。)
(二)研究一般三角形内角和 1.猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。 生1:180°。 生2:不一定。 ……
2.操作、验证一般三角形内角和是180°。 (1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧! 师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
(2)小组汇报结果。
师:请各小组汇报探究结果。 生1:180°。 生2:175°。 生3:182°。 ……
(三)继续探究
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢? 生:把它们剪下来放在一起。 1.用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。 2.汇报验证结果。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。 生3:钝角三角形的内角和还是180°。 3.课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
(此部分内容是本节课的重点及难点所在,因此,在教学中:
1、利用交互式电子白板资源共享中即时显示度数的量角器,令学生上台演示量三角形各个角的大小的操作变得更简单、准确。增强了师生及生生之间的互动性。
2、利用交互式电子白板强大的链接功能,将网络资源链接过来:动画形象演示“拼”的方法验证三角形内角和的过程,弥补了人工操作无法直观再现学生的思维过程的短处。通过以上两点,将学生在研究三角形内角和为什么是180°的思维过程呈现出来,达到突出重点以及突破难点的目的。) 师:我们可以得出一个怎样的结论? 生:三角形的内角和是180°。
(屏幕显示:三角形的内角和是180°学生齐读一遍。)
(利用交互式电子白板的隐藏、拖拽功能,将结论在适当的时候呈现。)
师:为什么用测量计算的方法不能得到统一的结果呢? 生1:量的不准。
生2:有的量角器有误差。 师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因 为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢? 生:不可能。 师:为什么?
生:因为两个锐角和已经超过了180°。 师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2.按要求计算。(数学信息较为隐藏和生活中的实际问题)
(
1、利用交互式电子白板的屏幕捕获、链接等功能,让练习逐步呈现,让学生解决问题时更加专注。
2、利用交互式电子白板的手写功能,将学生解决问题的多种方法同时呈现,进行对比,加强了师生及生生之间的互动交流。)
五、全课小结。
师:今天你学到了哪些知识?是怎样获取这些知识的?(学生自由发言) (利用交互式电子白板的即时记忆功能,用课堂生成的课件资源回顾总结,便于学生再次回顾课堂学习过程,明确学习所得。)
Jk251.com相关文章推荐
经典初中教案三角形的内角
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:三角形内角和定理及其推论。
教学难点:三角形内角和定理的证明
教学用具:直尺、微机
教学方法:互动式,谈话法
教学过程:1、创设情境,自然引入把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?问题2你能用几何推理来论证得到的关系吗?对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。2、设问质疑,探究尝试(1)求证:三角形三个内角的和等于让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。问题1观察:三个内角拼成了一个什么角?问题2此实验给我们一个什么启示?(把三角形的三个内角之和转化为一个平角)问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?学生回答后,电脑显示图表。(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?问题2三角形一个外角与它不相邻的两个内角有何关系?问题3三角形一个外角与其中的一个不相邻内角有何关系?其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。3、三角形三个内角关系的定理及推论引导学生分析并严格书写解题过程第12页
三角形的内角初中教案精选
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:三角形内角和定理及其推论。
教学难点:三角形内角和定理的证明
教学用具:直尺、微机
教学方法:互动式,谈话法
教学过程:1、创设情境,自然引入把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?问题2你能用几何推理来论证得到的关系吗?对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。2、设问质疑,探究尝试(1)求证:三角形三个内角的和等于让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。问题1观察:三个内角拼成了一个什么角?问题2此实验给我们一个什么启示?(把三角形的三个内角之和转化为一个平角)问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?学生回答后,电脑显示图表。(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?问题2三角形一个外角与它不相邻的两个内角有何关系?问题3三角形一个外角与其中的一个不相邻内角有何关系?其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。3、三角形三个内角关系的定理及推论引导学生分析并严格书写解题过程(本例主要加强“辅助线”知识的渗透,通过几种方法的解决,提高学生作辅助线的水平)(由上题D点是三角形ABC内的任意一点,可以将D点的位置特殊化,得到这个题目)通过上面四个例题的分析与讨论,有利于学生基础知识与基本能力的掌握与提高,同时更有利于学生创新意识与创造性思维能力的培养,在练习、讲评等教学环节中,形成师生之间的、学生之间的“双向反馈”是很重要的。4、变式训练,巩固提高根据例4的度数的求法,思考如下问题:(3)如图5,过D点画AB的平行线MN,与AC、BC交于点M、N,则的度数多少?(4)当MN绕着点D旋转过程中,会有怎样的变化?提示:变化1当直线MN与AC、BC的交点仍在线段AC、BC上时,=变化2当直线MN与AC的交点在线段AC上,与BC的交点在BC的延长线上时,变化3当直线MN与AC的交点在线段AC的延长线上,与BC的交点在线段BC上时,=变化4当直线MN与AC、BC的交点在C点时,=经过这样的变式、发展、学习,不仅使学生巩固了所学的数学知识,也使学生体验了数学的运动变化观,使学生的思维得到了培养。5、小结通过设置问题:“本节在知识方面以及在思想方法方面你有怎样的收获?”师生以谈话交流的形式进行小结。强调学生注意:辅助线的作用及运用定理及推论解决问题时,要善于抓住条件与结论的关系。6、布置作业a、书面作业P43#3b、上交作业P42#16、17思考题:板书设计:
有关三角形的内角教案1130字
有关三角形的内角教案(篇一)
一、学生知识状况分析
学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。
活动经验基础: 本节课主要采取的 活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.
二、教学任务分析
上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:
知识与技能:(1)掌握三角形内角和定理的证明及简单应用。
(2)灵活运用三角形内角和定理解决相关问题。
数学能力:用多种方法证明三角形定理,培养一题多解的能力。
情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化 的理性作用.
三、教学过程分析
本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理.
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1) (2) (3) (4)
试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?
(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?
活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.
教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知
活动内容:
① 用严谨的证明来论证三角形内 角和定理.
② 看哪个同学想的方法最多?
方法一:过A点作DE∥BC
∵DE∥BC
DAB=B,EAC=C(两直线平行,内错角相等)
∵DAB+BAC+EAC=180
BAC+ C=180(等量代换)
方法二:作BC的延长线CD,过点C作射线CE∥BA.
∵CE∥BA
ECD(两直线平行,同位角相等)
ACE(两直线平行,内错角相等)
∵BCA+ACE+ECD=180
B+ACB=180(等量代换)
活动目的:
用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养 学生的逻辑推理能力。
教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到 证明的目的.
第三环节:反馈练习
活动内容:
(1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?
(2)△ABC中 ,C=90,A=30,B=?
(3)A=50,C,则△ABC中B=?
(4)三角形的三个内角中,只能有____个直角或____个钝角.
(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.
(6)三角形中三角之比 为1∶2∶3,则三个角各为多少度?
(7)已知:△ABC中,B=2A。
(a)求B的度数;
(b)若BD是AC边上的高,求 DBC的度数?
活动目的:
通过学生的 反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.
教学效果:
学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。
第四环节:课堂小结
活动内容:
① 证明三角形内角和定理有哪几种方法?
② 辅助线的作法技巧.
③ 三 角形内角和定理的简单应用.
活动目的:
复习巩固本课知识,提高学生的掌握程度.
教学效果:
学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.
课后练习:课本第239页随堂练习;第241页习题6.6第1,2,3题
四、教学反思
三角形的有关知识是空间与图形中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:
(1) 通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。
(2) 充分展示学生的个性,体现学生是学习的主人这一主题。
(3) 添加辅助线是教学中的一个难点, 如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。
有关三角形的内角教案【篇二】
【教学内容】:
人教版义务教育课程标准试验教科书数学四年级下册第67页。
【设计理念】
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
【学情分析】
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
【学习目标】
1、通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。
2、学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。
3、在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
4、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
【教学重点】
探索和发现“三角形的内角和是180°”。
【教学难点】
运用三角形的内角和解决实际问题。
【教学准备】
教师:多媒体课件、剪好的不同类型的三角形。
学生:量角器、剪刀、剪好的不同类型的三角形。
【教学过程】
一、创设情景,引出问题
1、猜谜语。
师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(课件出示谜语)。
师:打一几何图形。猜猜看!
学生猜谜语。
根据学生的回答,课件出示谜底。
师:真是三角形,同学们的反应真快!
2、复习三角形的内容。
其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?
指名学生回答。
(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)
3、引出课题。
师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。
(板书课题:三角形的内角和)
二、探究新知
1、讨论、交流验证知识的方法。
师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)
学生汇报:①用量的方法;②用拼的方法;③用折的方法......
2、操作验证。
师:同学们的点子还真多!现在请同学们拿出准备好的三角形,
选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!
3、学生汇报。
师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?
学生汇报,教师适时板书。
①用量的方法:
指名学生汇报度量的结果,教师板书。(指两名学生汇报)
教师白板演示测量方法,并计算和板书出结果。
教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)
师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?
②用拼的方法
a、学生汇报拼的方法并上台演示。
我这里也有一个钝角三角形,请两名同学上台演示。
b、请大家四人小组合作,用他的方法验证其它三角形。
c、展示学生作品。
d、师课件展示。
师:我们用量、拼得到了180度,还有什么方法?
③用折的方法
师:还想向同学们请同学们看一看他是怎么折的(课件演示)。
师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?
教师根据学生板书:(任意)三角形的内角和是180度。
④数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(课件出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。
三、巩固练习
数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!
1、课件出示:我是小判官(对的打“√”错的“×”。)
强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?
教师:为什么不是360°?学生回答。
2、接下来我要奖励你们一个游戏:《帮角找朋友》
3、求未知角的度数。
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
①课件出示第一个三角形,学生尝试独立完成,教师巡视。
教师:刚才,我们利用了三角形的什么?
②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。
a、我三边相等;b、我是等腰三角形,我的顶角是96°。c、我有一个锐角是40°。
教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。
四、拓展延伸
师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(课件出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?
接着让学生尝试求5边形和6边形的内角和。
小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°
五、课堂总结。
师:这节课你有什么收获?
学生自由发言。
师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。
同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。
六、作业布置
完成教材练习十六的第1、3题。
七、板书设计:
(任意)三角形的内角和是180°
∠1+∠2+∠3=180°
度量剪拼折拼
有关三角形的内角教案【篇三】
探索三角形内角和的度数以及已知两个角度数求第三个角度数。
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
三。自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示
2.师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四。巩固练习,知识升华。
1.完成课本第28页的“试一试”第三题。
2.想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3.有一个四边形,你能不用量角器而算出它的四个内角和吗?
试一试,看谁算得快。
师:谁来说说自己的计算过程?
角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是 180 度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生: ……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
开始吧!(学生研究,师巡回指导)预设时间:5 分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
( 预设: 如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师: 那请你说一下你度量的结果好吗?
( 生汇报度量结果)
师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?
生:180 度。
师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180 度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生 1 :量的不准。
生 2 :有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180 度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
有关三角形的内角教案(篇四)
探索与发现:三角形内角和
课型
新授课
设计说明
本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。
1.重视知识的探究与发现。
在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。
2.重视学生的合作探究学习。
使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。
课前准备
教师准备:PPT课件 量角器 直尺 三角尺
学生准备:量角器 三角尺
教学过程
一、常识导入。(3分钟)
1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。
2.导入新课:这节课我们也来验证一下三角形的内角和。
1.倾听教师的介绍,了解帕斯卡。
2.明确本节课的学习内容。
1.填空。
(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分钟)
(一)量算法。
1.探究特殊三角形的内角和。
(1)出示一副三角尺,引导学生说一说各个角的度数。
(2)引导学生算一算它们的内角和各是多少度。
(3)引导学生得出结论。
2.探究一般三角形的内角和。
(1)引导学生猜一猜其他三角形的内角和是多少度。
(2)组织学生验证一般三角形的内角和是180°。
①引导学生量出每个内角的度数,再计算三个内角的和。
②引导学生分工合作,把结果填入记录表中。
③引导学生说说自己的发现。
(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。
(二)剪拼法。
1.组织学生用剪拼的方法求三角形的内角和。
2.引导学生总结发现。
3.课件演示,得出三角形的内角和是180°的结论。
(三)折拼法。
1.引导学生结合剪拼法尝试折拼法。
2.引导学生得出结论。
3.课件演示折拼法。
(一)1.(1)说出每个三角尺中各个角的度数。
①90°;60°;30°。
②90°;45°;45°。
(2)独立算出每个三角尺的内角和。
(3)得出结论:这两个三角尺的内角和都是180°。
2.(1)同桌之间互相说说自己的看法。
猜测:一种是内角和可能是180°,另一种是内角和一定是180°。
(2)小组合作进行探究,量一量,算一算,说一说。
三角形种类
每个内角
的度数
三个内
角的和
锐角三角形
65°
46°
68°
179°
钝角三角形
110°
25°
46°
181°
等腰三角形
70°
55°
55°
180°
等边三角形
60°
60°
60°
180°
通过观察发现:三角形的内角和都在180°左右。
(3)听老师讲解,明确三角形的内角和是180°。
(二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。
2.发现三角形的三个内角正好拼成了一个平角,也就是180°。
3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。
(三)1.动手折一折、拼一拼。
2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。
3.观看课件演示,再次明确三角形的内角和是180°。
2.算一算。
在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?
3.在能组成三角形的三个角的后面画“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一个三角形,其中一个角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、巩固练习。(16分钟)
把正确答案的序号填在括号里。
1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。
A.90° B.180° C.360°
2.一个三角形中有两个锐角,则第三个角( )。
A.也是锐角
B.一定是直角
C.一定是钝角
D.无法确定
小组合作,选一选,明确答案。
1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。
2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。
6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?
四、课堂总结,拓展延伸。(3分钟)
1.总结本节课的学习内容。
2.布置课后作业。
谈自己本节课的收获。
【荐】三角形的内角和教案怎么写(4篇)
三角形的内角和教案(篇一)
教材分析
教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。
教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。="background:yellow;">
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。
学情分析
学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。
要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。
教学目标
1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
教学重点和难点
教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。
教学难点:让学生经历探索和发现三角形的内角和是180°的过程。
教学过程:
(一)、激趣导入:
1、认识三角形内角
我们已经认识了什么是三角形,谁能说出三角形有什么特点?
(三角形是由三条线段围成的图形,三角形有三个角,…。)
请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角
形的内角。(这里,有必要向学生直观介绍“内角”。)
2、设疑激趣
现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)
同学们,请你们给评评理:是这样吗?
现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)
(二)、动手操作,探究新知
1、探究特殊三角形的内角和
师拿出两个三角板,问:它们是什么三角形?
(直角三角形)
请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。="background:yellow;">
(由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)
从刚才两个三角形内角和的计算中,你们发现了什么?
(这两个三角形的内角和都是180°)。
这两个三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形内角和
(1).猜一猜。
猜一猜其它三角形的内角和是多少度呢?(可能是180°)
(2).操作、验证一般三角形内角和是180°。
所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
(可以先量出每个内角的度数,再加起来。)
测量计算,是吗?那就请四人小组共同计算吧!
老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:
(3)小组汇报结果。
请各小组汇报探究结果
提问:你们发现了什么?
小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。="background:yellow;">
3继续探究
(1)动手操作,验证猜测。
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?
(先小组讨论,再汇报方法)
大家的办法都很好,请你们小组合作,动手操作。
(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。
学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)="background:yellow;">
我们可以得出一个怎样的结论?(三角形的内角和是180°)
引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。
5、辨析概念,透彻理解。
(出示一个大三角形)它的内角和是多少度?
(出示一个很小的三角形)它的内角和是多少度?
一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)
把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)
这两道题都有两种答案,到底哪个对?为什么?
(学生个个脸上露出疑问。)
大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。
经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°
(三)小结="background:yellow;">
刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
(四)、巩固练习,拓展应用
下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
1、求三角形中一个未知角的度数。
(1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
(2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判断
(1)一个三角形的三个内角度数是:90°、75°、25°。()="background:yellow;">
(2)一个三角形至少有两个角是锐角。()="background:yellow;">
(3)钝角三角形的内角和比锐角三角形的内角和大。()="background:yellow;">
(4)直角三角形的两个锐角和等于90°。()="background:yellow;">
3、解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
4、拓展练习。
利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)
小组的同学讨论一下,看谁能找到最佳方法。
学生汇报,在图中画上虚线,教师课件演示。
请同学们自己在练习本上计算。
(四)、课堂总结="background:yellow;">
通过这节课的学习,你有哪些收获?
三角形的内角和教案【篇二】
设计说明
三角形的内角和等于180°是三角形的一个重要特征,明确三角形的内角和等于180°是以后学习和解决实际问题的基础。
1.让学生在生动具体的情境中学习数学。
《数学课程标准》指出:在教学中,教师应充分利用学生的生活经验,设计生动有趣、直观形象的数学教学活动,如讲故事、直观演示、模拟表演等,激发学生的学习兴趣,让学生在生动具体的情境中理解和掌握数学知识。在本节课的教学设计中,为了增强学生的学习兴趣,使其快速、积极、主动地投入到学习中,上课伊始的故事导入以及新知识的情境创设都能把学生带入快乐的学习氛围中。
2.通过操作、观察、猜测、交流,使学生体验数学知识的形成过程。
在本节课的设计中,对于三角形的内角和等于180°这一结论没有直接给出,而是通过量、算、剪、拼、折等活动证实了三角形的内角和等于180°,使学生在自主获取知识的过程中,培养了创新意识、探索精神和实践能力。
课前准备
教师准备 PPT课件 量角器 直尺
学生准备 量角器 直尺 各种三角形
教学过程
第1课时 三角形内角和(1)
⊙故事引入
三角形的家庭是一个团结的大家庭。但今天,三角形的家庭内部却发生了争论,一个钝角三角形说:“我的钝角比你们的角都大,所以我的内角和最大。”一个锐角三角形说:“我的个子比你高,我是大三角形,你是小三角形,所以我的内角和肯定比你大。”一个直角三角形说:“不能只看一个钝角大就说内角和大,也不能只看个子,这样不公平。”其他的三角形也跟着争执不休,都说自己的内角和最大。这时,家庭里的王者来了,听了它们的诉说,也糊涂了。什么是三角形的内角?什么是三角形的内角和呢?
(课件演示三条线段围成三角形的过程)
师生共同小结:三条线段围成三角形后,在三角形内形成了三个角,这三个角就是三角形的三个内角(课件闪烁三个内角)。这三个内角的度数之和就是这个三角形的内角和。
导入:到底谁说得对呢?这节课我们一起来探究三角形的内角和。[板书课题:三角形内角和(1)]
设计意图:由故事引入,激发学生的学习兴趣,并通过故事提出问题,带着对问题的思考,唤起学生的求知欲望,从而使他们主动投入到学习中去。
⊙自主探究,合作交流
1.提出问题。
师:你有什么办法来比较两个三角形的内角和?
2.量一量,算一算。
(1)出示活动要求。
①在练习本上画一个锐角三角形、一个直角三角形和一个钝角三角形。
②用量角器测量所画三角形的各个内角的度数,把测量结果记录在表格中,并计算出每个三角形的内角和。
(2)小组合作,量一量,算一算。
(3)交流汇报。
师:观察计算结果,你发现了什么?
引导学生发现每个三角形的内角和都在180°左右。
三角形的内角和教案【篇三】
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。
重点、难点:
经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。
三角形内角和是180°的'探索和验证。
教学过程:
一、揭示课题
1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)
出示课件
2、提出问题,为后面做铺垫。
现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。
孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。
二、新授
1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)
指名汇报结果并板书(至少一种一个板书),有不同意见的举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)
师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?
(三角形的内角和都是一样大的,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)
1、拼一拼,折一折
孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。我们一起来:拿出一个三角形(不管形状),撕下三个角,然后拼在一起(注意三个角的顶点要在同一个点上)你们发现了什么?(拼成了一个平角,这一点就是平角的顶点)
我们再拿出一个三角形,折一折(注意科学的严谨性,折的时候不留很宽的缝隙)你又发现了什么?(这个三角形还是组成了一个平角)
通过这三次实验,我们可以得出结论:三角形的内角和等于180°,不分形状,不分大小,任何一个三角形的内角和都是180°
此时,这三个三角形还争吵吗?它们都心服口服了。
孩子们,你们真了不起,轻而易举就平息了一场争吵。现在你能不能利用所学知识解决一些问题呢?
三、练习
1、抢答游戏(答对的给你的那一小组加一分)
①
这个三角形的内角和是多少度。
②
把这个三角形平均分成两个小三角形,每个小三角形是多少度。
③
这个小三角形再分成一大一小两个三角形,这个三角形的内角和分别是多少度?
④
三个小三角形拼成一个更大的三角形,它的内角和是多少度?
2、智慧角
3、判断(用手语表示)(哪个小组同学全部举手,就由哪个小组回答,口说手划答对加一分)
4、知识扩展
其实三角形的内角和是一个小朋友发现并提出来的,当时他只有12岁,比你们大一点点,真了不起,你们想知道他是谁吗?(帕斯卡)
出示课件
孩子们,其实你们跟他们同样聪明,以后,我们就利用所学知识去发现探索新的知识和规律,只要努力,就一定会成功的,孩子们加油吧!
四、总结
任何一个三角形不分大小,不分形状,它们的内角和都是180°
三角形的内角和教案【篇四】
教学目标:
1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。
2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。
3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。
教学重、难点:
掌握三角形的内角和是180°。验证三角形的内角和是180°。
学生分析:
在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
教学流程:
一、创设情境,激发兴趣
(课件出示:两个三角形争论,大的对小的说,我的内角和比你大。)
(学生小声议论着,争论着。)
师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?
生:可以把这两个三角形的内角比一比。
生:它们不是一个角在比较,可怎么比呀?
生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。
师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)
【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】
二、动手操作,探索新知
1、初步感知。
师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)
生汇报测量的结果:内角和约等于180°。
师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)
【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】
2、用拼角法验证。
师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?
生:我们手里有一些三角形,可以动手拼一拼。
生:还可以剪一剪。
师:那同学们就开始吧!
(学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)
生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。
生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。
生:钝角三角形的内角和也是180°。
(师板书:三角形的内角和是180°。)
【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】
三、巩固新知,拓展应用
1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。
2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。
通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。
3.师:(出示一个大三角形)它的内角和是多少度?
生:180 °。
师:(出示一个很小的三角形)它的内角和是多少度?
生:180 °。
师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)
师:哪个对?为什么?
生:180°对,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)
生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。
生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。
师:你真聪明。(课件演示。)
四、小结
师:同学们,你们今天学了“三角形的内角和是180°”的新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)
师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?
五、探究性作业
求下面几个多边形的内角和。(图形略。)
【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】
反思:
1、重视动手操作,让学生在探究中收获知识。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养空间观念和动手操作能力。
2、小组合作学习是新课程倡导的学习方式,有利于培养学生的合作意识、探索能力、团队精神。我们要从平时抓起,在平常的课堂中开展小组合作学习,可以是前后四人为一组,深入探究合作学习的方法和途径。这样学生学习方式的转变才能落到实处,才不会变成某些公开课的摆设
【课件模板】数学三角形的内角教案.doc
按照惯例,老师必须撰写自己的教案,我们可以通过教案来进行更好的教学,写出一份教学方案需要经过精心的准备,优秀的教案是什么样子的?小编为大家收集整理了【课件模板】数学三角形的内角教案.doc,希望能够帮助到您。
【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。
【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。
【学情分析】:
学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
【学习目标】:
1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
【评价任务设计】:
1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。
2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。
3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。
【重难点】
教学重点:探索和发现三角形的内角和是180°。
教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°
【教学过程】
一、复习准备。
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?
二、探究新知
(一)创设情境,生成问题,认识三角形的内角及内角和
(播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的。”
师:动画片看完了,请大家想一想,什么是三角形的内角和?
师引导学生说出三角形三个内角的度数和叫做三角形的内角和。
多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。
(达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫)
(二)、引导猜测三角形的内角和是180度
师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?
预设:学生回答直角三角形。
师:你为什么这么认为呢?
生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。
(达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)
(三)、验证三角形的内角和是180度
1.确定研究范围
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!
师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?
2.操作验证
教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。
智慧锦囊:
(1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。
(2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?
3.汇报交流
师:谁来汇报你的验证结果?
(1)测算法
师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?
(2)剪拼法
(3)折拼法
师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!
(4)推算法
①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)
师:直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。
课件演示
②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。
4.总结提炼
师:孩子们,刚才我们通过“量——拼——折——推”的方法分类验证了三角形的内角和是( )度?
现在可以下结论了吗?
(板书:三角形三个内角和等于180°。)
师:那在“三角形的争吵中”谁是对的?
(达成目标3。此环节让学生通过“量——拼——折——推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)
(四)利用三角形内角和是180解决问题
1、看图,求出未知角的度数。
2、书本85页“做一做”
在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。
(达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)
三、目标达成检测方案:
1、求出三角形各个角的度数。
2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。
四、课堂小结,提升认识
同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?
师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的'自己
相似三角形
教学建议
知识结构
本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
的概念是本节的重点也是本节的难点.是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性.对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误.
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识
4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握的概念,理解相似比的概念.
2.使学生掌握预备定理,并了解它的承上启下的作用.
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.
4.通过学习,培养由特殊到一般的唯物辩证法观点.
二、教学设计
类比学习、探索发现.
三、重点、难点
1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识.
2.教学难点:是相似比的概念及找对应边.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.
的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对概念的本质的认识,教学时可预先准备几对,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
定义:对应角相等,对应边成比例的三角形,叫做
符号“∽”,读作:“相似于”,记作:∽,如图所示.
∴∽
反之亦然.即对应角相等,对应边成比例(性质).
∵∽,
∴
另外,具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
对应边的比K,叫做相似比(或相似系数).
注:①两个的相似比具有顺序性.
如果与的相似比是K,那么与的相似比是.
②全等三角形的相似比为1,这也说明了全等三角形是的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成BC截两边所得,其中,本质上与右图是一致的.
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有.
【小结】
1.本节学习了的概念.
2.正确理解相似比的概念,为以后学习的性质打下基础.
3.重点学习了预备定理及注意的问题.
七、布置作业
教材P238中2,3.
八、板书设计
苏教版三角形教案
在众多文章中栏目小编看到了一篇令人深思的“苏教版三角形教案”。教案课件是老师上课预先准备好的,而课件内容需要老师自己去设计完善。 学生反应可以帮助教师调整教学方案,提高教学效果。我们将为您提供更多的人才招聘和培养建议!
苏教版三角形教案 篇1
教学目标
(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
教学重点和难点
重点:掌握三角形面积的计算方法。
难点:理解三角形面积计算公式的推导过程。
课前准备
1.每个小组准备两条洗净叠平的红领巾,2个完全相同的锐角三角形、钝角三角形,几个任意三角形和一把剪刀。
2.教师用吹塑纸剪好两个完全相同的直角三角形、锐角三角形、钝角三角形,及各种图形的投影片。
教学过程设计
(一)复习准备
1.出示投影片:
苏教版三角形教案 篇2
:
三角形是几何学中最基础的图形之一,它在数学领域中有着举足轻重的地位。教育界也十分注重三角形的教学,因为它不仅有助于学生发展逻辑思维和几何推理能力,还能提高学生的数学素养。本教案将详细介绍苏教版三角形教学的具体内容和安排,旨在帮助学生更好地理解三角形的性质和应用。
一、教学目标
1. 理解三角形的定义,并能够正确区分三角形和其他几何图形;
2. 掌握三角形的分类方法,包括按边长、按角度和按边长与角度的关系;
3. 掌握计算三角形的周长和面积的方法,能够应用于实际问题解决;
4. 培养学生逻辑思维和几何推理能力,提高数学素养。
二、教学重难点
1. 三角形的分类方法,包括按边长、按角度和按边长与角度的关系;
2. 如何计算三角形的周长和面积,以及应用于实际问题。
三、教学准备
1. 教师准备课件、三角形模型、实物三角形和试题等教学辅助材料;
2. 学生准备直尺、铅笔、纸等文具。
四、教学过程
1. 热身导入
为了让学生对三角形有初步了解,可以通过一些有趣的启发性问题开展讨论。例如,让学生观察周围环境中的三角形,找出它们的特点和区别。这样可以激发学生的兴趣,为后续教学打下基础。
2. 三角形的定义和分类
教师通过课件和实物三角形的展示,简单明了地介绍三角形的定义和分类方法。给出三角形的定义:三个不在一条直线上的点连成的图形称为三角形。然后,按边长和角度的特点分别介绍等边三角形、等腰三角形、直角三角形和普通三角形等的定义和特点。
3. 三角形的性质和应用
通过示意图和实例,教师讲解三角形的性质和应用。比如,角的对边是边的比例是相等的,如果两个角相等,则对应边也相等。接着,教师可以通过几个实际问题来引导学生应用三角形的性质解答问题,如计算台阶的高度、楼房的高度等。
4. 周长和面积的计算
教师通过计算实例,引导学生掌握计算三角形的周长和面积的方法。介绍周长的概念和计算公式,即三角形的周长等于三条边长的和。然后,讲解面积的概念和计算公式,即三角形的面积等于底边乘以高的一半。通过例题和练习题让学生巩固掌握计算的方法。
五、教学拓展
为了巩固学生的知识和拓展思维,可以引导学生进一步思考三角形的应用。例如,介绍世界上一些建筑物采用三角形结构的原因,以及其他与三角形相关的数学领域的知识。
六、课堂小结
教师对本节课的重点内容进行小结,概括三角形的定义、分类、性质和应用。并提醒学生复习温习所学内容。
七、作业布置
布置相应的作业,要求学生巩固课堂学习内容。如练习计算三角形的周长和面积,解答与三角形相关的应用问题。
八、教学反思
教师应及时反思本节课的教学效果,总结学生的学习情况,以便调整教学策略和下一节课的教学安排。
通过本教案的设计,学生将能够全面理解三角形的性质和应用,掌握三角形的分类、周长和面积的计算方法。同时,通过实际应用问题的解答,培养学生的逻辑思维和几何推理能力,提高数学素养。希望本教案能为苏教版三角形教学提供一定的指导和参考。
苏教版三角形教案 篇3
教学目标:1理解三角形面积计算公式的推导过程。
2掌握三角形面积的计算方法。
3引导学生积极探索解决问题的策略,发展动手操作、
观察、分析、推理、概括等多种能力。
4培养学生在生活实际中发现问题、独立思考、创新思
维,用旧知识转化为新知识来解决新问题的能力。
教学重点:理解三角形面积计算公式的推导过程。
教学难点:理解三角形面积是同底(长)等高(宽)长方形面积的
一半。
教学准备:教学软件、三角形学具。
教学过程:
一.复习铺垫。
1.数一数下图中有几个直角三角形。
2.我们学过计算哪些图形的面积?(长方形和正方形)
怎么计算他们的面积?
根据学生回答板书:
正方形的面积=边长边长
长方形的面积=长宽
3.出示:你会计算它的面积吗?
103
44
10310
想这样将上图通过剪拼成一个长方形来计算面积的方法,我们称为割补法。
二.创设情景,引入新课。
师:让天更蓝、水更清、地更绿,二十一世纪是以环保为主题的世界。我校正在开展创建绿色学校的活动,我们五(2)班的同学也积极投入到这项活动中,认养了校园里的一块地,要在这块地铺上草坪。同学们来到实地考察地形。猜猜看,他们想了解这块地的那些情况?三角形面积.doc(电脑演示)
根据学生回答板书:三角形面积
师:你会计算它的面积吗?你会计算那些图形的面积?
师:能不能把三角形转化成学过的图形呢?
二、动手操作,推导公式。
1请学生从老师提供的材料中,任意选取一个或两个三角
形,以小组为单位,通过剪一剪、拼一拼、折一折,看能
不能把三角形转化成我们已经学过的图形。
根据学生汇报媒体演示:
(1)两个直角三角形拼成一个长方形。
(2)两个锐角三角形剪拼成一个长方形。
(3)两个钝角三角形怎么拼呢?先把一个钝角三角形旋转一下,你发现什么?学生会发现两个钝角三角形能剪拼成一个长方形。
2师提问:
(1)拼成的长方形面积与原来每个三角形的面积有什么关系?
(2)长方形的长和宽分别是原三角形的那部分?
媒体演示后板书:S长=长宽
S三=底高2
(3)三种情况的分析。
钝角三角形、锐角三角形都要通过剪拼的方法转化成长方形,那么直角三角形可不可以也用剪拼的方法转化成长方形?
学生讨论后交流,演示。三角形面积2.doc(电脑演示)
对,所有的三角形都能通过剪拼的方法转化成长方形,而直角三角形比较特殊,它不剪拼也能转化为长方形。
3师:除了用剪拼的方法将两个三角形转化成长方形外,还有没有其他方法呢?请大家先分组讨论、操作,再汇报。
师:你是怎么转化的?拼成的图形与原三角形的面积有什么关系?长方形的长与宽是原三角形的哪部分?
媒体演示:三角形面积演示文稿1.ppt
(1)将一个直角三角形折成长方形。
(2)将一个锐角三角形剪拼成长方形。
都同样得出三角形的面积=底高2。
师:如果用母S表示三角形的面积,用字母a表示三角形的底,用字母h表示三角形的高,那么三角形的面积公式可以写作S=ah2。
问:同学们,根据公式,要求三角形的面积需要知道哪些条件?
(三角形的底和高)
三、公式运用,巩固练习。
1通过同学们自己动手操作,我们已经找出了三角形面积的计算公式,现在我们来算一算课的一开始认养的那块土地面积好吗?
媒体演示将土地标上底和高,请学生算出面积。
2再请大家看这一题。
出示例1一条红领巾的底边长100厘米,它的高33厘米,求红领巾的面积。
指导学生的书写格式。
学生尝试练习,再看书核对。
3计算下面三角形的面积。(单位:厘米)
12122014
7
14810
4.拓展练习。
电脑演示:同学们,你们知道上海将在20xx年申办什么?世博会。我们的城市将以新的面貌迎接这次盛会,请你想办法把街道两旁的旧建筑换新颜。你有什么好办法?可以给旧建筑加顶。
问:加上去的彩钢板是什么形状?要几块?电脑显示各种形状的彩钢板。供学生选择。(电脑显示三角形的底和高)学生再计算面积。算对了,彩钢板就贴在旧建筑顶上。
四、总结。
今天同学们通过自己动手,学会了什么?
苏教版三角形教案 篇4
教学内容:p.22、23、24(想想做做)
教学难点:认识两边之和大于第三边
教学目标:
1、使学生联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,了解三角形两边之和大于第三边。
2、使学生体会单侥幸是日常生活中常见的图形,并在学习活动中进一步产生学习图形的兴趣和积极性。
教学准备:学具盒、尺等
教学过程:
一、导入:
出示例题图,问:在图上我们可以找到一种很常见的图形,是什么?(三角形)
生活中的三角形随处可见,说说哪些地方也能看到?
揭示课题:认识三角形
二、做三角形:
1、我们可以用不同的方法来得到一个三角形,利用手边的材料,比比谁的方法多?
交流:(1)、用小棒摆。讲评时注意:小棒摆的时候一定要首尾相接,不能有多出来的部分。
(2)、在钉子板上围。讲评时注意:只要有三个顶点,如果发现边不够直的话,需要把三角形调整得大一些。
(3)、用三角板或尺上的其他三角形直接描画。
(4)、在纸上分别画围起来的三条线段,也能得到一个三角形。
2、三角形各部分名称:
一起动手画一个三角形,说说各部分的名称:3个顶点、3条边、3个角
三、三边关系:
1、是不是所有的三根小棒都能围成一个三角形?
用学具盒里的小棒分别摆一摆,是不是都能围成一个三角形呢?
学生摆完后交流:(1)同一种颜色(一样长)的小棒肯定是能摆成一个三角形的。
(2)一红两绿这三根小棒是不能围成一个三角形的
小结:看来并不是所有的三根小棒都能围成三角形。那为什么会围不成了呢?
2、探究不能围成三角形的原因:
(1)说说你用一红两绿三根小棒怎么就围不成三角形了呢?
(两根绿的太短了,碰不到。)画一画(图略)
在图上分别标出三边为a、b、c,a+b<c不能围成三角形
(2)想象:如果把一根绿的换成长一点的,和原来那根绿的合起来正好和红的一样长,行不行?画一画(图略)
在图上分别标出三边为a、b、c,a+b=c不能围成三角形>
(3)那究竟什么时候能围成三角形呢?
可能会有学生会猜想,a+b>c
再用小棒摆一摆,摆完后再比一比,是不是符合a+b>c?
结合画图,指出:当两条边的长度和小于第三边的时候,这两条边根本就不能碰到,所以不能围成三角形;当两条边的长度和等于第三边的时候,就变成了3条线段重合在一起的一条线段,不是三角形;只有当两边的长度和大于第三边的时候,那它们就会在第三边上面的某一处碰到,就围成了一个三角形。
3、练习巩固:
(1)有这样两根小棒,分别是6厘米和8厘米,第三根小棒多长那么它们就能围成一个三角形?说说理由。你发现了什么规律?
(先可考虑最短的,如果是2厘米,那么和6厘米的合起来正好是8厘米,只能重合在一起,变成线段,所以至少要比2厘米长一点,在整数范围里,那至少就得3厘米。再从最长的角度考虑,6厘米和8厘米的合起来要14厘米,不能有14厘米长,那样也是重合后变成了线段,应该要比14厘米稍微短一点,即13厘米。)
(发现:比两边之差多1,比两边之和少1)
(2)继续练习,如:6厘米和6厘米,3厘米和4厘米
四、完成书上的想想做做:
1、在点子图上画出两个三角形:
指出:画的时候,要把三角形的三个顶点和点子重合。
2、下面哪几组中的三条线段可以围成一个三角形?为什么?
在学生交流完后追问第一种情况:那如果老师把2厘米的加上6厘米的,不就变成大于4厘米,那就可以围成三角形了。这样的判断对不对?为什么?
(6厘米是其中最长的一条边,它单独一条就比别的两条都长,所以,要用比较短的边合起来,然后和最长的比。)
3、从学校到少年宫有几条路线?走哪一条路最近?
请你用今天学得的知识来解释这一现象。
五、全课总结:
本课你懂得了什么。
苏教版三角形教案 篇5
教学内容:p.26、27
教学重点:会按角的大小给三角形分类。
教学目标:
1、让学生在给三角形分类的探索活动中发现和认识锐角三角形、直角三角形和钝角三角形。
2、让学生在实际操作中发展空间观念。
教学准备:三角板等
教学过程:
一、复习角的分类:
角是有大有小的,角按大小可以分成哪几类?
老师随学生回答依次板书:锐角、直角、钝角、平角、周角
这些角有的度数是确定的?分别是多少度?
锐角和钝角的度数是不确定的,但有一个范围,谁来说一说?
板书整理成:锐角、直角、
钝角、
平角、
周角
1o~89o、90o、91o~179o、180o、360o
指出:89o、90o、91o这三种度数非常的接近很难判断,所以当看到接近直角的角时,都要用三角板上的直角量一量。
二、学习三角形的分类:
1、老师画一个直角。再连接两点,问:这样画得到的三角形叫什么三角形?
(板书:直角三角形)
老师再画一个钝角,并连接两点,问:这样画得到的三角形叫什么三角形?
(板书:钝角三角形)
联想:刚才我们分别先画一个直角和钝角,再连接就得到了一个直角三角形和一个钝角三角形;如果我先画一个锐角,再连接是不是也会得到一个锐角三角形呢?
请你试一试。交流(有意识选择开始画的锐角较小的学生来交流):
(1)连接后可能得到的是一个钝角三角形。
问:你怎么知道现在这个三角形是钝角三角形?
通过说理,使学生明白:判断的时候只要看其中最大的一个角,如果这个最大的角是钝角,那这个三角形就是钝角三角形。
(2)连接后可能得到一个直角三角形。
通过三角板的之间检验,确认其中最大的角是一个直角。使学生进一步明白判断方法:其中最大的一个角是直角,该三角形就是直角三角形。
比较、讨论:为什么刚才可以肯定的得到钝角三角形和直角三角形,而现在却不能肯定的得到锐角三角形呢?
(通过学生回答,使大家明白:钝角三角形中只有一个钝角,还有两个是锐角;直角三角形中只有一个角是直角,还有两个角也都是锐角;确定了钝角或直角后剩下的肯定是锐角了。而先画了锐角之后,剩下的角可能是三种角中的任意一种。)
(3)画锐角三角形比较保险的一种方法:
先画的锐角不能太小,可略小于直角;画的两条边长短比较接近,这样就能得到一个锐角三角形了。画完后为了保险起见,可找出其中最大的一个角,量一量是不是锐角。
学生分别在本子上画出这三种三角形。
2、通过刚才的学习,你觉得三角形可以分为几类?用自己的话分别说说怎样的角是锐角三角形?怎样的角是直角三角形?怎样的角是钝角三角形?
画出示意图。
揭示课题:这节课我们学习三角形按角分类的方法。
三、完成想想做做:
1、(第2题)你能连一连吗?
学生独立做,做完后把有疑问的几个选出来交流。
2、在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。
学生围好后,互相检查验证。
3、用一张长方形纸,折出两个完全一样的直角三角形。
用一张正方形纸,折出四个完全一样的直角三角形。
让学生动手折一折,在交流的时候用对角线来说一说。
4、把右边这样的平行四边形纸剪成两个完全一样的锐角三角形,应该怎样剪?剪成两个完全一样的钝角三角形呢?
5、你能在下面的三角形中分别画一条线段,把它分成两个直角三角形吗?
通过交流使学生明白:画出的线段就是原来三角形的高。
6、在直角三角形中画一条线段,把它分成两个三角形。你分成了两个什么样的三角形还可以怎样分?
老师可以在学生画的基础上,展示其中几种比较典型的画法,组织学生再交流。
苏教版三角形教案 篇6
一、教学目标
1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。
2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。
3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
二、教材分析
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面转化的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。
三、学校及学生状况分析
我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的程度等也会出现差异。
四、教学设计
(一)由谈话导入新课
师:我们已经学过长方形、正方形、平行四边形面积的计算公式。还记得它们的面积公式吗?(一人回答)还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?
师:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。
师:谁知道三角形面积的计算公式?老师调查一下:知道三角形面积计算公式的举手;不知道三角形面积计算公式的举手;不但知道公式,而且还知道怎样推导出来的举手。
师:今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程。
[板书课题:三角形面积]
(二)探究活动。
师:根据你们前面的学习经验,谁能说一说应怎样去探究三角形的面积?[板书:转化]
师:下面我们将按小组来探究三角形面积的计算公式。
(教师介绍学具袋中的学具,并出示探究活动的目标、建议与思考,见下表)
(学生在探究活动时,教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)
师:谁愿意展示自己的探究成果?在同学介绍自己的探究成果时,其他同学要注意听,以便予以补充(交流过程注意引发学生间的争论)。
生1:我们是直接用两个完全一样的三角形拼成一个平行四边形,然后推导出三角形的面积计算公式。
生2:我们小组是用一个三角形折成长方形后推导出计算公式的。
生3:我们是将一个三角形用割补法进行推导的。
师:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,那么,谁能概括出三角形面积计算的公式呢?
生:三角形的面积=底高2s=ah2(在学生叙述时,教师板书)
师:刚才这个同学概括了三角形的面积计算公式,请同学们再用自己喜欢语言再来说一说三角形面积公式的意义。
师:不论同学们用一个三角形、或者两个三角形,还是用拼摆、或者用割补的方法,都是在想方设法将新知识转化为旧知识,这是推导三角形面积计算公式的重要方法?
师:下面我们运用三角形的面积计算公式解决一些具体的问题。
(巩固练习略)
五、教学反思
本节课是围绕着通过学生发现三角形面积与已学图形面积的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子。如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。
这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了再创造,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。
六、案例点评
本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
教师设计让学生自主动手操作,目的是以动促思,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。
通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。
点评人:刘亚荣(北京二里沟中心小学)
苏教版三角形教案 篇7
设计意图
几年前,我教三角形面积的计算前,让每位学生准备两个完全一样的直角三角形、锐角三角形和钝角三角形。有学生问我:学习平行四边形面积的计算时,是把平行四边形转化成长方形来推导出公式的,今天为什么要准备三组两个完全一样的三角形当时,我没能作出详细的解释,而是建议这位学生先去看看书,预习预习。课堂上,我按照书上的思路组织学生用准备的三组三角形,通过旋转、平移把它们转化成平行四边形,推导出三角形面积的计算公式。课后,每想到这件事,我总觉得心里不很踏实:学生的问题通过看教材和上课就能明白了吗上课时学生的操作是一种应答式的操作,这不像是引导学生推导公式,倒像是在验证公式。华罗庚先生说过:难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。这样的教学很显然没有能很好地去发展学生的创造性思维和培养学生主动探索知识的能力。
今年,运用苏教版教材(修订本)再次教学三角形面积的计算公式推导时,在新课标理念的指导下,我力求在以下几个方面有所突破:
1.指导公式的思路。以书上拼的思路为主,渗透分的思想,即把一个平行四边形沿一条对角线剪开,分成两个三角形,让学生猜一猜一个三角形的面积,并简单说出想法。
2.学生操作的性质。由原来的应答性操作转化为探索性操作。在学生明确要把三角形转化为已经学过并能计算出面积的图形这一操作要求后,提供给学生一个长方形、一个平行四边形和四个三角形,其中四人小组中的1、2、3号同学的四个三角形中分别有两个完全一样的直角、锐角、钝角三角形,而4号同学则四个三角形各不相同。学生在操作中要去尝试,在失败后要去比较、选择,这样的操作具有很强的选择性、探索性和创造性。而且只有在尝试失败后,才能深深体会到只有两个完全一样的三角形才能拼成一个平行四边形。
3.教学的组织形式。分四人小组进行操作、讨论,这已为广大教师所采用,但小组中四名学生的材料各不相同,操作中可以互相借鉴、帮助,却无法模仿别人的操作。4号同学无法用两个三角形拼成一个平行四边形,促使其他学生自觉去分析、研究拼成平行四边形的两个三角形的特点、关系,并促使4号同学动脑筋去探索其他方法(如可制作与手中完全一样的三角形等)。
4.多媒体手段的使用。公式推导过程中只是当学生看书上的静态图难以理解图意时,用多媒体进行动态的旋转、平移,使学生明白图意,较好地发挥了多媒体化静为动的功能,而不过多依赖使用多媒体。
教学片段一
一、创设情景,合理猜想
(电脑出示下面左图。)学生口算面积。
(连接平行四边形的一条对角线,隐去其中一个三角形,得到右图。)学生猜猜三角形的面积。
师:刚才同学们猜得对不对呢现在你有办法来说明吗那怎么办
生1:现在我们不能说明他猜得对不对,如果我们知道三角形的面积怎样计算就好了。
生2:如果我们知道三角形面积的计算公式就好了。
二、尝试操作,自主探索
1.师:三角形的面积计算没有学过,你准备怎样着手来研究它呢
生l:我想看看它与学过的什么图形有关系。
生2:我想把它转化成已经学过的图形。
生3:我想试试三角形能不能转化成长方形。
生4:我想试试三角形能不能转化成平行四边形。
生5:我想研究三角形和长方形或平行四边形之间有没有关系。
师:你们的想法都有一定的道理,继续努力,我相信你们都能成功!
师:请每个同学把信封里准备的学具倒出来(1个长方形、1个平行四边形和4个三角形),自己先动手试试,看能想出什么办法。
(多数同学在尝试中有所发现。)
师:把你们的发现先在四人小组交流。
师:好!很多同学都有办法了。谁愿意把自己的研究情况展示给大家看(在视频展示台上。)
生1(边操作边说):我用两个三角形拼成了一个平行四边形。
生2(边操作边说):我也用两个三角形拼成了一个平行四边形。
生3(边操作边说):我用两个三角形拼成了长方形。
(屏幕上显示了分别用两个完全一样的锐角、钝角和直角三角形拼咸的平行四边形。)
师:很好!还有研究情况和他们不完全一样的吗
生4(边操作边说):我也用两个三角形拼成了一个平行四边形,但拼成的平行四边形和他们两个不一样。
生5:我把平行四边形(沿一条对角线)剪开,得到两个三角形,而且我发现这两个三角形是一模一样的。
师:真爱动脑筋!还有研究情况和他们不完全一样的吗
师:刚才这些同学都找到了三角形和已学过的图形之间的联系。你们能把这么多种方法分分类吗
生1:可以分成三类:一类是用两个三角形拼成一个平行四边形;第二类是用两个三角形拼成一个长方形;第三类是把一个平行四边形分成两个三角形。
生2:因为长方形是特殊的平行四边形,所以我觉得可以分成两类。
师:你能把知识联系起来思考,很好!
师:同学们先来看第一类用两个三角形拼成一个平行四边形。你们都用三角形拼成平行四边形了吗(指着其中没有两个完全一样的三角形的学生问)你也有4个三角形,怎么没有想到把它转化成平行四边形试过没有
生3(很委曲地):我的不能。
师:不能谁愿意帮助他
生4(很有把握地上来操作,尝试了好几次):他的不能。
师:不能怎么回事呢
生4:他的三角形不一样。
师:那怎样的两个三角形才能拼成一个平行四边形呢
生5:我想是两个一样的三角形才能够拼成一个平行四边形。
(很多学生若有所悟地微微点点头。)
师:请拼出平行四边形的同学把所用的两个三角形拿起来比比看,是不是这样
生(欣喜):真是这样!
师:这样的三角形我们称它们是完全一样的三角形(板书:完全一样)。完全一样是什么意思
生6:两个三角形放在一起完全重合。
生7:它们形状一样,大小相同。
师:对了,只有两个完全一样的三角形才能拼成一个平行四边形!刚才同学们用两个完全一样的锐角、钝角和直角三角形都分别拼成了一个平行四边形。三角形按角来分类还有第四种、第五种吗
所以,我们也可以说:只要是两个完全一样的三角形都可以拼成一个平行四边形。
师:同学们再来看第二类把一个平行四边形分成两个三角形。想一想,分成的两个三角形有关系吗
生:分成的两个三角形我想是完全一样的,而且我用重叠的方法证实了这一结论。
师:怎样用两个完全一样的三角形很快地拼成一个平行四边形呢
请同学看书上的图。你能看懂图的意思吗
(学生借助学具说说图的意思。电脑动态演示旋转、平移的过程,师边演示边板书:旋转、平移。)
师:请大家将两个完全+样的三角形用这种方法拼一拼。(同时指名到黑板上操作。)
师:同学们观察屏幕上已经拼好的图,思考一个三角形与拼成的平行四边形有什么关系
苏教版三角形教案 篇8
一、创设情境,揭示课题
师:昨天下午,老师接到了一个任务,现在想请咱们班的同学帮我一起解决,你们愿意吗?我们学校准备吸收100名新生入队,就需要做100条红领巾,那么要买多少布料呢?做一条红领巾时必须知道什么?
生:(可能会说:一条红领巾的大小)
师:红领巾是什么形状的?
生:三角形。
师:怎样计算三角形的面积呢?这节课我们就一起来研究三角形面积的计算方法。(板书课题:三角形的面积)
二、探究新知
1.复习长方形、正方形、平行四边形的面积计算。(课件出示)请学生分别计算出每个图形的面积,并订正。
2.请生说出平行四边形面积的计算公式的推导方法,再猜想三角形面积计算可以用什么方法?(学生猜测:数方格的方法,转化法)
3.出示三角形方格图。
师:请你用数方格的方法计算出三角形的面积。
学生独立数出每个三角形的面积:12平方厘米。
师:如果用这种方法求一块三角形菜地或三角形的草坪的面积,你觉得可行吗?
学生可能会说出:不方便、不准确等。
师:同学们能否找出一种方便的方法解答这种问题呢?能不能把三角形转化成已学过的图形来求面积呢?(能)
4.分组实验,合作学习。
请学生拿出课前准备的三种类型三角形(各两个),小组合作动手拼一拼,摆一摆。
然后展示汇报,可能用两个完全一样的三角形、长方形、平行四边形、正方形。(教师课件一一展示)。
5.组织讨论,探究算理,归纳公式。
在学生操作之后,提问:通过试验,你们发现了什么?(课件出示)
还有以下问题:认真观察拼成的平行四边形,这些平行四边形的底和高与三角形的底和高分别有什么联系?每个三角形的面积和拼成的平行四边形的面积有什么联系?(学生讨论过程中,教师给予适当指导。)
讨论结束后,引导学生归纳得出三角形的面积公式,根据学生的汇报板书公式:
因为:三角形面积=拼成的平行四边形面积梅2
所以:三角形面积=底脳高梅2
三、反馈应用
1.师:有了公式,现在你们能解决课前提出的问题了吗?
(1)课件出示例2,学生一起读题并理解题意。
(2)学生独立解答,叫两名学生板演。教师进行检查,了解信息反馈,并按反馈信息组织学生讨论和讲解,强调书写格式以及应用三角形面积公式时把底和高相乘不要忘记除以2,否则会计算成长方形或平行四边形的面积,以确保学生系统的掌握知识。(适时课件展示)
2.巩固练习
练习是学生掌握知识,形成技能的必要途径,是检查教学目标落实情况的重要手段。为了提高联系的效率,我合理的设计了以下几道练习题:
第一题:计算课本85页做一做题目。(属单一性练习,用于巩固新知识。)
第二题:口算下面每个三角形的面积。(属基本练习,旨在巩固、熟练公式,也可锻炼学生的口算能力。)
四、课堂总结
师:通过这节课的学习,你有什么收获?
五、布置作业
教材第86页练习十六第2题,第3题。
六、说板书设计
三角形的面积
因为:平行四边形面积=底高
三角形面积=拼成的平行四边形面积的一半
所以:三角形面积=底脳高梅2
S=ah梅2
苏教版三角形教案 篇9
教学目标
1、通过系统的整理和练习,使学生对本单元所学有关三角形的知识有进一步的了解,熟练完成练习。
2、指导学生有序地思考问题。
3、使学生在学习的过程中,进一步产生对数学的好奇心,努力学好数学。
重、难点:对本单元所学有关三角形的知识有进一步的了解,熟练完成练习。
教学准备:练习设计及投影片。
教学过程:
一、整理本单元知识。
提问:通过本单元的学习,你掌握了哪些有关三角形的知识?根据学生的回答,教师适当加以补充,小结,使本单元的知识系统化。
二、完成练习三的题目。
第1题
小黑板出示题目,指名学生判断各是什么三角形,并说明判断的理由。
在书上画出每个三角形的高。
实物投影展示。
第2题
出示题目,明确题目要求。
学生小组讨论。
全班交流:为什么前两个可以直接判断,而第3个却不行呢?帮学生进一步理解三角形按角分类的要求。
第3题
出示题目,明确题目要求。
学生小组交流有哪些不同的拼法。
全班交流,实物投影展示学生不同的方法。让学生说说是怎样想的,提示学生:怎样想就能很快找出不同的方法。引导学生说出:三角形三个内角和是180度,四边形的内角和是360度。
第4题
通过两个角的度数,可根据角分类,也可从等腰三角性形的角度去考虑。
第5题
学生先自己摆一摆后全班交流。
第6题
出示题目,明确题目的要求。
(1)走哪条路最近,为什么。学生明确:在所有连接两点的线中,线段最短。
(2)通过计算,学生知道,走红线和蓝线路线一样长,都等于120米。
第7题
同桌互相说说,这些三角形是什么三角形?你是怎样判断的?
思考题。
让学会上先计算填表,再探索规律。
三、阅读你知道吗?
苏教版三角形教案 篇10
一、说教材
1.说课内容:九年义务教育六年制小学数学教科书第九册第三单元多边形面积的计算中的第二节。
2.教学内容的地位、作用及意义
三角形面积的计算,是在学生掌握三角形的特征及长方形、平行四边形面积计算的基础上进行教学的。通过对这部分知识的教学,使学生掌握三角形面积的计算公式,学会运用公式正确计算三角形的面积;同时加深与长方形、平行四边形之间的内在联系,培养学生的实际操作能力和思维能力,进一步发展学生的空间观念,提高学生的数学素质。
3.教学目标的确定:
(1)掌握三角形面积的计算公式,学会运用公式正确计算;
(2)学会动手实验操作,渗透旋转、平移的数学思想和方法,培养学生分析、比较、抽象、归纳的能力,进一步发展空间观念;
(3)理解三角形面积计算公式的推导过程,渗透辩证唯物主义的思想,使学生初步懂得用运动变化的观点去观察事物;
4、教材编排的特点:
教材的编排加强了学生的动手操作。首先,通过数方格的方法求三角形的面积;过渡到运用学具实验操作观察探索总结规律,再运用规律解决实际问题的方法;为下节课学习梯形的面积具有正迁移的作用。
5、教学重点、难点及关键
教学重点:掌握三角形面积的计算公式,并能运用公式正确计算。
教学难点:理解公式的推导过程。
教学关键:通过实验操作和采用多媒体辅助手段,帮助学生掌握本节课的教学重点,突破难点,达成目标。
二、说教法:
根据教学内容的有关特点及学生的学习习惯、认知基础和接受能力;充分发挥学具和教具的作用;遵循教学的规律和原则;本节课特采用了讲解法、谈话法、实验法和激趣法等教学方法进行教学;以体现精讲、善导、激趣、引思的课堂教学八字要求;达到以教师为主导,学生为主体,训练为主线的教学指导思想。促进素质教育的发展。
三、说学法:
根据学生的年龄特点及学习能力,本节课准备指导学生学会以下两种学习方法:
(1)学会在动手操作中,实验观察、比较、分析、归纳的学习方法;
(2)学会正确使用学具解决实际问题的方法。
四、教学程序的设计
为实现教学目标,优化课堂结构,落实素质教育;根据以上的分析,本节课的教学,设计了以下几个教学环节:
1.复习旧知,作好铺垫
(1)口答(投影显示)
①长方形、平行四边形、三角形分别有什么特征?
②平行四边形的面积计算公式是怎样的?
计算下列图形的面积。
教育心理学表明:教学就是根据学生原有的基础上进行的。为此,这三道复习题都是选取与新知识有密切联系的,能为学习新知识起铺垫作用。
2.谈话设疑,引入新课
学生解答复习题后,根据学生好胜的心理特点,谈话设疑,引入新课,激发学生的求知欲望。提问:如果把复习题中第3题的三个图形从对角线剪开得出三个三角形,那么三角形的面积该怎样计算呢?这就是我们本节课要研究的内容三角形面积的计算板书揭示课题。板书后再运用语言激励学生提出:看谁学得又快又好。为学生学习新知识创设了最佳的学习情境。
3.动手动脑,指导探索
第一:数方格求面积
首先,发挥教材的作用,指导学生看教科书75页,用数方格的方法求三角形的面积,同桌对答案。
接着,教师放投影显示方格图,指名回答。
最后小结,点拨引导,质疑引思。师导:刚才大家用数方格的方法求三角形的面积,既费时又费力,并不容易求得准确,我们能不能象学习平行四边形面积一样把三角形转化成已学过的图形再求面积呢?
第二:指导实验,观察、归纳三角形的面
积公式。
首先,从直角三角形推导。根据学生准备的学具,引导学生初步感知三角形面积的计算公式的表象;要求学生拿出其中的两个完全一样的直角三角形。老师逐步提出问题,(幻灯显示)先提出:①两个完全一样的直角三角形可以拼成什么图形?再提出:②每个直角三角形的面积和拼成的平行四边形的面积有什么关系?③三角形的底和高分别与平行四边形的底和高有什么关系?让学生带着问题逐个动手操作实验观察总结。
其次,要求学生按照以上的教学和学习方法,分别用两个完全一样的锐角三角形、钝角三角形进行拼摆。其中,学生用两个完全一样的锐角三角形拼摆实验之后,教师投影显示拼摆过程边讲边演示(图):
首先把两个锐角三角形重叠位置,接着旋转、平移,就出现一个平行四边形。这个教学环节更加生动、具体形象,感染力强,帮助学生加深对公式来源的理解。
再次,归纳求三角形面积的计算公式
学生带着问题通过主动的动手操作,实验观察总结,使学生非常容易掌握本课的教学重点,突破难点。为初步检验实验的效果,教师再放投影显示题目要求学生回答以下问题:
①两个完全一样的三角形都可以拼成一个();这个平行四边形的底等于();这个平行四边形的高等于();
②每个三角形的面积等于拼成的平行四
边形面积的();
③三角形的面积=();
④如果用S表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式可以写成()。
根据学生的回答板书教学重点:三角形的面积=底高2,字母公式:S=ah2,学生齐读。
4运用公式,解决问题。
教学例题。先板书例题,用不同颜色表示数量关系以突出重点。接着要求学生读题、看图、解题。然后指名回答,集体纠正,教师板演解题过程。最后,质疑问题,提出:为什么要除以2?突出重点,深化理解。
5.巩固训练,深化理解
(1)基本性练习:
指出下面每个三角形的底和高,分别计算出它们的面积。
回应复习题3中的设疑,老师提问:通过这节课的学习你能求它们的面积吗?
(2)趣味性练习:
2判断题,用手势表示对的打错的打。
①两个完全相等的直角三角形可以拼成一个三角形、长方形、平行四边形。()
②两个三角形可以拼成平行四边形。()
③三角形的底边为6厘米,高为3厘米,它的面积是18平方厘米。()
④三角形的面积是平行四边形面积的一半。()
(3)对比性练习:
2.下表中给出的是三角形或平行四边形的底和高。算出每个图形的面积,填在空格里。
三角形平行四边形
底(厘米)86.29.612.5
高(厘米)3.54.86.316
面积(平方厘米)
(4)发展性练习,课本79页第7题。
以上四类形式不同的练习题为检查教学效果,根据教学目标,题目由浅入深,由易到难,有坡度;既突出重点,又分散难点,使不同层次水平的学生都有所提高,既巩固所获得的知识,又深化了知识间的联系和区别;既加强了学生动手操作的能力,又激发了学生学习的兴趣;既体现了知识的形成过程,又体现了能力的培养。符合素质教育的思想。
6、课堂总结:
课堂总结是课堂教学的重要组成部分,起画龙点睛的作用;本课的总结采用了引导回忆归纳的方法,提问:今天我们学习了什么内容和你学会了什么?这样总结,既突出教学重点,又使知识系统化、条理化,进一步培养归纳概括的能力。
7、家庭作业:练习十八第6、9题。
三角形教案模板
作为老师的任务写教案课件是少不了的,这就要老师好好去自己教案课件了。只有写好课前需要的教案课件,会让学生才能高效地掌握知识点。那写教案课件包括哪几个部分?下面是小编为你精心整理的“三角形教案模板”,在此温馨提醒你在浏览器收藏本页。
教材分析:
《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等、及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。
学情分析
学生在本节课学习之前,已经知道了全等三角形和轴对称相关知识,那么等腰三角形又有怎样性质呢?鉴于八年级学生的年龄、心理特点及认知水平,有进一步探究新知的愿望。本节课采用层层递进的问题启发学生的思考,让学生自主探究、合作交流中获取知识。
教学目标:
知识目标:掌握等腰三角形的有关概念和相关性质。并能用其解决有关问题。
能力目标:通过对性质的探究活动和例题的分析,提高学生分析问题和解决问题的能力。
情感目标:在探究对等腰三角形性质活动中,让学生多动手、多思考,培养学生之间的合作精神。
教学重难点:
教学重点:探索等腰三角形“等边对等角”和“三线合一”的性质。
教学难点:利用等腰三角形的性质解决有关问题。
教学方法:
本课立足于学生的“学”,采用小组合作探究,师生互动,突出“学生是学习的主体”,让他们在感受知识的过程中,提高他们的知识运用能力。学习中要求学生多动手、多观察、多思考,激发学生学习数学的兴趣,更好的让学生处在“做中学”“学中做”的良好学习氛围之中。
教学过程:
课前准备:课前安排学生带着五个问题预习课本140页和141页的教材内容,同时让学生做一个等腰三角形的纸片,各小组长负责预习等工作。
(一)、导入
先复习“轴对称图形”的相关知识,根据本节课的特点,让学生带着问观察图片,找出图片里面的轴对称图形。
(二)、思考
1、自主学习,独立思考问题:
(1)什么是等腰三角形?
(2)等腰三角形各边都叫什么名称?各角呢?
(3)等腰三角形的性质?
(4)如何证明等腰三角形的性质?
(5)等边三角形的概念及性质?
2、动手操作、演示探究
——等腰三角形的性质
请同学们把等腰三角形纸片对折,让两腰重合!(电脑演示)发现什么现象?请尽可能多的写出结论.(从构成要素:边、角;相关要素:线、对称性方面考虑)
(三)、议展
1、探讨交流、得出结论:
重合的线段
重合的角
AB=AC
∠B=∠C
BD=CD
∠BAD=∠CAD
AD=AD
∠ADB=∠ADC
由这些重合的部分,猜想等腰三角形的性质。
构成要素:
边:等腰三角形的两边相等.
角:等腰三角形的两底角相等.简称“等边对等角”
相关要素:
线:等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合.简称“三线合一”
对称性:等腰三角形是轴对称图形
2、学生展示
证明“等边对等角”(学生展示)
三种方法证明等腰三角形性质“等边对等角”
已知:在△ABC中,AB=AC,求证:∠B=∠C
方法一:
证明:作底边BC上的中线AD。
在△ABD与△ACD中:
BD=DC(作图)
AD=AD(公共边)
∴△ABD≌△ACD(SSS)
∴∠B=∠C(全等三角形对应角相等)
方法二:
作顶角∠BAC的平分线AD。
∵AD平分∠BAC
∴∠1=∠2
在△ABD与△ACD中
AB=AC(已知)
∠1=∠2(已证)
AD=AD(公共边)
∴ △ABD ≌ △ACD(SAS)
∴ ∠B=∠C
方法三:
作底边BC的高AD。
∵AD⊥BC
∴∠ADB=∠ADC=90°
在RT△ABD与RT△ACD中
AB=AC(已知)
AD=AD(公共边)
∴ △ABD ≌ △ACD(HL)
∴ ∠B=∠C
(四)、点评
找各小组代表分别展示答案之后,其他小组进行评价,查漏补缺。然后通过老师讲解,再指出其实这作三种辅助线的位置根本没有发生改变,从而自然的过度到“三线合一”从中得出结论,达到对知识点的理解和掌握。
等腰三角形性质的几何语言
∵ AB=AC(已知)
∴ ∠B=∠C(等边对等角)
(1)等腰三角形的顶角的平分线,既是底边上的中线,又是底边上的高。
几何语言:
在△ABC中,
∵AB=AC , ∠1=∠2(已知)
∴BD=DC , AD⊥BC(等腰三角形三线合一)
(2)等腰三角形的底边上中线,既是底边上的高,又是顶角平分线。
几何语言:
在△ABC中,
∵AB=AC , BD=DC(已知)
∴AD⊥BC , ∠1=∠2(等腰三角形三线合一)
(3)等腰三角形的底边上的高,既是底边上的中线,又是顶角平分线。
几何语言:
在△ABC中,
∵AB=AC , AD⊥BC(已知)
∴BD=DC , ∠1=∠2(等腰三角形三线合一)
在学生掌握了等腰三角形的有关概念和性质之后,引出等边三角形的教学。
等边三角形定义:三边都相等的三角形叫做等边三角形
等边三角形的性质定理:等边三角形的三个角都相等,并且每一个角都等于60°.
等边三角形性质的证明:(学生在练习本完成后,再用课件展示证明过程)
例题:
已知:在△ABC中,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线。
求证:BD=CE.
(五)、练习
为了检测学生对本课教学目标的完成情况,进一步加强知识的应用训练,我设计了三组练习由易到难,由简单到复杂,满足不同层次学生需求。
练习1:知识点:(边:等腰三角形的两边相等.)
1、在等腰△ABC中,AB=3,AC=4,则△ABC的周长=________
2、在等腰△ABC中,AB=3,AC=7,则△ABC的周长=________
练习2:知识点:(角:“等边对等角”)
1、在等腰△ABC中,AB=AC, ∠B=50°,则∠A=__,∠C =_
2、在等腰△ABC中,∠A =100°,则∠B=___,∠C=___
练习3:(判断)知识点:(“三线合一”)
1、等腰三角形的顶角一定是锐角。()
2、等腰三角形的底角可能是锐角或者直角、钝角都可以。()
3、等腰三角形的顶角平分线一定垂直底边。()
4、等腰三角形底边上的中线一定平分顶角。()
5、等腰三角形的角平分线、中线和高互相重合。()
(六)、总结
师生合作,共同归纳:
1.等腰三角形的两底角相等(简写成“等边对等角”)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合(简称“三线合一”)
3.等边三角形的性质定理:等边三角形的三个角都相等,并且每一个角都等于60°.布置作业
巩固性作业:143页习题1、2、(必做),143页习题3、4、(选做)
拓展性作业:
1、如图,在△ABC中,AB=AC,BD,CE分别为AB,AC边上的中线,试判断BD 、CE相等吗?并说明理由。
2、如图,在△ABC中,AB=AC,BD,CE分别为AB,AC边上的高线,试判断BD 、CE相等吗?并说明理由。
板书设计
17.1等腰三角形
等腰三角形相关概念:证明例题
等腰三角形的性质:
“等边对等角”
“三线合一”
等边三角形相关知识布置作业
课后反思
这节课从学生的实际认知出发,以“学生为主体,教师为主导”,课堂活动中充分调动学生的学习积极性,在整个教学过程中我以“启发学生,挖掘学生潜力,培养学生能力”为主旨而进行!充分地发挥学生的主观能动性。突出了重点,突破了难点,达到了知识能力情感的三合一,达到了预期的教学效果。不足之处的是,习题练习有限,未设置限时小测等等
数学教案-三角形的内角相关教学方案
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:三角形内角和定理及其推论。教学难点:三角形内角和定理的证明
教学用具:直尺、微机
教学方法:互动式,谈话法
教学过程:1、创设情境,自然引入把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?问题2你能用几何推理来论证得到的关系吗?对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。2、设问质疑,探究尝试(1)求证:三角形三个内角的和等于让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。问题1观察:三个内角拼成了一个什么角?问题2此实验给我们一个什么启示?(把三角形的三个内角之和转化为一个平角)问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?学生回答后,电脑显示图表。(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?问题2三角形一个外角与它不相邻的两个内角有何关系?问题3三角形一个外角与其中的一个不相邻内角有何关系?其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。3、三角形三个内角关系的定理及推论通过上面四个例题的分析与讨论,有利于学生基础知识与基本能力的掌握与提高,同时更有利于学生创新意识与创造性思维能力的培养,在练习、讲评等教学环节中,形成师生之间的、学生之间的“双向反馈”是很重要的。4、变式训练,巩固提高根据例4的度数的求法,思考如下问题:(3)如图5,过D点画AB的平行线MN,与AC、BC交于点M、N,则的度数多少?(4)当MN绕着点D旋转过程中,会有怎样的变化?提示:变化1当直线MN与AC、BC的交点仍在线段AC、BC上时,=变化2当直线MN与AC的交点在线段AC上,与BC的交点在BC的延长线上时,变化3当直线MN与AC的交点在线段AC的延长线上,与BC的交点在线段BC上时,=变化4当直线MN与AC、BC的交点在C点时,=经过这样的变式、发展、学习,不仅使学生巩固了所学的数学知识,也使学生体验了数学的运动变化观,使学生的思维得到了培养。5、小结通过设置问题:“本节在知识方面以及在思想方法方面你有怎样的收获?”师生以谈话交流的形式进行小结。强调学生注意:辅助线的作用及运用定理及推论解决问题时,要善于抓住条件与结论的关系。6、布置作业a、书面作业P43#3b、上交作业P42#16、17思考题:
三角形的分类教案
小编的千挑万选推荐这篇有深度的“三角形的分类教案”,愿这会对你有所好处。在教学过程中,老师教学的首要任务是备好教案课件,准备教案课件的时刻到来了。 充分准备教案课件,老师才能打造成一个生动的学堂。
三角形的分类教案【篇1】
教学目标:
1、通过分类活动,认识直角三角形、锐角三角形、钝角三角形等腰三角形和等边三角形,体会每一类三角形的特点。
2、在通过分类活动程中培养学生自主探索、合作交流的能力。动手操作的能力。
3、在数学操作活动中培养学生与人合作,交流的能力,并形成良好的学习习惯。教学重点:认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
教学难点:
通过分类活动,体会每一类三角形的特点。教法:主动探究法。学法:小组合作交流法
教学准备:
学生、老师剪下附页3中的图1。教学过程
一、预习检查
针对预习作业中的题目在小组内进行讨论,特别是做错的题目组内交流订正。
二、情景导入呈现目标
问题引入:上学期我们学习角的分类,可以把角分为什么?产生质疑,引入新课。
三、探究新知
(一)、自主学习:完成课本22页的各项要求。
1、我们以前学过那些角?
2、从情境图入手。这是什么图形?是由什么组成的?这些三角形一样吗?
3、你能给这些三角形分类吗?
(二)说一说、认一认
1、认识笑笑的分法。笑笑为什么这样分呢?
2、观察第三类三角形有什么共同特点。归纳出三个角都是锐角的三角形是锐角三角形。
3、观察第一类让学生发现其中有一个直角,其他两个角时锐角,归纳出有一个角是直角的三角形是直角三角形。
4、观察第二类让学生发现其中有一个钝角,其他两个角时锐角,归纳出有一个角是角的三角形是角三角形。
四、当堂训练
1、三角形按角分类分为_____三角形、_____三角形和_____三角形;三角形按边分类分为_____三角形、_____三角形和_____三角形。
2、(1)三个角都是锐角的三角形叫()三角形:(2)有一个角是直角的三角形叫()三角形;(3)有一个角是钝角的三角形叫()三角形;(4)有两条边都相等的三角形叫()三角形;
3、锐角三角形的`三个角都是_____角;直角三角形中必定有一个是_____角;钝角三角形中也必定有一个角是_____角。
4、等腰三角形有()条对称轴,等边三角形有()条对称轴,不等边三角形()条对称轴。
5、完成检测题(先独立做,最后组内交流。)
6、进行找一找、填一填。进行23页练一练第2题。我们来做一个猜一猜的数学游戏。猜一猜被信封遮住的可能是什么三角形。
7、练一练的第一题学生独立完成,师巡视。集体订正。
8、学生独立练习做练一练的第
3、4题。组内交流、解疑、个别汇报、老师点拨。
五、课堂总结
通过这节课的学习,你有什么新的收获或者还有什么疑问?独立思索小组交流总结方法教师点拨。
六、拓展提高
如果把一个梯形,一条边不断地变小,一直小到一个点,就是什么形状?一直大到和下底相等,就是什么形状?
七、布置作业完成数学同步练习册。
板书设计三角形的分类
按角分类:按边分类:
先独立做,最后组内交流。
课后反思:
1、对教材内容的处理。
根据新课程标准的要求、知识的跨度、学生的认知水平,我对教材内容的学习环节做了适当的调整。 2、教学策略的选用
(1)运用了动手操作活动,强化学生的生活体验。教材这部分知识所对应的分类现象,学生具有了一定的生活体验,因此在进一步强化这种体验的过程中我进行了思考和认知,使知识从学生的生活中来,从学生的思考探究中来,有助于提高学生的兴趣,有助于充分调动学生现有的知识,培养学生的各种能力,也有助于实现理论知识与实际生活的交融。
(2)组织学生探究知识形成新的知识。我从学生的生活体验入手,运用案例等形式创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析、解决问题的方法,这样既有利于发展学生的理解、分析、概括、想象等创新思维能力,又有利于学生表达、动手、协作等时间能力的提高,促进学生全面发展,力求实现教学过程与教学结果并重,知识与能力并重的目标。也正是由于这些认识来自于学生自身的体验,因此血红色呢过不仅“懂了”,而且信了,从内心上认同这些观点,进而能主动的内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。
三角形的分类教案【篇2】
《三角形分类》说课稿
尊敬评委,亲爱的老师们:
大家上午好!今天我说课的题目是:三角形分类。我将从教材、教法学法、教学流程、板书设计这几个方面来进行我的说课。
本课选自北师大版实验教材四年级下册第二单元。本课是新课标小学数学第二学段《空间与图形》中的内容,该课内容是在学生对所学图形进行初步分类的基础上进行的专项研究,在此之前,学生已经认识了角、锐角、直角、钝角,并通过不同的学习途径,产生并具备了各类三角形的表面感知印象,为本节课的学习做了良好的铺垫。而本节课的学习为今后进一步学习三角形的其他知识打下基础。根据上面的分析,我将本课的教学目标定为:
1. 认知目标:通过分类发现和认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形并了解它们的特点。
2. 能力目标:培养学生自主探究、观察、比较和概括归纳的能力,发展学生的思维,培养学生的创新意识。
3. 情感目标:激发学生学习的兴趣,体验获得成功的乐趣,建立自信心,感受数学学习的魅力。
根据以上教学目标,我将本课的重点和难点定为:
难点:掌握各种三角形的特征以及区分各类三角形之间的关系 。
在教学信息和感知材料的呈现上,我选用多媒体和各种学具。
教具、学具:彩色卡纸,各类三角形卡片,剪刀、量角器,直尺,白纸等等。
为了更好的达到教学目标,突出重点,突破难点,本节课我采用了情境教学法,尝试教学法,直观演示法,让学生在观察发现,自主探究,动手操作、小组合作等方法中主动参与知识形成的过程,有目的的培养学生获取知识的能力,提高课堂效率。
结合四年级学生的认知水平和年龄特征,我将本课的教学设计为五个环节:
通过这个问题情境,引起学生们的注意,引发学生的思考。学生通过观察会说出这些图形是由不同的三角形拼成的。于是引出课题:今天我们就一起来给这些三角形进行分类(板书课题)。这样设计能激发了学生的学习兴趣,很好地调动学生积极、主动、愉悦地投入到学习活动中去。
这个环节是课堂教学的中心环节。()新课标提出学生学习应当是一个生动活泼的,主动的和富有个性的过程。积极思考、动手实践、自主探究、合作交流等,都是学习数学的重要方式。根据这一理念,我设计了三个活动,让学生在探究中思考,在交流中学习,在展示中分享,从而体验学习的快乐。
1.观察这12个三角形的角和边,你会分类吗?
2.有选择地利用学具,对三角形进行分类。
3.根据你的分类,把它贴在彩色卡纸上。
这一环节,我采用尝试教学法,让学生在明确学习要求后,根据自己的发现和需求,有选择的利用学袋里的学具,尝试对三角形进行分类。有的学生可能会想到利用直尺量按边的长度分类;有的学生可能会按角的大小进行分类;有的学生可能还会有其他的分类方法。这样设计的意图是:一方面为学生提供了更大的思维空间,另一方面培养学生独立分析和解决问题的'能力。
1.你是怎样分类的,说说你分类的依据是什么?
2.对于三角形的分类你还有哪些疑问?
交流的要求:
1.组长主持,每个人说说自己分类的方法和依据。
2.提出质疑,组内交流并记录。
3.整理组内的分类方法。
首先出示课件:学习内容和要求。这样设计的意图是:学生自学后,让学生在组内交流自己的分类方法,并且,明确各自的分工,主动参与,乐于探究,勤于动手,培养学生搜集信息,分析解决问题以及合作交流的能力。
学生在小组内分别展示自己的劳动成果,畅谈分类依据,并根据实际情况提出了自己的疑惑,全组成员一起讨论,交流。而在此过程中,老师则深入各小组,参与学生的交流中。这样充分体现了老师是课堂教学中的引导者、参与者和合作者。
在学生明确了展示的步骤和要求后,分别请两个小组在全班分享不同的分类方法。老师则根据学生的分享相机进行板书。
分享的小组可能会说,我们组是按照三角形的角进行分类的,可以分成三类:一类是三个角都是锐角的三角形;一类是有一个角是直角的三角形;一类是有一个角是钝角的三角形。此时,老师积极鼓励学生提出质疑或者是评价。学生可能会问:这三类三角形叫什么名字啊?学生回答,老师相机板书锐角三角形、钝角三角形和直角三角形。学生可能会问:这些三角形有什么共同点呢?经过学生的讨论与交流,老师板书:每个三角形至少有两个锐角。还有的学生可能会提出评价,例如你们说的真好,真详细等等。老师会根据他们的表现给予点评和表扬。
另一个分享小组可能会说,我们组是根据边的长短来分的,也是分三类。一类是三条边都不相等的三角形;一类是有两条边相等的三角形;一类是三条边都相等的三角形。此时,老师积极鼓励学生提出质疑或者是评价。学生可能会问:这三类三角形叫什么名字呢?学生可能答不上来,老师借此机会,利用课间演示,介绍等腰三角形和等边三角形以及它们的特征并板书。老师补充说明这两类三角形都是包含在一般三角形里,是属于特殊的三角形(板书)。此时,同样的鼓励其他学生提出质疑和评价。学生可能还会问:等边三角形也是等腰三角形吗?这里,老师让学生自由辩论,并在课间上动态演示等腰三角形和等边三角形的相同和不同,然后板书:等边三角形也是特殊的等腰三角形。
上面三个活动的设计意图是:通过学生自主探究,动手操作,小组交流,展示分享总结出三角形分类的方法并掌握它们各自的特征,让学生感受到自己就是学习的主人,体验到劳动成果被展示的喜悦心情,增强学习的自信心。学生的自评、互评、老师的点评体现了课程标准中评价方式的多样化。
练习是掌握知识、形成技能、发展智力的重要环节,根据学生的年龄特征和认知规律。本着趣味性、思考性、综合性相互结合的原则,结合本节课的教学目标,我设计了智慧岛寻宝的练习:
通过猜一猜,不仅能激发学生的学习兴趣,还能使学生进一步的掌握和区分按角分的三角形的特征。这里,要重点交流第三幅图的想法:有的学生可能会猜这是一个锐角三角形,也有的学生可能会猜是一个钝角三角形或直角三角形,也有学生可能会猜不能确定。最后引导学生归纳:在只知道一个锐角的情况下,三角形的类型是不确定的。
正方形纸片沿图中虚线折成的两个三角形是什么三角形?
通过折一折这一动手活动,让学生观察,了解等腰直角三角形的特征。
通过找一找这一活动,让学生了解各类三角形在生活中的应用,体验数学来源于生活。
这一环节,让学生利用各类三角形拼出自己喜欢的各种图案。这样的设计不仅能强化学生对知识的应用,还能发展学生的创造思维,培养创造能力。
你打算怎样把今天学习的知识介绍给你的父母和朋友呢?通过这个问题,让学生在班级内模拟的说一说,可以请老师来做朋友,也可以请学生来做朋友。这样设计,让学生有一种满足感和成就感,激发学生的表现欲望,同时,也达到了对本节课总结的目的。
以上是我对本节课的教学设计。通过让学生观察,思考,操作,感知各类三角形的不同;通过让学生自主探究,小组合作,展示分享,抽象出各类三角形的特征以及它们之间的关系;通过加深认识,体验发现,拓展参与,让学生在实践活动中进一步掌握本节课的分类方法。
这样的板书设计,突出了本节课的重点-三角形的分类及特征,板面简洁,学生一目了然,同时,既渗透了分类思想,又渗透了集合思想。
三角形的分类教案【篇3】
《三角形的分类》是小学四年级学生在对三角形有了初步认识之后进行的教学活动。我认为分类是一种数学思想,它是根据一定标准对事物进行有序的划分和组合的过程,三角形的'分类在于给学生一种数学模型,为学生今后更好地应用三角形,进一步认识和研究三角形奠定知识基础。为了在课堂上有效地整合落实三维目标,我是这样设计的:
温故互查之前由谜语引入,激发学生学习兴趣,调动学生学习积极性,为本节课开一个好头,引领学生走进神秘而又熟悉的三角形世界。)
一节课的教学,重在引导学生动手操作,将学生自己动手剪的三角形进行分类,探究分类方法,学生在探究三角形分类过程中,我首先改变知识的呈现方式,让学生带着问题去动手操作、观察、推理、验证、归纳。引导学生自主探索,合作交流,在交流中发现问题。学生动手操作,把三角形按角分:三个角都是锐角的三角形、有一个角是直角的三角形、有一个角是钝角的三角形,然后引导学生分别起名字。我再用集合的形式加以总结归纳。然后提出问题:还能怎么分?学生有提出按边分。通过测量边的长短,学生把三角形分为三类:分别是等腰三角形、等边三角形、不等边三角形。师生共同认识等腰三角形、等边三角形。教学后又完成了部分概念题,让学生对概念又了进一步的认识。学生在巩固所学知识的过程中,既培养了动手能力”,又注重思维能力的培养,让学生在综合运用所学的知识和技能解决问题,发展学生的应用意识,实践能力与创新精神。三角形的分类是让学生用内心创造与体验学习数学乐趣,使学生在教师的引导下动手操作,积极思考,与同学之间交流,展示自我的过程。
我设计了由浅入深、循序渐进的巩固复习题,让学生始终在愉悦的学习氛围中巩固知识、拓展思维,使知识与技能、过程与方法、情感态度与价值观三个维度的目标相辅相成,融为一体,力求达到实现三维目标的整合。
三角形的分类教案【篇4】
《小学数学课程标准》明确提出“有效地数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”在这一新的理念的指引下,我们不断地实践,不断地探索,正当我们满怀信心地投身新的教学改革的洪流之时,新的困惑产生了,课堂上学生们看似积极动手,自主探索,合作学习,热热闹闹场面空前,过后却空空如也,一头雾水。这不得不引起我们新的思索,怎样才能使学生的动手实践、自主探索与合作交流真正地落到实处呢?在人教版小学数学四年级下册《三角形的分类》一课的教学中,我努力地做了这方面的尝试,尽量追求动手实践,自主探索,合作交流,猜测——验证——结论等学习方式的有效性,努力构建务实充实的有较新课堂。
下面,我主要从四个方面介绍我的教学设想。
一、教材简析。
《三角形的分类》是人教版小学数学四年级下册第五单元《三角形》中的第二节内容。在此之前学生已经懂得了角的分类,能区别锐角、钝角、直角、平角与周角,而且刚刚进行了“三角形的特性”的学习。根据学生已有的知识经验和认知水平,我制定了如下的教学目标:
1、发现和认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形。知道这些三角形的特点,并能够辨认和区别它们。
2、通过观察、操作、合作、交流等探索活动,使学生经历认识各种三角形的过程,学习从不同角度观察、思考、分类的数学思想,感受解决问题的方法的多样性。培养学生观察能力、操作能力和形象灵活的思维能力,发展初步的空间观念。
3、养成良好的观察、分析的习惯,培养合作意识。感受数学与生活的紧密联系。
这样的目标既注重了知识的传授和能力的培养,更注重了学生经历知识获得的过程,学会与同伴交流,从中获取知识,体验快乐,感悟数学伴随着我们的生活。本节课的教学重点是发现和认识各类三角形的特征,并能辨认和区别它们。难点在于按边给三角形分类,理解等边三角形是一种特殊的等腰三角形,之所以称为难点,是因为它的概念系统比较复杂,已经是多级分类了。
二、教法、学法。
新的课程标准指出,“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”,在这一理念的指导下,我采取“引——扶——放”的教学方法,教学中我精心设计引导学生在不知不觉中回顾旧的知识,引导学生自然体验,感受分类的必要性;接着指导学生讨论出分类标准,提出具体的合作学习和动手操作的要求,学生在此基础上进行合作分类活动,这就是所谓的“扶”;最后放手让学生走入生活,更进一步了解等腰、等边三角形,再次放手让学生畅谈本节课的收获的形式来小结本节课的学习内容。进一步增强课堂数学学习活动的实效性。也体现出教师是其组织者、引导者与合作者的角色。
学生作为主体,学习中的参与状态和参与度是决定教学效果的重要因素。因此在学法上,通过“感受体验——经历操作——交流感悟”的方法,把学习的主动权交给学生,让学生在充分的自主活动中完成本节课的学习。
三、教学流程。
这节课为了体现学生是数学学习活动的主人,为了完成教学目标,我以学生的学为立足点,设计了如下的教学程序:
(一)回顾展示,感受分类的必要。
课始我以一个活动角引起学生对已有知识的回忆,如判断直角、锐角、钝角的方法,三角形有几个角,几条边等,为后面将要进行的分类打下了坚实的基础。展示学生自己制作的三角形,不仅由此使学生体会到分类的必要,感受到数学学习是有用的,同时让学生体验到成功的快乐,从而对本节课的学习产生浓厚的兴趣。
(二)合作分类,探索图形特征。
小学生由于受能力与经验的制约,他们的探究往往不能很好地确定重难点,容易导致探究活动热烈而缺少实效。因此教师在分类之前先引导学生对三角形的各部分进行观察、比较,探讨出分类的标准,然后对小组合作学习提出了具体详细的要求,充分体现了教师的指导与引领作用,提高了后面探究活动的实效性。
探究按角分类的活动中,运用“角的特征分析表”使学生的探究活动目标更明确,同时又能使学生对表格的观察中发现诸如“每个三角形至少有两个锐角”“三角形中最多也只有一个钝角”……更利于学生对各类三角形的特征的认识。
本节课的难点就是按边给三角形分类,这是学生难以理解的内容,因为它的概念系统比较复杂,已经是多级分类了。为了帮助学生突破这一难点,教师设计了“三角形边的特征分析表”,为学生探究这一难点知识搭建了踏脚石,减缓了梯度。还有一个难点,等腰三角形和等边三角形的关系,教师引导回顾正方形和长方形的关系,让学生从旧知识迁移到新知识。对等腰三角形和等边三角形角的研究采用了猜测——验证——结论的方法,体现了数学的一种思考和学习方法,学生收获的不仅仅是一个知识点,更重要的是一种数学的思想方法。
(三)走入生活,巩固提高拓展。
生活中的等腰三角形和等边三角形的寻找和欣赏活动,加深了学生对难点知识,按边分出的这两种特殊的三角形的特征的认识,巩固了知识,还让学生更加真切地体会到生活中处处有数学。学生畅谈收获的环节实际是个回顾、反思、梳理的过程,更有益于知识的巩固。作业中布置的搜集金字塔的知识既体现了信息时代对孩子们的基本技能的训练,又对课堂知识是一个拓展,开阔了学生的知识视野。
四、教学理念。
本节课中我力图体现以下理念:
(一)动手操作,合作交流注重课堂实效。
几何初步知识无论是点、线、面、体的特征还是图形的特征,性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。“要让学生动手做科学,而不是用耳朵听科学”,让学生带着问题,动手、动口、动脑,调动多种感官参与数学学习活动,在活动中获得知识。
基于这样的考虑,教学中大量的时空都是让学生去探索、去实验、去发现。从而让学生在动手操作、积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。在这一活动中,教师尤其关注的是学习活动的实效性。给三角形分类之前,教师先引导学生仔细观察,这么多的三角形都有什么不同呢?探讨出分类的标准后,才进入小组合作阶段。操作之前,教师又提出具体详细的合作要求,“请听完要求,再开始。请你们同桌两人为一组,取出学具袋里的一号至七号三角形和表一(三角形角的特征分析表),认真分析这些三角形角的特征,填写表一,再把这些三角形分类摆放好”。课堂中诸如此类的考虑还有很多,总之,每一步的设计都要考虑是不是落到了实处,是不是起到了应有的作用,是不是达到了该有的效果。
(二)知识获取,问题解决渗透数学思想。
新课程基本理念强调数学课程的发展性,也就是我们的数学教学要着眼于孩子终身的发展。课堂上我们不仅仅只是让学生获取知识,更重要的是得到一些终身受益的东西。数学的思想方法是数学知识的灵魂。在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。
本节课的教学中,有不少这一方面的体现,如解决问题方法的多样性与优化选择问题,判断角的类型方法很多,有孩子说用量角器测量,用眼睛观察,用三角板上的直角去比等等,这些方法中,要结合实际情况灵活选取最简单快捷的方法。再例如操作活动判断三角形边、角是否相等时,可以测量,也可以对折,那么哪种方法更简单快捷呢?还有,研究等腰三角形和等边三角形角的特征的时候,我们渗透了“猜测——验证”的方法。总之,在教学中,教师既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,有助于学生的终身学习和发展。
教学永远是一门遗憾的艺术。在这节课中还有许多的不足之处,例如:在教学中,虽然渗透了方法的优化选择,但仍有部分学生不能领会其含义,依然要选用比较费时也没有必要的方法操作,造成分类的操作活动速度太慢。学生在操作中的误差问题也是值得研究的,因为操作活动中的确存在着很接近相等但却又差那么一点点的情况,但因为时间关系,而忽略了。教师应该饱含热情,用自己激昂的情绪感染孩子们,好像黑板上的数字都会跟着教师的情绪而动,但这点教师做得还不是很让人满意。总之,这节课还是缺憾。真诚地希望得到各位专家的批评和指正!
三角形的分类教案【篇5】
[教材内容]
本课的教学内容是北师大版教材四年级下册“三角形”第二单元。
[教学目标]:
1、知识与技能:使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。
2、方法与过程:经历分类的过程,渗透分类的数学思想,培养学生的空间观念和初步的逻辑思维能力。
3、情感态度与价值观:在共同学习中,训练学生的自我探索能力,在探索活动中培养学生主动探索精神和创新意识。
[重、难点]
教学重点:认识锐角三角形、直角三角形、钝角三角形以及等腰三角形、等边三角形的基本特征。
教学难点:发现三角形的角、边特征从而正确分类。
教学工具:多媒体幻灯片、直尺、学具袋(各种类型的三角形)
教学过程:
一、复习引入
1、复习
出示幻灯片2
生活中哪些东西是三角形,同学们可以列举生活用品,也可以对书中的事物进行描述。
出示幻灯片3
我们学过哪几种角?(指名口答)下面的角是什么角?(指名口答)下面三种角
同学们知道角是由两条边和一个顶点组成的,并且它的两条边是两条射线。
2、揭题板书:
是啊,三角形在我们生活中处处可见,有着广泛的应用,为我们的生活增添了不少情趣,是我们生活中的数学,今天我们就来给众多精美的三角形分分类。板书:三角形的分类
二、探索新知:给三角形分类
1、按角把三角形分类
三角形有各种不同的形状,所以可以分成不同的类别。(发给每个小组一个学具袋)
(1)操作感知
让学生打开学具袋。(内装有锐角三角形、钝角三角形、直角三角形纸片各2张并编上序号),以小组为单位,量出每个三角形三个角的度数,并按要求填写记录表。
(2)展示、交流
指名说一说量得的结果后,仔细观察。看看你发现了什么?(教师出示填写好的记录单,和学生对照检查后,让学生说说他们的发现,可以组内相互说说,再在班上说。)
向学生介绍什么是锐角三角形、直角三角形、钝角三角形。
(3)认识三类三角形的关系(多媒体出示)理解三角形的关系图。
2、按边把三角形分类。
(1)操作感知。
让学生再次用学具袋中的三角形进行操作。以小组为单位,量出每个三角形的三条边,并做好记录。(一个合作小组中的同学,两个同学分别拿出2号、3号图形,其实同学在剩下的图形中任取一个,量一量它们的边,看看有什么发现,并把你的发现告诉本小组的伙伴们。)
(2)小组交流:通过测量和比较,你发现了什么?
(3)全班交流:指名汇报自己或他人的发现。
(4)认识等腰三角形和等边三角形
①建立等腰三角形、等边三角形的概念
②介绍等腰三角形、等边三角形的各部分名称
③探索等腰三角形、等边三角形的特征。
让学生量一量等腰三角形和等边三角形的各个角,想一想,通过测量,发现了什么?
学生测量完毕,教师组织学生进行全班交流,通过全班交流,引导学生发现:等腰三角形的两个底角相等;等边三角形的三个内角都相等,都是60度。
④分别拿出3号、7号图,在小组内讨论,看看它们分别是什么三角形,再量一量它们的边,看看又有什么发现?(拓展到时等腰直角三角形和等腰钝角三角形。)
⑤举例说明:你知道哪里有(等腰三角形、等边三角形)这两种特殊的三角形?(红领巾、道路交通警示标志)
三、课堂练习
1、经过刚才的研究,大家也一定很辛苦了。下面我们就来轻松一下,玩个小游戏。
猜一猜:
用一个物体将三角形的一部分遮挡住,只露出一个角,让学生根据这一个角猜测这个三角形可能是什么三角形。
只露出一个直角:这个三角形肯定是直角三角形。
只露出一个钝角:这个三角形肯定是钝角三角形。
只露出一个锐角:这个三角形可能是锐角三角形、可能是直角三角形、也可能是钝角三角形。
(在这里让学生明确判断是哪类三角形时,看角只看一个锐角三角形要看三个,看边要看三条,才能够确定是那类三角形。)
2、指导学生完成思考题
四、小结
通过今天的探究学习,你有哪些收获?这些收获是怎样得来的?
五、设计理念:
依据“先学后教,当堂训练”的教学理念,充分照顾学生在学习过程中的主体作用,在学生已有知识经验的基础上,由唤醒学生对角的认识入手,引出三角形和三角形在生产、生活中的应用,旨在为探索新知作知识铺垫的同时,体现数学在生活中的价值,增强学生学习数学的兴趣。新知的探索过程中,学生以小组合作的方式,自主探索,得出按角或按边分类的结果,教师在此期间只作适当的引导,摆正教师的引导、协助位置,使学生在参与探究的过程中自主获取知识,最大限度地发挥学生的主体作用。至于一开始并没有完全按教材的提示,放手让学生讨论分类的方法,考虑到学生的实际经验不足,目标过大,无从下手而浪浪费有效的课堂教学时间,所以教师在分类上,着情给予方向性指导,使学生的自主探究有方向可寻。练习小结旨在巩固所学的同时,对知识有个完整的认识和对获取知识的方法有个更新的认识,从而增强学生的学习信心。
三角形的分类教案【篇6】
教学目标:
1、通过学生的分类活动,认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形。
2、通过让学生动手操作,体会每类三角形的特点。
3、通过研究,培养学生观察、分析、比较、抽象、概括能力。
1、出示幻灯,让学生对三个角进行分类。
4、猜猜看,它们分别是什么三角形。
5、汇报分类结果,教师整理收集(设计意图:让学生根据以前学习过的三角形的知识,自己观察三角形并找出角的特点,并通过自己的分析、判断,自己找到按角给三角形分类的办法)
1、要求学生拿出题卡一,用手中的学具确定每个三角形中角各是什么角。
2、仔细观察,尝试着按角的不同分一分,并按编号如实记录在题卡二中
(设计意图:运用各种形式的练习加深学生按角分类的认识,又引入了按边分类的教学)
1、出示学具,师生一起动手折一折。
2、学生汇报看到的结果,共同探讨研究。
3、归纳总结特点(设计意图:学生自己总结特点及方法,教师加以点拨,体现学生的主体性)
引导学生小结本节课所学新知,感悟从中获得的乐趣。
三角形的分类教案【篇7】
听了郑老师的一节《三角形的分类》感触颇多,真可谓精彩纷呈,让人受益匪浅,整节课充满了轻松活泼的气氛,智慧的火花不时迸发。教学中教师各级引导学生经历教师精心创设的一系列数学活动,感悟数学的无穷魅力。同时学生的数学思维与逻辑推理能力得到充分的发展。充分展示了郑老师轻松幽默的语言风格和高超的驾驭课堂的能力,本课亮点主要有以下几点:
学生的数学学习活动应当是一个生动活泼、主动的和富有个性的动态过程。要使学生积极主动地参与这一过程,教师必须要为学生创设民主、平等、宽松、友好的学习环境,使学生在心理轻松的情况下,形成一个无拘无束的思维空间,产生愉悦的求知欲望,无顾忌地充分发表自己的创意。
开放式的教学过程是让学生自己发现问题、解决问题的过程,这是课堂教学动态生成的关键。因此,郑老师设计探索性和开放性的教学过程,给学生主动探索的机会和更多的思维空间。例如课前让学生准备各种三角形,启发学生思考:“三角形可以怎样分类?”然后让学生进行操作,并进行交流,学生在尝试、体验、观察、思考中得出结论。最后全班交流汇报。这样,学生通过交流学会了合作,获得了“求得同一种结果可以有多种方法”的体验,从而在动态生成中,思维得到充分的发展
三、激发兴趣,培养探索精神。
学生学习知识是发现、创造的过程,在教学中郑老师既重视学习结果,更重视过程,始终把学生放在学习主体的位置上,巧妙地引导学生主动去探索,自己去发现。在课堂上为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。突出体现了学生对知识的获取和能力的培养。从不同角度去激发学生的学习兴趣。比如采用“取名字、找朋友、猜一猜”等游戏形式帮助学生理解、记忆,让学生的学习兴趣高涨,创设了一个良好的课堂氛围。
四、设计有价值的问题,引导并启发学生展开思考和学习活动。
数学是思维的体操,而问题则是思维的源泉,更是思维的动力。新课程改革以转变学生的学习方式为突破口,倡导以问题为中心的教学,通过问题解决建构知识的理解。实施以问题为中心的教学,问题的设计非常关键。在本课中主要问题有:你能帮这些三角形起名字吗?在一个三角形中,能不能有两个直角或两个钝角?等边三角形也是等腰三角形吗?等等。以问题为线,以观察、思考、小组合作等为渠道,引导学生在积极思维的过程中深刻理解所学知识。
课堂教学过程是一个动态变化、发展的过程,也是师生、生生之间交流互动的过程。所以在本课中,有良好的预设,同时又有一些随时动态生成的信息。郑老师能够敏捷地捕捉学生在课堂上稍纵即逝的变化,见机而行,加以判断、重组,适时调整教学进程,形成新的教学步骤,使课堂教学更贴切每个学生的实际状态,让每个学生思绪飞扬,兴趣盎然,让课堂在生成中精彩。
三角形的分类教案【篇8】
一、本节课的内容是四年级下册第五单元里的一个内容:三角形的分类。这是在学生认识了各种角及三角形的特征的基础上展开学习的,本节课的设计我分为两个层次:按角分为三类,主要引导学生认识锐角三角形、直角三角形、钝角三角形。按边分为三类,着重引导学生认识等腰三角形、等边三角形边和角的特征。
二、本节课的知识目标是:
1、会根据三角形角、边的特点给三角形进行分类。
2、认识各种三角形。
能力目标是:经历观察与探索的过程,培养学生观察分析、动手操作能力,进一步发展学生的空间观念。
情感目标:激发学生的主动参与意识,培养学生的合作精神。
三、教学重点:能够按三角形角的不同和边的不同给三角形分类。
教学难点:引导学生认识各类三角形的特征。
四、本节课设计理念和施教措施
为了实现教学目标,有效的突出重点,突破难点,根据本组小专题“精心设计问题,促进学生有效学习”和学生的实际情况,教学中以直观教学为主,运用观察、动手操作、同桌合作等教学方法,精心设计问题,引导并启发学生展开思考和学习活动,促进学生有效解决问题的能力,在本节课中我精心设计了以下几个问题:
你能按三角形的特征给三角形分类吗?这是让学生运用已学过的就知识为新知识做铺垫,通过采取两次同桌合作的方式是学生会按角、边的特点给三角形进行分类。
培养学生的观察力是有效实施数学教学的方法之一,因此,我在让学生按角分类之后,抛出了又一个问题:仔细观察这三类三角形的角有什么相同的地方?这是为了让学生清楚在一个三角形中至少有两个锐角,也为如何正确的判断三角形打好基础。
此外,自学能力是教学中的一部分,因此,我根据教材内容的设置,安排让学生自学,以问题:等腰三角形和等边三角形各部分的名称又是怎样的呢?激起学生探究的欲望,通过学生自学课本内容来认识这两种三角形各部分的名称。
为了让学生进一步对等腰三角形、等边三角形有一个更清楚的认识和理解,我又以问题:你认为等边三角形是等腰三角形吗?为导向,让学生对比、理解等腰三角形包含等边三角形,也就是等边三角形是特殊的等腰三角形。
总之,整节课根据教学内容的设置,设计不同层面的问题,引导学生在积极思维的过程中有效学习,从而掌握知识。
三角形的分类教案【篇9】
活动目标:
1、知道三角形的主要特征,即三角形有三条边三个角。
2、根据三角形的特征在图中找出形状与三角形相似的小鱼。
3、乐意动手操作,提高幼儿的观察力和空间想象力。
知道三角形的主要特征是三角形由三条边和三个角组成。
活动准备:
三角板、小黄兔2只、萝卜1个、蘑菇1个、三角形、正方形、圆形若干、正方形纸每人一张、幼儿每人一个三角形积木活动过程:
师:今天是小黄兔的生日,早晨小黄兔高高兴兴地从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小黄兔拔起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。
请小朋友将路线用线连起来,观察是什么图形(三角形)3、引导幼儿观察比较图形,幼儿每人一个三角形。
(1)通过自己数一数,试一试,感知图形特征,充分让幼儿表述,得出图形的特征。
幼儿每人一张正方形纸,通过自己对三角形的认识,用正方形的纸折叠成三角形。
(1)结合图形宝宝找朋友,让幼儿从众多几何卡片中找出三角形。并一一出示三角形,说说为什么?
(2)观察图形拼图,找出三角形,数一数用了几个三角形?(3)请幼儿在周围环境中找出三角形物品。
(4)完成课本20页《小鱼游》找出小河里三角形的小鱼,并把三角形的小鱼圈出来。
活动延伸:
让幼儿回家后和爸爸、妈妈一起运用各种材料制作一个三角形。课后小结:本节课以《小黄兔过生日》的故事引入课题,通过连接小黄兔所走的路线游戏以及其它操作活动让幼儿认识三角形的特征,知道三角形由三条边三个角组成。