你的位置:
  • 范文大全
  • >教案
  • >导航
  • >一元二次方程的解教案
  • 一元二次方程的解教案

    发表时间:2024-02-23

    一元二次方程的解教案。

    老师每一堂课都需要一份完整教学课件,认真规划好自己教案课件是每个老师每天都要做的事情。教案应该是满足学生自主学习和自我发展要求的重要工具,怎么样教案课件才算?教师范文大全小编为您整理了“一元二次方程的解教案”的相关资料供您参考,衷心感谢您的支持希望这篇文章能够引发您的共鸣!

    一元二次方程的解教案【篇1】

    (1)当b2-4ac> 0时,_______________________

    (2)当b2-4ac= 0时,_________________________

    (3)当b2-4ac< 0时,________________________

    (三)应用新知:

    1、不解方程判定下列一元二次方程根的情况。

    (1)x2-x-6=0        b2-4ac=______          x1=_____     x2=_____

    (2)x2-2x=1        b2-4ac=______           x1=_____     x2=_____

    (3)x2-2x+2=0       b2-4ac=______              x1=_____     x2=_____

    2、根据根的情况,求字母系数的取值范围。

    例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。

    (1)读题分析:

    A、二次项系数是什么?                     a=_______

    B、一次项系数是什么?                     b=_______

    C、常数项是什么?                            c=_______

    例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。

    已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。

    (五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。

    1、把例1、例2整理在作业本上。

    2、有余力的同学把练习题整理在作业本。

    四、教学后记:

    一元二次方程的解教案【篇2】

    第1教时

    教学内容:  12.1  用公式解一元二次方程(一)

    教学目标 :

    知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

     

     

     

     

    过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

    情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。

    教学重、难点与关键:

    重点:一元二次方程的意义及一般形式.

     

    难点:正确识别一般式中的“项”及“系数”。

    教辅工具:

    教学程序设计:

    程序教师活动学生活动备注创设问题情景1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣. 学生看投影并思考问题通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.  探 究 新 知 11.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?“元”和“次”的含义?(3)什么叫做分式方程?2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程. 一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.练习:指出下列方程,哪些是一元二次方程?(1)x(5x-2)=x(x+1)+4x2;(2)7x2+6=2x(3x+1);(3) (4)6x2=x;(5)2x2=5y;(6)-x2=04.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.5.例1  把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式. 讨论后回答     学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,   独立完成            加深理解   学生试解问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫反馈训练应用提高练习1:教材P.5中1,2.练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:. (4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.  小结提高(四)总结、扩展引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.学生讨论回答 布置作业 1.教材P.6 练习2.2.思考题:1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).  反思 

    一元二次方程的解教案【篇3】

    教学目标

    知识与技能目标

    1、构建本章的部分知识框图。

    2、复习一元二次方程的概念、解法。

    过程与方法

    1、通过对本章方程解法的复习,进一步提高学生的运算能力。

    2、在解一元二次方程的过程中体会转化等数学思想。

    情感、态度与价值观

    通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感.

    教学重点

    1、一元二次方程的概念

    2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;

    教学难点

    解法的灵活选择;例4和例5的解法。

    教学过程

    一、创设情境

    导入新课

    问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)

    二、师生互动

    共同探究

    1、复习概念

    例1

    例2

    2、四种解法

    (1)

    解法及其关系

    (2)

    根的形式

    x1=3

    x2=4

    (3)熟悉解法

    例3用四种解法分别解此方程

    (4)方法优选

    3、方法补充

    例4

    4、解法纠错

    例5

    解关于x的方程

    错误解法

    正确解法

    三、小结反思

    提炼思想

    我们有哪些收获?解方程的思想方法是什么?

    四、布置作业

    巩固提高

    一元二次方程的解教案【篇4】

    教学目标

    掌握b2—4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2—4ac

    通过复习用配方法解一元二次方程的b2—4ac>0、b2—4ac=0、b2—4ac

    重难点关键

    1、重点:b2—4ac>0 一元二次方程有两个不相等的实根;b2—4ac=0 一元二次方程有两个相等的实数;b2—4ac

    2、难点与关键

    从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情况与根的情况的关系。

    教具、学具准备

    小黑板

    教学过程

    一、复习引入

    (学生活动)用公式法解下列方程。

    (1)2x2—3x=0 (2)3x2—2 x+1=0 (3)4x2+x+1=0

    老师点评,(三位同学到黑板上作)老师只要点评(1)b2—4ac=9>0,有两个不相等的实根;(2)b2—4ac=12—12=0,有两个相等的实根;(3)b2—4ac=│—4×4×1│=

    二、探索新知

    方程b2—4ac的值b2—4ac的符号x1、x2的关系

    (填相等、不等或不存在)

    2x2—3x=0

    3x2—2 x+1=0

    4x2+x+1=0

    请观察上表,结合b2—4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。

    从前面的具体问题,我们已经知道b2—4ac>0(

    求根公式:x= ,当b2—4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根。当b2—4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2—4ac

    因此,(结论)(1)当b2—4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= 。

    (2)当b—4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= 。

    (3)当b2—4ac

    例1、不解方程,判定方程根的情况

    (1)16x2+8x=—3 (2)9x2+6x+1=0

    (3)2x2—9x+8=0 (4)x2—7x—18=0

    分析:不解方程,判定根的情况,只需用b2—4ac的值大于0、小于0、等于0的情况进行分析即可。

    解:(1)化为16x2+8x+3=0

    这里a=16,b=8,c=3,b2—4ac=64—4×16×3=—128

    所以,方程没有实数根。

    三、巩固练习

    不解方程判定下列方程根的情况:

    (1)x2+10x+26=0 (2)x2—x— =0 (3)3x2+6x—5=0 (4)4x2—x+ =0

    (5)x2— x— =0 (6)4x2—6x=0 (7)x(2x—4)=5—8x

    四、应用拓展

    例2、若关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示)。

    分析:要求ax+3>0的解集,就是求ax>—3的解集,那么就转化为要判定a的值是正、负或0。因为一元二次方程(a—2)x2—2ax+a+1=0没有实数根,即(—2a)2—4(a—2)(a+1)

    解:∵关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数根。

    ∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+8

    a

    ∵ax+3>0即ax&

    gt;—3

    ∴x

    ∴所求不等式的解集为x

    五、归纳小结

    本节课应掌握:

    b2—4ac>0 一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2—4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2—4ac

    六、布置作业

    1、教材P46 复习巩固6 综合运用9 拓广探索1、2。

    2、选用课时作业设计。

    第7课时作业设计

    一、选择题

    1、以下是方程3x2—2x=—1的解的情况,其中正确的有( )。

    A、∵b2—4ac=—8,∴方程有解

    B、∵b2—4ac=—8,∴方程无解

    C、∵b2—4ac=8,∴方程有解

    D、∵b2—4ac=8,∴方程无解

    2、一元二次方程x2—ax+1=0的两实数根相等,则a的值为( )。

    A、a=0 B、a=2或a=—2

    C、a=2 D、a=2或a=0

    3、已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,则k的取值范围是( )。

    A、k≠2 B、k>2 C、k

    二、填空题

    1、已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________。

    2、不解方程,判定2x2—3=4x的根的情况是______(填"二个不等实根"或"二个相等实根或没有实根")。

    3、已知b≠0,不解方程,试判定关于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情况是________。

    三、综合提高题

    1、不解方程,试判定下列方程根的情况。

    (1)2+5x=3x2 (2)x2—(1+2 )x+ +4=0

    2、当c

    3、不解方程,判别关于x的方程x2—2kx+(2k—1)=0的根的情况。

    4、某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7。2亿元,求该集团2000年到2002年的年销售总额的平均增长率。

    一元二次方程的解教案【篇5】

    一、复习旧知,类比新知

    1、一元一次方程的概念

    像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程

    2、一般形式:

    是常数且

    设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。

    二、生活情境,自主学习

    (1)正方形桌面的面积是2m,设正方形桌面的边长是x m,可得方程

    (2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,设花圃的宽是x m则花圃的长是m,可得方程

    (3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程

    (4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是x m,可得方程

    设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的`,从而激发学生的求知欲望,顺利地进入新课。

    三、探究学习:

    1、概念得出

    讨论交流:以上所列方程有哪些共同特征?

    设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.

    2、巩固概念

    下列方程中那些是一元二次方程。

    设计意图:

    这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.

    3、一元二次方程的一般形式:

    设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.

    4.典型例题

    例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项

    设计意图:此题设置的目的在于加深学生对一般形式的理解。

    5.巩固练习

    把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项

    设计意图:此题设置的目的在于加深学生对一般形式的理解

    6、拓展应用

    (1)、若是关于x的一元二次方程,则()

    p为任意实数B、p=0 C、p≠0 D、p=0或1

    (2)、若关于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范围是

    (3)、若方程是关于x的一元二次方程,则m的值为

    设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。

    7.课堂小结

    设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。

    一元二次方程的解教案【篇6】

    教学目标

    知识与能力:

    1.理解一元二次方程根的判别式。

    2.掌握一元二次方程的根与系数的关系

    3.同学们掌握一元二次方程的实际应用。了解一元二次方程的分式方程。

    过程与方法:

    培养学生的逻辑思维能力以及推理论证能力。

    情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。

    重、难点

    重点:根的判别式和根与系数的关系及一元二次方程的应用。

    难点:一元二次方程的实际应用。

    一、导入新课、揭示目标

    1.理解一元二次方程根的判别式。

    2.掌握一元二次方程的根与系数的关系

    3.掌握一元二次方程的实际应用。

    二、自学提纲:

    一。主要让学生能理解一元二次方程根的判别式:

    1.判别式在什么情况下有两个不同的实数根?

    2.判别式在什么情况下有两个相同的实数根?

    3.判别式在什么情况下无实数根?

    二。ax2+bx+c=o(a≠0)的两个根为x1.x2那么

    X1+x2=-x1x2=

    三。一元二次方程的实际应用。根据不同的类型的问题。列出不同类型的方程。

    三。合作探究。解决疑难

    例1已知关于x的方程x2+2x=k-1没有实数根。试判别关于x的方程x2+kx=1-k的根的情况。

    巩固提高:

    已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根。求的周长

    例题2:

    .已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根。且(x1+2)(x2+2)=11.求a的值。

    .巩固提高:

    已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.

    (1)求证:不论m为任何实数。方程总有两个不相等的实数根;

    (2)若方程两根为x1.x2.且满足

    求m的值。

    例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台。现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元。已知电脑价格每台下降100元,月销售量将上升10台,

    (1)求1月份到3月份销售额的平均增长率:

    (2)求3月份时该电脑的销售价格。

    练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

    1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?

    2)则降价多少元?

    四、小结

    这节课同学有什么收获?同学互相交流?

    五、布置作业:

    课前课后P10-12

    一元二次方程的解教案【篇7】

    一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。

    九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。

    知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

    能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。

    德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

    “一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。

    在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。

    教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。

    1、新课导入:

    课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)

    1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。

    2、过程与方法:学生通过观察与模仿, 建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。

    3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。

    重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。

    难点:找对题目中的数量关系从而列出一元二次方程。

    师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?

    师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?

    师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?

    师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。

    师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。

    师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。

    1. 了解整式方程和一元二次方程的概念;

    2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

    3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

    难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

    1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

    理解一元二次方程的定义:

    是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

    (1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。

    (2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。

    (3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。

    1.了解整式方程和一元二次方程的概念;

    2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

    3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

    教学难点和难点:

    引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

    分析:1.要解决这个问题,就要求出铁片的长和宽。

    2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

    深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

    1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

    2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

    下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

    (2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8

    从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的次数是否是2。

    提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

    引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

    1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

    2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

    3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

    1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

    (1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0

    (4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

    2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

    (1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

    (1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);

    (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

    (3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

    一元二次方程的解教案【篇8】

    根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.

    掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.

    利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.

    1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.

    2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.

    1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?

    2.正方形的面积公式是什么呢?长方形的面积公式又是什么?

    3.梯形的面积公式是什么?

    4.菱形的面积公式是什么?

    5.平行四边形的面积公式是什么?

    现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.

    例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.

    (1)渠道的'上口宽与渠底宽各是多少?

    (2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?

    分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模.

    ∴上口宽为2.8m,渠底为1.2m.

    答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.

    例2.如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?

    老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.

    一元二次方程的解教案【篇9】

    一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。

    一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐。本节课主要侧重于一元二次方程在几何方面的应用。

    大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。

    数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。

    教学目标:

    1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。

    2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

    3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。

    教学重点、难点及解决措施:

    教师引导,学生自主探索、合作交流。

    心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的几道题:

    1、在信息时代,邮政特快专递越来越受到广大用户的青睐。我们同学要给“希望小学”邮寄一些学习用具,为了保证学习用具不受潮损坏,同学们决定自己制作一个包装盒,为此,选用长80厘米,宽60厘米的纸板,在四个角截出四个大小相同的正方形,然后把四边折起,做成一个底面积为1500平方厘米的无盖长方体盒子,并配上相应的盖子,同学们想一想怎样求出盒子的高?

    我先让每一个小组展示用硬纸板制作的模型,相互比较形状各异的长方体的纸盒,谈一谈有什么发现,同学们会说:截出正方形的边长不同,盒子的高,底面积也不同,还有正方形的边长就是盒子的高。展示小组再将问题具体解答,不难列出方程并解出方程的解,教师追问展示小组请说出解这道题需要注意意的什么呢?学生会回答方程的一个解并不一定符合题意,需要舍掉,教师强调指出要结合题目的已知条件正确决定一元二次方程两个根的取舍问题。

    设置这道题就完成了新课标中的要求能根据具体问题的实际意义,检验结果是否合理的教学目标。

    2、用一根长22厘米的铁丝折成一个面积为30平方厘米的长方形,求这个长方形的长和宽。

    我还是先让每个小组展示用铁丝折成的不同形状的长方形,比较一下,你有什么发现,同学们会说:

    1、铁丝的长度就是矩形的周长;

    2、周长相等的矩形可能面积不等;

    3、当长与宽的差越大时其面积越小,当长与宽的差越小时其面积越大,从而得出周长一定时正方形的面积最大的结论。

    教师对同学们的发现给予充分的肯定,然后由展示小组讲解本题具体解题过程,教师追问请同学们思考能折成面积为32平方厘米的长方形么?给同学们3分钟的时间思考并讨论。

    教学预设:学生可能列出方程,从的根的判别式小于零来说明不能折成面积为32平方厘米的长方形。也可能根据刚刚得到的结论周长一定时正方形的面积最大这一特性来解释,正方形的边长为5、5厘米,此时面积最大是30、25平方厘米小于32平方厘米,所以不能完成。若是学生没有想到,教师可适当提示。这道题让学生经历从具体的情景中抽象出一元二次方程模型的过程,总结具体问题中的数量关系和变化规律,即复习了根的判别式知识,又培养了学生的估算能力,还让学生感受到了函数的最值和极限的思想。

    3、有一个面积为150平方米的长方形鸡场,一边靠墙,墙的'长度为18米,另外三边用竹篱笆围成,如果竹篱笆的长35米,求鸡场的长和宽各是多少?如果墙的对面有一扇2米的门,竹篱笆的长不变,此时鸡场的长和宽是多少呢?

    教师首先提问展示小组解答这道试题与上道试题与什么区别和要注意些什么,展示的小组学生会说鸡场这个长方形的周长不是四边,而是三边之和,而且要注意第二问中周长应是竹篱笆的长加上门的宽度,学生们也不难列出方程。选用这道题是让学生认识到仔细审题,抓住关键词语的重要性,同时也让同学们感受到一元二次方程应用的广泛性。

    4、学校为美化校园,准备在长为32米,宽20米的长方形场地上修筑宽度一样的道路,余下的部分作草坪,要求草坪为540平方米,你能帮助学校设计一套方案么?请展示你的设计并计算一下设计方案中,道路的宽是多少米?(要求多种方案)

    我觉得将学生置于学校的生活环境中他们会觉得亲切熟悉,参与性更强。同学们可能会提出多种设计方案,例如:图片。教师展示小组如何能得到草坪的面积?他们不难回答出:草坪面积等于场地面积减去道路面积,教师要引导学生发现其规律:无论道路的位置在哪里,我们都可以将分割的四个草坪合成一个整体,道路的面积与道路的位置没有关系,而是与道路的形状有关系。为了研究问题的方便,我们可以把道路移动到场地的边缘,这是对学生渗透划归的思想。教学预设:学生们还可能提出以下的方案,(图案)我们可以让学生讨论他们的合理性。对于不能解决的问题,我们要告诉学生有些方案以我们现在的知识还不能解决,有些方案要同学们附加一些条件按照自己的意图,来解决,还要考虑美观合理性。我们可以课下继续研究讨论。这个试题能使学生产生了积极的情感体验,激发了学生从多角度去思考问题,体会到了解决问题中与他人合作的重要性,通过对解决问题的过程的反思获得了解决的经验,充分发挥了学生的主体地位,有效地培养了学生的创新精神,同学间的互助精神也得到了发扬。

    然后是小结环节,由学生来完成,总结出:

    1、用一元二次方程解决实际问题均可借助图示法加以分析,关键搞清已知与未知之间的关系。

    2、要仔细审题,理解题意中的已知条件,并结合实际,正确决定一元二次方程两个根的取舍问题。

    小结归纳,上升到理性,巩固本节课的重点。

    最后是布置作业:

    2、做一个社会,调查自己编一道实际生活中有关一元二次方程的问题,并给予解决。

    布置的作业内容一是本节课内容的练习和拓展,内容二是为学生创设富有挑战性、具有现实意义的问题情境,使学生感受到数学问题来源于生活实际,而生活本身就是一个巨大的数学课堂。同学们通过实践来认证书本的知识,同时又加深对书本知识的理解。

    我希望学生们能通过以上这几个环节感受到这是一堂愉快的合作,深刻的理解,活跃的讨论,轻松的记忆的数学课。

    一元二次方程的解教案【篇10】

    教材分析

    一元二次方程是一种数学建模的方法,它有着广泛的实际背景,可以作为许多实际问题的数学模型。它体现了数学的转化思想,学好一元二次方程是学好二次函数不可或缺的,一元二次方程是高中数学的奠基工程。是本书的重点内容,为后续学习打下良好的基础。

    学情分析

    1、 经过两年的合作,我们班的学生已比较配合我上课,同时初三学生观察、类比、概括、归纳能力也都比较强,不过对应用题的分析他们还是觉得很头疼,在今后应用题的教学中需进一步加强。

    2、 一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,一元二次方程是一次方程向二次方程的转化,是低次方程转向高次方程求解方法的阶梯。一元二次方程又是二次函数的特例。

    教学目标

    一、知识目标

    1、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,,增加对一元二次方程的感性认识。

    2、理解一元二次方程的概念。

    3、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项。

    二、能力目标

    1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力。

    2、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,进一步提高学生分析问题、解决问题的能力。

    四、情感目标

    1、培养学生主动探究知识、自主学习和合作交流的意识。

    2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识

    教学重点和难点

    教学重点: 一元二次方程的概念和它的一般形式

    难点:1、从实际问题中抽象出一元二次方程。2、正确识别一般式中的“项”及“系数”

    一元二次方程的解教案【篇11】

    教学目的 1.了解整式方程和一元二次方程的概念;

    2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

    3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

    教学难点和难点:重点:

    1.一元二次方程的有关概念

    2.会把一元二次方程化成一般形式

    难点:一元二次方程的含义.

    教学过程设计

    一、引入新课

    引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

    分析:1.要解决这个问题,就要求出铁片的长和宽。

    2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

    3.让学生自己列出方程( x(x十5)=150 )

    深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

    二、新课

    1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

    2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

    3.强化一元二次方程的概念

    下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

    (1)3x十2=5x—3:(2)x2=4

    (2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8

    从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

    4.一元二次方程概念的延伸

    提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

    引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

    ax2+bx+c=0 (a≠0)

    1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

    2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

    3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

    强化概念(课本p6)

    1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

    (1)x2十3x十2=o(2)x2—3x十4=0;(3)3x2-5=0

    (4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。

    2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

    (1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

    课堂小节

    (1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

    (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的`右边必须整理成0;

    (3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

    课外作业:略

    jk251.coM小编推荐

    用公式解一元二次方程


    12.1用公式解一元二次方程(一)

    一、素质教育目标

    (一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

    (二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

    (三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.

    二、教学重点、难点

    1.教学重点:一元二次方程的意义及一般形式.

    2.教学难点:正确识别一般式中的“项”及“系数”.

    三、教学步骤

    (一)明确目标

    1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

    2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

    教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

    板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

    (二)整体感知

    通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

    (三)重点、难点的学习及目标完成过程

    1.复习提问

    (1)什么叫做方程?曾学过哪些方程?

    (2)什么叫做一元一次方程?“元”和“次”的含义?

    (3)什么叫做分式方程?

    问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.

    2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

    引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.

    整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

    一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

    一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.

    3.练习:指出下列方程,哪些是一元二次方程?

    (1)x(5x-2)=x(x+1)+4x2;

    (2)7x2+6=2x(3x+1);

    (3)

    (4)6x2=x;

    (5)2x2=5y;

    (6)-x2=0

    4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.

    一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.

    一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.

    5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

    教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.

    6.练习1:教材p.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.

    练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项.

    8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

    教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.

    (四)总结、扩展

    引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

    1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.

    2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.

    3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.

    四、布置作业

    1.教材p.6练习2.

    2.思考题:

    1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

    2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

    五、板书设计

    第十二章一元二次方程

    12.1用公式解一元二次方程

    1.整式方程:……

    4.例1:……

    2.一元二次方程……:

    ……

    3.一元二次方程的一般形式:

    ……

    5.练习:……

    ……

    ……

    六、课后习题参考答案

    教材p.6a2.

    教材p.6b1、2.

    1.(1)二次项系数:ab一次项系数:c常数项:d.

    (2)二次项系数:m-n一次项系数:0常数项:m+n.

    2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次项系数:m+n,一次项系数:m-n,常数项:p-q.

    思考题

    (1)不能.如x3+2x2-4x=5.

    (2)一元三次方程:只含有一个未知数,且未知数的最高次数是3,这样的整式方程叫做一元三次方程.一般形式:ax3+bx2+cx+d=0(a≠0).

    一元四次方程:只含有一个未知数,且未知数的最高次数是4,这样的整式方程叫做一元四次方程.一般形式:ax4+bx3+cx2+dx+e=0(a≠0).

    一元二次方程的解教案实用


    教案课件作为教师工作的一部分,需要我们教师认真对待。特别是想要创造浓厚的课堂氛围,高质量的教案课件是必不可少的。本文是经栏目小编辛苦筛选的推荐之作,希望能为大家提供参考。感谢您对我们网站的关注,希望能够收藏我们的网址!

    一元二次方程的解教案(篇1)

    在解一元二次方程时,常常需要用到分解因式,但是教材中一般只介绍了提公因式法、平方差公式法和完全平方公式法.

    本期我们将介绍一种在因式分解中起着重要作用的方法:十字相乘法.

    先来看一个等式:

    (x+a)(x+b)=x²+(a+b)x+ab.

    把这个等式反过来写就是:

    x²+(a+b)x+ab=(x+a)(x+b).

    此时我们可以发现,如果一个式子可以化成x²+(a+b)x+ab的形式,它就可以通过因式分解得到(x+a)(x+b).

    而x²+(a+b)x+ab的特点是:二次项x²的系数是1,一次项的系数与常数项有联系,一个是a+b,一个是ab.

    现在我们来看两个例题:

    分析:因为x的系数是1,所以我们要找两个相加等与1的数,而且这两个数乘积是-6. 于是我们找到了-2和3.

    =(x+3)(x-2)=0.

    分析:因为x的系数是5,我们就要找两个相加等与5的数,而且这两个数乘积是6. 于是我们找到了2和3.

    x²+5x-6=0;

    x²+7x+12=0;

    x²+3x-10=0;

    x²-5x+6=0;

    x²-4x+3=0.

    有的读者会问为什么叫十字相乘法,这与用这种方法解题的方式有关. 这要从这种方法的更一般的形式说起.

    =acx²+(ad+bc)x+bd.

    这个等式反过来写就是:

    =(ax+b)(cx+d).

    我们如果把二次项acx²的系数ac和常数项bd按下图的方式写在一个正方形的四个顶点处,那么,让同一条对角线上的两个数相乘之后,我们就得到两个乘积:ad和bc.

    让这两个乘积相加,则有ad+bc,这正好是一次项(ad+bc)x的系数.

    而在同一行,横着的两个数,让左边的数乘上x再加右边的数,就得到:ax+b和cx+d两个式子,这正是因式分解后得到的结果(ax+b)(cx+d)中的两个因式.

    而上图中出现的那个“×”,像个斜放着的“十”字,所以我们称这种方法为:十字相乘法.

    这个方法的应用如下:

    分析:分别把6和-28进行分解,然后作十字相乘,找可以得到-2的结果.如图:

    这里,6分解成2×3,-28分解成4×(-7),作十字相乘,得到两个乘积:-14和12,让两个积相加,就得到一次项的系数-2. 每一行,横着的两个数,左边的数乘x再加上右边的数,得到:2x+4和3x-7.

    5x²-25x+20=0.

    一元二次方程的解教案(篇2)

    上面的三个方程这两个方程是一元一次方程吗?它们与一元一次方程的区别在哪里?它们有什么共同特点呢?( 学生分组讨论,然后各组交流 )

    (1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程。

    因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

    一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。

    一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

    【设计意图】通过上述情景分析,让学生小组合作,列出方程。在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。

    例1:下列方程中哪些是一元二次方程?试说明理由。

    例2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项

    说明:一元二次方程的一般形式(≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。

    此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。

    (1) 当k取何值时此方程为一元一次方程?

    (2) 当k取何值时此方程为一元二次方程?并写出该一元二次方程的二次项系数,一次项系数,常数项。(同学先讨论,同桌交流再进行归纳)

    【设计意图】通过例题,使学生巩固一元二次方程的概念,把握概念的实质。

    1、课本第32页1、

    2、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请尽可能多的写出满足条件的不同的一元二次方程?

    【设计意图】开放题可以使学生开阔思维,进一步巩固概念。

    引导学生从以下3个方面进行小结,(1)本节课我们学习了哪些知识?(2)学习过程中用了哪些数学方法?(3)确定一元二次方程的项及系数时要注意什么?

    【设计意图】主要由学生进行总结和互相补充,以培养学生的归纳概括能力。

    一元二次方程的解教案(篇3)

    本节内容是九年级数学第二章的第一课时,通过对本节课的学习,学生将掌握一元二次方程的概念及一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数、一次项、一次项系数和常数项,是典型的概念教学课。

    概念教学总是遵循这样的规律:引入概念、形成概念、巩固概念、运用概念和深化概念,在设计教学中也是遵循这一规律,通过学习、交流、应用、总结、检测这五个环节来完成教学任务。首先通过三个问题让学生建立一元二次方程顺利引入到新课;然后通过交流探究归纳出一元二次方程的概念,使学生体会到学习一元二次方程的必要性,探讨一元二次方程的一般形式及相关概念,并学会利用方程解决实际问题,从而获得本课的新知识;再次是通过两个例题达到巩固、运用概念的作用;最后通过总结与检测来深化学生所学知识,并运用到实际问题中去,使学生熟练掌握所学知识。

    教学过程中,强调自主学习,注重合作交流,让学生与学生的交流合作在探究过程中进行,使他们在自主探究的过程中理解和掌握一元二次方程的概念及一般形式,并获得数学活动的经验,提高探究、发现和创新能力。

    一元二次方程的解教案(篇4)

    掌握b2—4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2—4ac

    通过复习用配方法解一元二次方程的b2—4ac>0、b2—4ac=0、b2—4ac

    1。重点:b2—4ac>0 一元二次方程有两个不相等的实根;b2—4ac=0 一元二次方程有两个相等的实数;b2—4ac

    从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情况与根的情况的关系。

    (学生活动)用公式法解下列方程。

    (1)2x2—3x=0 (2)3x2—2 x+1=0 (3)4x2+x+1=0

    老师点评,(三位同学到黑板上作)老师只要点评(1)b2—4ac=9>0,有两个不相等的实根;(2)b2—4ac=12—12=0,有两个相等的实根;(3)b2—4ac=│—4×4×1│=

    请观察上表,结合b2—4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。

    从前面的具体问题,我们已经知道b2—4ac>0(

    求根公式:x= ,当b2—4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根。当b2—4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2—4ac

    (1)当b2—4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= 。

    (2)当b—4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= 。

    (3)当b2—4ac

    分析:不解方程,判定根的情况,只需用b2—4ac的值大于0、小于0、等于0的情况进行分析即可。

    这里a=16,b=8,c=3,b2—4ac=64—4×16×3=—128

    不解方程判定下列方程根的情况:

    (1)x2+10x+26=0 (2)x2—x— =0 (3)3x2+6x—5=0 (4)4x2—x+ =0

    (5)x2— x— =0 (6)4x2—6x=0 (7)x(2x—4)=5—8x

    例2。若关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示)。

    分析:要求ax+3>0的解集,就是求ax>—3的解集,那么就转化为要判定a的值是正、负或0。因为一元二次方程(a—2)x2—2ax+a+1=0没有实数根,即(—2a)2—4(a—2)(a+1)

    解:∵关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数根。

    ∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+8

    a

    本节课应掌握:

    b2—4ac>0 一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2—4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2—4ac

    1。教材P46 复习巩固6 综合运用9 拓广探索1、2。

    1。以下是方程3x2—2x=—1的解的情况,其中正确的有( )。

    2。一元二次方程x2—ax+1=0的两实数根相等,则a的值为( )。

    3。已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,则k的'取值范围是( )。

    A。k≠2 B。k>2 C。k

    1。已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________。

    2。不解方程,判定2x2—3=4x的根的情况是______(填“二个不等实根”或“二个相等实根或没有实根”)。

    3。已知b≠0,不解方程,试判定关于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情况是________。

    1。不解方程,试判定下列方程根的情况。

    2。当c

    3。不解方程,判别关于x的方程x2—2kx+(2k—1)=0的根的情况。

    4。某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团投入新产品开发研究资金为4000万元,销售总额为7。2亿元,求该集团20到20的年销售总额的平均增长率。

    一元二次方程的解教案(篇5)

    知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。

    过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。

    情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。

    重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。

    教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:① 用式子表示总积分能与胜、负场数之间的数量关系;

    ②某队的胜场总分能等于它的负场总积分么?

    学生充分思考、合作交流,然后教师引导学生分析。

    师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?

    生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.

    师:G,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?

    生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)

    师:x表示什么?可以是分数么?由此你的出什么结论?

    生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。

    师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。

    如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?

    师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。

    教师引导学生设未知数,列方程。学生试说。

    生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。

    已知某山区的平均气温与该山的海拔高度的关系见表:

    若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?

    学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。

    四、课堂小结:

    让几个学生谈自己的收获,再让一个学生全面总结。

    五、布置作业:

    本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。

    由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。

    一元二次方程的解教案(篇6)

    学情分析:

    学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式.

    知识技能:

    1、 理解一元二次方程的概念.

    2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.

    数学思考:

    1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.

    2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

    3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力.

    解决问题:

    在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.

    情感态度:

    1、培养学生自主自主学习、探究知识和合作交流的意识.

    2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.

    教学重点:

    一元二次方程的概念及一般形式.

    教学难点:

    1、由实际问题向数学问题的转化过程.

    2、正确识别一元二次方程一般形式中的“项”及“系数”.

    【问题1】有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?

    【分析】设长方形绿地的宽为x米,依题意列方程为:x(x+10)=900;

    【问题2】学校图书馆去年年底有图书5万册,预计至明年年底增加到7.2万册,求这两年的年平均增长率。

    【分析】设这两年的年平均增长率为x,依题列方程为:5(1+x)2=7.2;

    【问题2】学校要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?

    【分析】全部比赛共4×7=28场,设应邀请x个队参赛,则每个队要与其它 (x-1)队各赛1场,全场比赛共场,依题意列方程得:;

    (设计意图:在现实生活中发现并提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性。 同时通过解决实际问题引入一元二次方程的概念,同时可提高学生利用方程思想解决实际问题的能力。)

    【探究】(1)上面三个方程左右两边是含未知数的 整式 (填 “整式”“分式”等);

    (2)方程整理后含有 一 个未知数;

    (3)按照整式中的多项式的规定,它们最高次数是 二 次。

    等号两边都是 整式 ,只含有 一 个求知数(一元),并且求知数的最高次数是 2 (二次)的方程,叫做一元二次方程。

    一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:

    这种形式叫做一元二次方程的一般形式。其中ax2是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项。

    【强调】方程ax2+bx+c=0只有当a≠0时才叫一元二次方程,如果a=0,b≠0时就是一元一次方程了。所以在一般形式中,必须包含a≠0这个条件。

    (设计意图:由于学生已熟练掌握了整式、分式、一元一次方程等概念,所以从未知数的个数及最高次数提问,引导学生归纳共同点是符合学生的认知基础的。学生的自主观察、比较、归纳是活动有效的保证,教学中应当让学生充分的探究和交流。同时,在概念教学中类比是帮助学生正确理解概念的有效方法。)

    【对应练习】判断下列方程,哪些是一元二次方程?哪些不是?为什么?

    (1)x3-2x2+5=0; (2)x2=1;

    (3)5x2-2x-=x2-2x+; (4)2(x+1)2=3(x+1);

    (设计意图:此问题采取抢答的形式,提高学生学习数学的兴趣和积极性。其目的是为了及时巩固一元二次方程的概念,同时让学生知道判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断。)

    【例1】 已知方程(a-3)x|a-1|-2x+5=0,当 a=-1 时,此方程是一元二次方程,当a=0,2或3 时,此方程是一元一次方程。

    (设计意图:通过例1的学习,一是使学生进一步巩固一元二次方程的概念,并注意其最基本的条件:未知数的最高次数为2,二次项系数不为0;二是使学生了解一元二次方程与一元一次方程的联系与区别。在填第一个空时要让学生注意a值的取舍,填第二个空时要注意引导学生进行分类讨论。)

    【例2】将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

    【分析】一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.

    其中二次项系数是3,一次项系数是-8,常数项是-10。

    (设计意图:通过例2的学习,一是使学生进一步掌握一元二次方程的一般形式,并注意强调二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号;二是使学生进一步了解方程的变形过程。)

    本节课你学了什么知识?从中得到了什么启示?

    1、a≠0是ax2+bx+c=0成为一元二次方程的必要条件,否则,方程ax2+bx+c=0变为bx+c=0,就不是一元二次方程。

    2、找一元二次方程中的二次项系数、一次项系数、常数项,应先将方程化为一般形式。

    1、下列方程,是一元二次方程的是 ①④⑤ 。

    ①3x2+x=20, ②2x2-3xy+4=0, ③, ④ x2=0, ⑤

    2、某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为x(x+10)=200,化为一般形式为x2+10x-200=0。

    3、方程(m-2)x|m|+3mx+1=0是关于x的一元二次方程,则 m= -2 。

    4、将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式为 2x2+2x-4=0 ,其中二次项是 2x2 ,二次项系数是 2 ,一次项是 2x ,一次项系数是 2 ,常数项是 -4 。

    (设计意图:随堂检测学生对新知识的掌握情况,及时了解反馈和调整后续教学内容与教法。)

    一元二次方程的解教案(篇7)

    教学目标:

    1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型

    2、理解什么是一元二次方程及一元二次方程的一般形式。

    3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

    教学重点

    1、一元二次方程及其它有关的概念。

    2、利用实际问题建立一元二次方程的数学模型。

    教学难点

    1、建立一元二次方程实际问题的数学模型

    2、把一元二次方程化为一般形式

    教学方法:指导自学,自主探究

    课时:第一课时

    教学过程:

    (学生通过导学提纲,了解本节课自己应该掌握的内容)

    一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)

    1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程。

    2、你发现上述三个方程有什么共同特点?

    你能把这些特点用一个方程概括出来吗?

    3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念

    你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?

    二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)

    1、下列哪些是一元二次方程?哪些不是?

    ①②③

    ④x2+2x-3=1+x2 ⑤ax2+bx+c=0

    2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

    (1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

    3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?

    4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?

    5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?

    三、反思:(学生,进一步加深本节课所学内容)

    这节课你学到了什么?

    四、自查自省:(通过当堂小测,及时发现问题,及时应对)

    1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个

    (1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

    3、关于x的方程(㎡-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.

    作业:必做题:习题7.1

    选做题:(挑战自我)p41随堂练习

    1、已知关于的方程是一元二次方程,则为何值?

    2、当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?

    3、关于的一元二次方程(m-1)x2+x+㎡-1=0有一根为,则的值多少?

    4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2?

    (1)(2)

    板书设计:一元二次方程

    定义:一个未知数整式方程可以化为

    一般形式ax2+bx+c=0(a、b、c为常数,a≠0)

    二次项一次项常数项

    系数为a系数为b

    教学反思

    这次我参加了区里组织的优质

    课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。

    首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间

    其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。

    再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。

    我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。

    一元二次方程的解教案(篇8)

    一、教材分析:

    1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

    2、教学目标要求:

    (1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

    (2)能根据具体问题的实际意义,检验结果是否合理;

    (3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

    (4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

    3、教学重点和难点:

    重点:列一元二次方程解与面积有关问题的应用题。

    难点:发现问题中的等量关系。

    二.教法、学法分析:

    1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

    2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

    三.教学流程分析:

    本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

    活动1复习回顾解决课前参与

    活动2封面设计问题的探究

    活动3草坪规划问题的延伸

    活动4课堂回眸

    这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

    活动1复习回顾解决课前参与

    由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

    活动2封面设计问题的探究

    通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

    活动3草坪规划问题的延伸

    放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

    活动4课堂回眸

    本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

    一元二次方程的解教案(篇9)

    今天我说课的内容是苏科版初中数学九年级上册第四章第3节《用一元二次方程解决问题》的第1课时。对于本节课我将从教材分析与学生现实分析、教学目标分析,教法与学法,教学过程这四个方面加以阐述。

    一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。从宏观上来看,学生已经学习了一元一次方程、二元一次方程组、以及分式方程等知识,感受了方程模型的作用和价值,积累了一些用方程解决问题的经验,从微观而言,学生已经学过一元二次方程的解法为本节课的学习做好铺垫,同时作为第3节第一课时承上启下,直接影响后续的学习效果。本节课以实际问题为载体,借助有一定挑战性和思考性的现实问题情境,通过学生的自主探索研究,抽象出一元二次方程,体现数学建模的过程帮助学生增强应用认识。

    然而,对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,将实际问题提炼为数学问题是我们老师实施教学设计方案不容忽视的重难点。

    数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标:

    1、知识与技能:会分析实际问题中的等量关系,并能够用一元二次方程解决问题。

    2、过程与方法:经历将实际问题抽象为数学问题的.过程,知道解应用题的一般步骤和关键所在。

    3、情感、态度与价值观:通过用一元二次方程解决实际问题,进一步理解方程是刻画客观世界的有效模型,培养学生在生活中发现问题,解决问题的能力。

    教师引导,学生自主探索、合作交流。课堂中,通过提供适当的问题情境促使学生的反思,引起学生必要的认知冲突,从而让学生最终通过其主动的思辨建构起新的的认知结构。

    一)课堂结构:

    1)一个正方体的表面积是216cm2,求这个长方体的棱长。

    2)一个直角三角形的面积是24cm2,两条直角边的差是2cm,求两条直角边长。

    设计意图:心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的建模较为的问题情境,提高学生探究欲望。

    问题串:

    2)如何设未知数,列方程?

    3)怎样解方程?方程的解是否都符合题意?

    设计意图:通过分析使学生感受到,先审清题意,抓准问题中的数量关系,找出相等关系,再设未知数和列方程,有利于理清思路,降低列方程解应用题的难度,从而发展学生思维能力。

    这一问题源于生活,具有浓厚的时代气息,但数量关系较为复杂,所以对题意的理解尤为重要。请学生独立审题,并设计问题:人数会超过30人吗?实际人均费用为多少?实际人均费用,人数与总费用有怎样的等量关系?怎样设未知数,列方程?在层层递进的问题串下帮助学生理清数量之间的关系,突破难点,建立数学模型。得到方程:[800—10(x—30)]x=28000,解方程,并引导到学生检验方程的解是否符合实际意义:“人数多于30人且不超过40人”与“人均旅游费用不得低于500元”。经历审、设、列、解、验、答六环节,培养学生用数学的意识,以及严谨客观的良好思维品质。

    变式:该公司有组织第二批员工到龙湾风景区旅游,并支付给旅社29250元,求该公司第二批参加旅游的员工人数。

    初三学生已经有较强的知识迁移能力,通过变式练习,类比例题的解题思想方法进而帮助学生加深对新知的理解,提高解决此类问题的能力。

    学而不思则罔,最后引导学生回顾收获与交流感悟,帮助形成知识体系。

    一元二次方程的解教案(篇10)

    今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。它是继传播问题、百分率问题、长宽比例问题这几个基本问题的学习后的探索活动课,对于本节课我将从教材分析与学生现实分析、教学目标分析,教法的确定与学法指导,教学过程这四个方面加以阐述。

    一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。

    一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐。本节课主要侧重于一元二次方程在几何方面的应用

    大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。

    (二)数学新课程标准要求:

    人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。

    我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标的:

    1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。

    2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

    3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。

    教学重点、难点及解决措施:

    教师引导,学生自主探索、合作交流。

    我们学校在去年实行了杜郎口中学的三三六的教学模式立体式、大容量、快节奏;自主学习三模块:预习、展示、反馈;课堂展示六环节:预习交流、明确目标、分组合作、展现提升、穿插巩固、达标测评。对于每个专题都要经历预习、展示和达标检测三个环节,经过一年的训练,学生们已经有较好的自学能力和小组合作能力,实践表明,学生给学生讲题,同学们会更有兴趣,也更容易接受,学生通过自我展示不但能激发他们的表现欲,还能提高语言表达能力和竞争意识。

    我们让各个小组轮流来当课堂“小老师”,以提高他们的`合作水平和对试题的阅读理解能力,同学们和教师也会根据每个“小老师”讲解的具体情况来进行修正和补充,强调重点,总结规律。为了鼓励学生勤于思考,善于发问,我在课堂上引入“奖励分”制度,对于独特解法或有提出创造性问题的同学和小组给予1——3分的奖励。本节课是对一元二次方程应用的基本问题的学习后的探索活动课,在预习课上我已经下发了试题学案,并给每个小组分配了展示任务。学案上我选用了了四道实际问题,要求同学们找出试题特点和关键词语以及易错点,并用硬纸板和铁丝做出相应的试题模型。预习课上学生先做题再合作,同学们之间有充分的交流和讨论。

    心理学研究表明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,由此我选了这样的几道题:

    1、在信息时代,邮政特快专递越来越受到广大用户的青睐。我们同学要给“希望小学”邮寄一些学习用具,为了保证学习用具不受潮损坏,同学们决定自己制作一个包装盒,为此,选用长80厘米,宽60厘米的纸板,在四个角截出四个大小相同的正方形,然后把四边折起,做成一个底面积为1500平方厘米的无盖长方体盒子,并配上相应的盖子,同学们想一想怎样求出盒子的高?

    我先让每一个小组展示用硬纸板制作的模型,相互比较形状各异的长方体的纸盒,谈一谈有什么发现,同学们会说:截出正方形的边长不同,盒子的高,底面积也不同,还有正方形的边长就是盒子的高。展示小组再将问题具体解答,不难列出方程并解出方程的解,教师追问展示小组请说出解这道题需要注意

    一元二次方程


    教学目标

    1.理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

    2.知道形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解.培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

    3.鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略.

    教学重点及难点

    1、用直接开平方法解一元二次方程;

    2、理解直接开平方法中的整体思想,懂得(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解

    教学过程设计

    一、情景引入,理解方法

    看一看:特殊奥林匹克运动会的会标

    想一想:

    在XX年的特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,xx学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

    解:由题意得:x2=144

    根据平方根的意义得:x=±12

    ∴原方程的解是:x1=12,x2=-12

    ∵边长不能为负数

    ∴x=12

    了解方法:

    上述解方程的方法叫做直接开平方法.通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法.

    【说明】用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括.通过两个阶段联系后的探究意在培养学生探究一般规律的能力..

    第三阶段:怎样解方程(1+x)2=144?

    请四人学习小组共同研究,并给出一个解题过程.可以参考课本或其他资料.小组长负责清楚的记录解题过程.

    第四阶段:众人齐心当考官!

    请各四人小组试着编一个类似于(x+1)2=144这样能用直接开平方法解的一元二次方程.

    1、分析学生所编的方程.

    2、从学生的编题中挑出一个方程给学生练习.

    3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

    4(x+1)2-144=0

    归纳:形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解.

    【说明】在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想.

    三、巩固方法,提高能力

    请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

    ⑴x2=3⑵3t2-t=0

    ⑶3y2=27⑷(y-1)2-4=0

    ⑸(2x+3)2=6⑹x2=36x

    四、自主小结

    今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

    一元二次方程教案


    每位教师授课前必须准备的教案和课件,我们需要静下心来撰写这些教学材料。制作教案和课件能够展示教师的专业水平和职业精神。教师范文大全小编在网上发现了一篇标题为“一元二次方程教案”的文章,希望能够大方地分享给更多人阅读!

    一元二次方程教案【篇1】

    教学目的 1.了解整式方程和一元二次方程的概念;

    2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

    3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

    教学难点和难点:重点:

    1.一元二次方程的有关概念

    2.会把一元二次方程化成一般形式

    难点:一元二次方程的含义.

    教学过程设计

    一、引入新课

    引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

    分析:1.要解决这个问题,就要求出铁片的长和宽。

    2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

    3.让学生自己列出方程( x(x十5)=150 )

    深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

    二、新课

    1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

    2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

    3.强化一元二次方程的概念

    下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

    (1)3x十2=5x—3:(2)x2=4

    (2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8

    从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

    4.一元二次方程概念的延伸

    提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

    引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

    ax2+bx+c=0 (a≠0)

    1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

    2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

    3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

    强化概念(课本p6)

    1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

    (1)x2十3x十2=o(2)x2—3x十4=0;(3)3x2-5=0

    (4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。

    2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

    (1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

    课堂小节

    (1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

    (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的`右边必须整理成0;

    (3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

    课外作业:略

    一元二次方程教案【篇2】

    学习目标

    1、一元二次方程的求根公式的推导

    2、会用求根公式解一元二次方程。

    3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯

    学习重、难点

    重点:一元二次方程的求根公式。

    难点:求根公式的条件:b2 -4ac≥0

    学习过程:

    一、自学质疑:

    1、用配方法解方程:2x2-7x+3=0.

    2、用配方解一元二次方程的步骤是什么?

    3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?

    二、交流展示:

    刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?

    三、互动探究:

    一般地,对于一元二次方程ax2+bx+c=0

    (a≠0),当b2-4ac≥0时,它的根是

    用求根公式解一元二次方程的方法称为公式法

    由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的。因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根。

    注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号。

    (2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac

    四、精讲点拨:

    例1、课本例题

    总结:其一般步骤是:

    (1)把方程化为一般形式,进而确定a、b,c的值。(注意符号)

    (2)求出b2-4ac的值。(先判别方程是否有根)

    (3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后写出方程的根。

    例2、解方程:

    (1)2x2-7x+3=0 (2) x2-7x-1=0

    (3) 2x2-9x+8=0 (4) 9x2+6x+1=0

    五、纠正反馈:

    做书上第P90练习。

    六、迁移应用:

    例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。

    例4、求方程 的两根之和以及两根之积

    拓展应用:关于 的一元二次方程 的一个根是 ,则 ;

    方程的另一根是

    一元二次方程教案【篇3】

    教学目标:

    (一)知识与技能:

    1、理解并掌握用配方法解简单的一元二次方程。

    2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。

    (二)过程与方法目标:

    1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。

    2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。

    (三)情感,态度与价值观

    启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。

    教学重点、难点:

    重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。

    难点:通过配方把一元二次方程转化为(x+m)2=n(n≥0)的形式。

    教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境——建立数学模型——巩固与运用——反思、拓展”来展示教学活动。

    教学过程

    学生活动

    设计意图

    一 复习旧知

    用直接开平方法解下列方程:

    (1)9x2=4 (2)( x+3)2=0

    总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n≥0)的方程。

    二 创设情境,设疑引新

    在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。

    例:小明用一段长为 20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?

    三 新知探究

    1 提问:这样的方程你能解吗?

    x2+6x+9=0 ①

    2、提问:这样的方程你能解吗?

    x2+6x+4=0 ②

    思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?

    归纳总结配方法:

    通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配方法。

    配方法的依据:完全平方公式

    配方法的关键:给方程的两边同时加上一次项系数一半的平方

    点拨:先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。

    四 合作讨论,自主探究

    1、 配方训练

    (1) x2+12x+( )=(x+6)2

    (2) x2-12x+( )=(x- )2

    (3) x2+8x+( )=(x+ )2

    (4) x2+mx+( )=(x+ )2

    强调:当一次项系数为负数或分数时,要注意运算的准确性。

    2、将下列方程化为(x+m)2=n

    (n≥0)的形式并计算出X值。

    (1)x2-4x+3=0

    (2)x2+3x-1=0

    解:X2-4X+3=0

    移向:得X2-4X=-3

    配方:得X2-4X+2^2=-3+2^2(两边同时加上一次项系数一半的平方)

    即:(X-2)2=1

    开平方,得:X-2=1或X-2=-1

    所以:X=3或X=1

    方程(2)有学生完成。

    3、巩固训练:课本55页随堂练习第一题。

    五 小结

    1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n(n≥0)的形式,然后两边开平方就可以得到方程的解。

    2、用配方法解二次项系数为一的一元二次方程的一般步骤:

    (1) 移项(常数项移到方程右边)

    (2) 配方(方程两边都加上一次项系数的一半的平方)

    (3) 开平方

    (4) 解出方程的根

    六 布置作业

    习题2.3第1,2题

    两个学生黑板上那解题,剩余学生练习本上计算。

    学生观看课件,思考老师提出的问题,得到:设该矩形的长为x米,依题意得

    x(10-x)=9

    但是发现所列方程无法用直接开平方法解。于是引入新课。

    学生通过观察发现,方程的左边是一个完全平方式,可以化为( x+3)2=0,然后就可以运用上节课学过的直接开平方法解了。

    方程②的左边不是一个完全平方式,于是不能直接开平方。学生陷入思考,给学生充分思考、交流的时间和空间。

    在学生思考的时候,老师引导学生将方程②与方程①进行对比分析,然后得到:

    x2+6x=-4

    x2+6x+9=-4+9

    (x+3)2=5

    从而可以用直接开平方法解,给出完整的解题过程。

    在学生充分思考、讨论的基础上总结:配方时,常数项为一次项系数的一半的平方。

    检查学生的练习情况。小组合作交流。

    学生归纳后教师再做相应的补充和强调。

    学生分组完成方程(2)和课后随堂练习第一题

    学生分组总结本节课知识内容。

    一元二次方程教案【篇4】

    第1教时

    教学内容:  12.1  用公式解一元二次方程(一)

    教学目标 :

    知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

     

     

     

     

    过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

    情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。

    教学重、难点与关键:

    重点:一元二次方程的意义及一般形式.

     

    难点:正确识别一般式中的“项”及“系数”。

    教辅工具:

    教学程序设计:

    程序教师活动学生活动备注创设问题情景1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣. 学生看投影并思考问题通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.  探 究 新 知 11.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?“元”和“次”的含义?(3)什么叫做分式方程?2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程. 一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.练习:指出下列方程,哪些是一元二次方程?(1)x(5x-2)=x(x+1)+4x2;(2)7x2+6=2x(3x+1);(3) (4)6x2=x;(5)2x2=5y;(6)-x2=04.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.5.例1  把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式. 讨论后回答     学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,   独立完成            加深理解   学生试解问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫反馈训练应用提高练习1:教材P.5中1,2.练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:. (4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.  小结提高(四)总结、扩展引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.学生讨论回答 布置作业 1.教材P.6 练习2.2.思考题:1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).  反思 

    一元二次方程教案【篇5】

    教学目标

    知识与能力:

    1.理解一元二次方程根的判别式。

    2.掌握一元二次方程的根与系数的关系

    3.同学们掌握一元二次方程的实际应用。了解一元二次方程的分式方程。

    过程与方法:

    培养学生的逻辑思维能力以及推理论证能力。

    情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。

    重、难点

    重点:根的判别式和根与系数的关系及一元二次方程的应用。

    难点:一元二次方程的实际应用。

    一、导入新课、揭示目标

    1.理解一元二次方程根的判别式。

    2.掌握一元二次方程的根与系数的关系

    3.掌握一元二次方程的实际应用。

    二、自学提纲:

    一。主要让学生能理解一元二次方程根的判别式:

    1.判别式在什么情况下有两个不同的实数根?

    2.判别式在什么情况下有两个相同的实数根?

    3.判别式在什么情况下无实数根?

    二。ax2+bx+c=o(a≠0)的两个根为x1.x2那么

    X1+x2=-x1x2=

    三。一元二次方程的实际应用。根据不同的类型的问题。列出不同类型的方程。

    三。合作探究。解决疑难

    例1已知关于x的方程x2+2x=k-1没有实数根。试判别关于x的方程x2+kx=1-k的根的情况。

    巩固提高:

    已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根。求的周长

    例题2:

    .已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根。且(x1+2)(x2+2)=11.求a的值。

    .巩固提高:

    已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.

    (1)求证:不论m为任何实数。方程总有两个不相等的实数根;

    (2)若方程两根为x1.x2.且满足

    求m的值。

    例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台。现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元。已知电脑价格每台下降100元,月销售量将上升10台,

    (1)求1月份到3月份销售额的平均增长率:

    (2)求3月份时该电脑的销售价格。

    练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

    1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?

    2)则降价多少元?

    四、小结

    这节课同学有什么收获?同学互相交流?

    五、布置作业:

    课前课后P10-12

    一元二次方程教案【篇6】

    用公式法解一元二次方程的说课稿范文

    作为一位无私奉献的人民教师,往往需要进行说课稿编写工作,说课稿有利于教学水平的提高,有助于教研活动的开展。说课稿要怎么写呢?下面是小编帮大家整理的用公式法解一元二次方程的说课稿范文,希望能够帮助到大家。

    今天我说课的内容是人教版九年级上册第22章《用公式法解一元二次方程》。我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明。

    一、教材分析

    (一)教材的地位和作用

    “一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。

    (二)教学目标

    知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。

    数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。

    解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。

    情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。

    (三)教学重、难点

    重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。

    难点:理解求根公式的推导过程和判别式

    二、教学法分析

    教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。

    学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。

    三、过程分析

    本节课的教学设计成以下六个环节:复习导入、呈现问题、例题讲解、巩固练习、课时小结、布置作业。

    1、复习引入:

    这节课,我首先从旧知问题(1)用配方法解方程2x28x90的练习引入,问题(2)总结配方法的一般步骤(化一般方程、二次项系数为1、配方使左边为完全平方式、两边开方、求解)。

    设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。

    2、问题呈现:

    你能用配方法解一般形式的`一元二次方程吗?

    此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。为降低b2b24ac推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到(x这步时,提出 )问题:

    ①此时可以直接开平方吗?

    ②等号右边的值需要满足什么条件?为什么?

    ③等号右边的值只跟哪个式子有关?

    设计意图:师生共同完成前四步,这样与利于减轻学生的`思维负担,便于将主要精力放在后边公式的推导上。通过小组的讨论有利于发挥学生的互帮互助,借助小组的交流完善答案,关键让学生会对

    掌握b24ac与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,b24ac进行讨论,

    应加以强化。

    最终总结出:

    当b24ac<0时,原方程无实数解。

    当b24ac≥0时,原方程有实数解,

    再进一步谈论:b24ac=0与b24ac>0时,两个解区别?

    (b24ac=0时,两个相等的实数解,b24ac>0时,两个不等的实数解)

    由此可知,方程有解还是无解是由b24ac决定,即b24ac是方程解的判别式。

    同时,方程的解是可以将a、b、c的值带入公式x根公式”,利用它解一元二次方程叫做公式法。

    3、例题讲解

    例4:用公式法解下列方程

    2x5x30 4x214x 2321x2x0 42

    总结步骤:

    1、把方程公成一般形式,并写出a,b,c的值。

    2、求出b24ac的值

    b3代入求根公式:x(a0,b24ac0) 2a

    4、写出方程的解:x1= ,x2=

    设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。

    4、巩固练习

    解下列一元二次方程:

    ①x2x60

    ②4x2x90

    ③x2100

    设计意图:

    (1)熟悉公式法,强化解题格式,

    (2)及时发现错误及时解决。

    例5:解方程:x(x1)(x2)

    化简得12212x3x40 2

    强调:

    ①当方程不是一般形式时,应先化成一般形式,再运用求根公式。

    ②你还能用其他方法解本例方程吗?

    设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的多样化思维,提高解题能力和解题的速度。

    5、课时小结

    (1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。

    (2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。

    6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。

    四、板书设计

    教学评价

    本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。

    通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。

    一元二次方程教案【篇7】

    一、出示学习目标:

    1.继续感受用一元二次方程解决实际问题的过程;

    2.通过自学探究掌握裁边分割问题。

    二、自学指导:(阅读课本P

    1.阅读探究3并进行填空;

    2.完成P48的思考并掌握裁边分割问题的特点;

    探究?

    分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7

    设上、下边衬的宽均为右边衬的宽均为7xcm,则:

    由中下层学生口答书中填空,老师再给予补充。

    思考:如果换一种设法,是否可以更简单?

    设正中央的长方形长为9acm,宽为7acm,依题意得

    9题中下层学生在自学完之后先板演

    效果检测时,由同座的同学给予点评与纠正

    注意点:要善于利用图形的平移把问题简单化!

    三、当堂训练:

    1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?

    (只要求设元、列方程)

    2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?

    一元二次方程教案【篇8】

    1、知识与能力目标: 要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

    2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

    3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。

    教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.

    2。难点:通过实际问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。

    问题一:学校有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽为多少?

    整理可得 。

    问题二:有一块矩形绿化带,长100cm,宽50cm,在它的四角各栽种一个同样的正方形花坛,如果去掉四周矩形的底面积为3600cm2,那么四周花坛面积是多大的正方形?

    整理可得 。

    问题三:要组织一次环保竞赛,参加的每两个班之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个班参赛?

    【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。

    一元二次方程教案【篇9】

    例1已知关于x的方程x2+2x=k-1没有实数根.试判别关于x的方程x2+kx=1-k的根的情况。

    巩固提高:

    已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根.求的周长

    例题2:

    .已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根.且(x1+2)(x2+2)=11.求a的值。

    .巩固提高:

    已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.

    (1)求证:不论m为任何实数.方程总有两个不相等的实数根;

    (2)若方程两根为x1.x2.且满足

    求m的值。

    例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台.现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台,

    (1)求1月份到3月份销售额的平均增长率:

    (2)求3月份时该电脑的销售价格.

    练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

    1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?

    2)则降价多少元?

    一元二次方程教案【篇10】

    1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

    2、教学目标要求:

    (1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

    (2)能根据具体问题的实际意义,检验结果是否合理;

    (3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

    (4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

    3、教学重点和难点:

    重点:列一元二次方程解与面积有关问题的应用题。

    难点:发现问题中的等量关系。

    一元二次方程教案【篇11】

    1、会根据具体问题中的数量关系列一元二次方程并求解。

    2、能根据问题的实际意义,检验所得结果是否合理。

    3、进一步掌握列方程解应用题的步骤和关键。

    (一)思考课本探究1回答下列问题:

    (1)设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感。

    (2)在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感。

    (3)根据等量关系列方程并求解。为什么要舍去一解?

    (4)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?

    (5)完成教材思考:如果按照这样的传播速度,三轮传染后,有多少人患流感?

    (学生在交流中解决问题,教师深入小组讨论,对疑惑较多的问题要点拨;前两个问是解题的关键,可作适当点拨。最后思考题,可让学生试试独立完成。教给学生如何审题,分析题。)

    三、例题学习:

    例1:青山村种的水稻20xx年平均每公顷产7200kg,20xx年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率。 (学生独立思考、练习。一学生板书,教师巡视后讲解)

    例2:(教材探究2)两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

    (给学生分组求解,然后比较哪个小组做的有快又准。最后比较哪种药品成本平均下降率较大。)

    四、课堂练习:(学生独立思考、练习。一学生板书,教师巡视后讲解)

    1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?

    2、有一人患了流感,经过两轮传染后共有121人患了流感,奥执染中平均一个人传染了几个人?

    1、列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。

    2、探究2是平均增长率或降低率问题。若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有: (常见n=2)

    教后记:

    本节课是一元二次方程的应用第一课时。通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:

    一、通过学生口答,复习了列方程解应用题的一般步骤及解一元二次方程的方法,为学习本节知识打好了基础。

    二、问题探究通过问题串让学生解决的问题由浅入深,由易到难,也让学生解决问题的能力逐级上升,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。

    三、本节课第一个例题,是增长率问题中的一个典型例题,我在引导学生解决此题之后,进一步总结了列方程解应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。

    四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。

    五、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。

    六、需改进的方面:

    1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如例2有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示、

    2、只考虑扑捉学生的思维亮点,一学生列错了方程,我没有给予及时纠正。导致使一些同学陷入误区、

    3、下课后很多学生和我沟通课上一学生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。

    本文网址://www.jk251.com/jiaoan/138174.html

    【一元二次方程的解教案】相关推荐
    五年级下学期班主任工作计划 优秀范文模板

    充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《五年级下学期班主任工作计划 优秀范文模板》,希望能够为您提供参考。五年级下学期班主任工作计划新的一学期又开始了,为了在新的学期里把工作做好,把我...

    2025春四年级班主任工作计划

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“春四年级班主任工作计划”。20xx春四年级下学期班主任工作计划本学期我继续担任四年级的班主任,为了更好地开展工作,现拟订本学期班主任工作计划。一、...