你的位置:
  • 范文大全
  • >教案
  • >高中教案
  • >导航
  • >函数的图象
  • 函数的图象

    发表时间:2022-01-19

    一、教学目的

    1.使学生进一步理解自变量的取值范围和函数值的意义.

    2.使学生会用描点法画出简单函数的图象.

    二、教学重点、难点

    重点:1.理解与认识函数图象的意义.

    2.培养学生的看图、识图能力.

    难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.

    三、教学过程

    复习提问

    1.函数有哪三种表示法?(答:解析法、列表法、图象法.)

    2.结合函数y=x的图象,说明什么是函数的图象?

    3.说出下列各点所在象限或坐标轴:

    新课

    1.画函数图象的方法是描点法.其步骤:

    (1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.

    一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.

    (2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.

    (3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.

    一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).

    2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.

    小结

    本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.

    练习:①选用课本练习(前一节已作:列表、描点,本节要求连线)

    ②补充题:画出函数y=5x-2的图象.jk251.com

    作业:选用课本习题.

    四、教学注意问题

    1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.

    2.注意充分调动学生自己动手画图的积极性.

    3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.

    jK251.COm精选阅读

    关于数字化图象的合成的高中教案推荐


    教学对象

    1、高一年级学生

    2、有一定的计算机基础操作能力

    3、对photoshop有一点基本的操作能力教学目标

    1、让学生掌握利用选区工具在某张图片中选取特定对象;

    2、让学生掌握由多个图层合成一张新的图片;

    3、体验创意的成就感教学重点

    准确剪切对象,使合成后的作品逼真教学难点

    如何使合成的作品有创意教学用时

    1课时教学过程步骤

    教师活动

    学生活动

    设计意图情境导入

    •播放一组图片

    •播放由这组图片中不同的图片合成新的有创意的图片效果图

    欣赏作品

    激发学生的兴趣问题的提出

    提问:1、从刚才的播放的一系列图片中你们对哪一张的印象最深?为什么?

    2、你知道它是利用什么工具怎样做出来的吗?

    学生回答问题

    让学生产生问题,是啊“这是怎么做出来的?我能想到能做到吗?”剖析问题

    作品妙在由两张毫不关联的图片经过抠选合并加工让人产生了新意,有灵光一现的感觉,它是由我们上次课学习的photoshop软件合成的。同学们想不想让自己的灵光一现也变成现实啊?

    学生互动

    观察学生,看他们对解决问题的兴趣程度实例演示

    •选择学生较感兴趣的一张效果图分析;

    •根据选取对象的特点选择抠图工具抠选对象

    矩形工具:选取相对较规则的对象时选用

    套索工具:选取不规则对象时选用

    魔术棒工具:选取对象与背景色有较大差别时选用

    •利用移动工具或复制粘贴的方法把抠选的对象移植到另一张图片上

    •添加文字,提升效果图的创意

    •保存效果图

    学生观看

    让学生了解基本的操作步骤设置任务学习实践

    •提供图片资源,允许上网查找自己喜欢的图片

    •由一张或多张图片合成一张有创意的效果图

    •保存作品到教师机本班的文件夹下

    学生上机练习

    发散学生的思维

    锻炼学生的动手能力作品评价

    提出问题:谁愿意把自己的作品与同学共享的请举手,然后播放举手学生的作品

    适当点评作品

    同学之间互评

    作品创作者对创意的解释

    让学生体验他人的思维飞跃

    学会欣赏他人的作品小结

    归纳这次课主要学习的知识点,肯定学生的能力,希望他们能做得更好

    函数的应用举例


    教学目标

    1.能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.

    (1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.

    (2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.

    (3)能处理有关几何问题,增长率的问题,和物理方面的实际问题.

    2.通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.

    3.通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.

    教学建议

    教材分析

    (1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.

    (2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再认识.

    教法建议

    (1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要.

    (2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.

    (3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.

    教学设计示例

    函数初步应用

    教学目标

    1.能够运用常见函数的性质及平面几何有关知识解决某些简单的实际问题.

    2.通过对实际问题的研究,培养学生分析问题,解决问题的能力

    3.通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的意识,及学习数学的兴趣.

    教学重点,难点

    重点是应用问题的阅读分析和解决.

    难点是根据实际问题建立相应的数学模型

    教学方法

    师生互动式

    教学用具

    投影仪

    教学过程

    一.提出问题

    数学来自生活,又应用于生活和生产实践.而实际问题中又蕴涵着丰富的数学知识,数学思想与方法.如刚刚学过的函数内容在实际生活中就有着广泛的应用.今天我们就一起来探讨几个应用问题.

    问题一:如图,△是边长为2的正三角形,这个三角形在直线的左方被截得图形的面积为,求函数的解析式及定义域.(板书)

    (作为应用问题由于学生是初次研究,所以可先选择以数学知识为背景的应用题,让学生研究)

    首先由学生自己阅读题目,教师可利用计算机让直线运动起来,观察三角形的变化,由学生提出研究方法.由学生说出由于图形的不同计算方法也不同,应分类讨论.分界点应在,再由另一个学生说出面积的计算方法.

    当时,,(采用直接计算的方法)

    当时,

    .(板书)

    (计算第二段时,可以再画一个相应的图形,如图)

    综上,有,

    此时可以问学生这是什么函数?定义域应怎样计算?让学生明确是分段函数的前提条件下,求出定义域为.(板书)

    问题解决后可由教师简单小结一下研究过程中的主要步骤(1)阅读理解;(2)建立目标函数;(3)按要求解决数学问题.

    下面我们一起看第二个问题

    问题二:某工厂制定了从1999年底开始到2005年底期间的生产总值持续增长的两个三年计划,预计生产总值年平均增长率为,则第二个三年计划生产总值与第一个三年计划生产总值相比,增长率为多少?(投影仪打出)

    首先让学生搞清增长率的含义是两个三年总产值之间的关系问题,所以问题转化为已知年增长率为,分别求两个三年计划的总产值.

    设1999年总产值为,第一步让学生依次说出2000年到2005年的年总产值,它们分别为:

    2000年2003年

    2001年2004年

    2002年2005年(板书)

    第二步再让学生分别算出第一个三年总产值和第二个三年总产值

    =++

    =.

    =++

    =.(板书)

    第三步计算增长率.

    .(板书)

    计算后教师可以让学生总结一下关于增长率问题的研究应注意的问题.最后教师再指出关于增长率的问题经常构建的数学模型为,其中为基数,为增长率,为时间.所以经常会用到指数函数有关知识加以解决.

    总结后再提出最后一个问题

    问题三:一商场批发某种商品的进价为每个80元,零售价为每个100元,为了促进销售,拟采用买一个这种商品赠送一个小礼品的办法,试验表明,礼品价格为1元时,销售量可增加10%,且在一定范围内礼品价格每增加1元销售量就可增加10%.设未赠送礼品时的销售量为件.

    (1)写出礼品价值为元时,所获利润(元)关于的函数关系式;

    (2)请你设计礼品价值,以使商场获得最大利润.(为节省时间,应用题都可以用投影仪打出)

    题目出来后要求学生认真读题,找出关键量.再引导学生找出与利润相关的量.包括销售量,每件的利润及礼品价值等.让学生思考后,列出销售量的式子.再找学生说出每件商品的利润的表达式,完成第一问的列式计算.

    解:.(板书)

    完成第一问后让学生观察解析式的特点,提出如何求这个函数的最大值(此出最值问题是学生比较陌生的,方法也是学生不熟悉的)所以学生遇到思维障碍,教师可适当提示,如可以先具体计算几个值看一看能否发现规律,若看不出规律,能否把具体计算改进一下,再计算中能体现它是最大?也就是让学生意识到应用最大值的概念来解决问题.最终将问题概括为两个不等式的求解即

    (2)若使利润最大应满足

    同时成立即解得

    当或时,有最大值.

    由于这是实际应用问题,在答案的选择上应考虑价值为9元的礼品赠送,可获的最大利润.

    三.小结

    通过以上三个应用问题的研究,要学生了解解决应用问题的具体步骤及相应的注意事项.

    四.作业略

    五.板书设计

    2.9函数初步应用

    问题一:

    解:

    问题二

    分析

    问题三

    分析

    小结:

    函数的定义域


    定义域

    (高中函数定义)设a,b是两个非空的数集,如果按某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a--b为集合a到集合b的一个函数,记作y=f(x),x属于集合a。其中,x叫作自变量,x的取值范围a叫作函数的定义域;

    值域

    名称定义

    函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合

    常用的求值域的方法

    (1)化归法;(2)图象法(数形结合),

    (3)函数单调性法,

    (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等

    关于函数值域误区

    定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

    “范围”与“值域”相同吗?

    “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

    本文网址://www.jk251.com/jiaoan/6029.html

    【函数的图象】相关推荐
    [year+]年高考地理季现象的经典总结 万能通用篇

    地理现象1月7月地球公转一月初,近日点附近,地球公转角速度、线速度最快,北半球冬半年较短七月初,远日点附近,地球公转角速度、线速度最慢,北半球夏半年较长正午太阳高度12月22日,南回归线及以南地区达最...

    关于化学反应中的能量变化的高中教案推荐

    教学目标知识目标使学生了解化学反应中的能量变化,理解放热反应和吸热反应;介绍燃料充分燃烧的条件,培养学生节约能源和保护环境意识;通过学习和查阅资料,使学生了解我国及世界能源储备和开发;通过布置研究性课...