你的位置:
  • 范文大全
  • >教案
  • >导航
  • >[教案系列] 《直线和圆的位置关系》教学思考
  • [教案系列] 《直线和圆的位置关系》教学思考

    发表时间:2022-10-09

    每个老师需要在上课前弄好自己的教案课件,每位老师都需要认真准备自己的教案课件。只有写好教案课件,这样才能达到预期的教学目标。要写好教案课件,需要注意哪些方面呢?下面是小编帮大家编辑的《[教案系列] 《直线和圆的位置关系》教学思考》,欢迎您阅读和收藏,并分享给身边的朋友!

    今天,我顺利地上完《直线和圆的位置关系》第一课时。

    本节课,我先让学生在课前自行完成教学案中“课前预习与导学”这一部分,情况良好。上课后先信息反馈进行评讲,然后引导学生回忆了点与圆的位置关系及如何用数量关系来判断点与圆的位置关系。接着以《海上日出》图创设情景,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由小“练习”进行应用,最后通过“例题”“课堂检测”去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

    1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

    2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在小练习之后我及时地进行总结归纳方法,让学生在以后解决实际问题过程中能一下子找到切入点,培养学生解决实际问题的能力。

    同时,我也感觉到本节课的教学有不妥之处,主要有以下三点:

    1、学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

    2、对于我们学生的情况,初三的教学始终没有摆脱灌输式教学,尽管课上也让学生自主操作、思考,但老师讲的太多,没有给予学生足够的探索、交流的时间,势必会影响到部分学生的思维,限制了学生的发展。所以,我们也要学会该“放手时就放手”,大胆地让学生去思考,也许会有意外的收获。

    3、对教材的把握,对学生的实情,在备课时都要考虑。在选题时不仅要照顾到基础薄弱的同学,也要照顾到基础好些的同学,适时选做。对于有些题可以适当地进行变式训练,拓展灵活运用,活跃学生的思维。

    总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。

    JK251.com延伸阅读

    直线与圆的位置关系


    一、素质教育目标

    ㈠知识教学点

    ⒈使学生理解直线和圆的位置关系。

    ⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

    ㈡能力训练点

    直线圆的位置关系教案模板


    授课时间:2004.11.17早上第二节授课班级:初三、1班授课教师:

    教学内容:7.7直线和圆的位置关系

    教学目标:

    知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

    2.初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。

    过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

    想,培养学生观察、分析、概括、知识迁移的能力;

    2.通过例题教学,培养学生灵活运用知识的解决能力。

    情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

    教学重点:直线和圆的位置关系的判定方法和性质

    教学难点:直线和圆的三种位置关系的研究及运用

    教学程序设计:

    程序

    教师活动

    学生活动

    备注

    创设

    问题

    情景

    利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的距离两方面体会直线和圆的不同位置关系。

    学生看投影并思考问题

    调动学生积极主动参与数学活动中.

    今天我们学习7.7直线和圆的位置关系。

    1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

    2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。

    例1(课本第89页例)

    例2如图,正方形ABCD,边长

    为5,AC与BD交于点O,过点

    O作EF∥AB分别交AD、BC于

    点E、F。以A为圆心,为

    半径作圆,则⊙A与直线BD、EF、BC位置关系怎样,说明理由。

    学生观察、讨论、概括、总结后回答

    学生讨论试解看清条件与图形做出正确的判断

    问题的提出及解决,为深刻理解直线和圆的概念做好铺垫

    类比点和圆的位置关系来得到新知识

    从多个角度对所学知识加以运用

    反馈

    训练

    应用

    提高

    练习1:教材P.90中1,2.

    练习2:在Rt△ABC中,∠C=900,AC=3,AB=5,若以C为圆心、r为半径作圆,那么()

    (1)当直线AB与⊙C相切时,r的取值范围是

    (1)当直线AB与⊙C相离时,r的取值范围是

    (1)当直线AB与⊙C相交时,r的取值范围是

    学生在练习本上笔答,互相帮助、纠正

    培养了团结协作,相互交流的精神,也培养了学生正确的书写习惯

    小结

    提高

    直线和圆的位置关系:

    指导学生回答

    探究

    活动

    问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数

    布置

    作业

    1、课本第101页7.3A组第2、3题

    2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

    经典初中教案直线圆的位置关系


    1.知识结构

    2.重点、难点分析

    重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.

    难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

    3.教法建议

    本节内容需要一个课时.

    (1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

    (2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

    教学目标:

    1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;

    2、通过的探究,向学生渗透分类、数形结合的思想,培养学生

    观察、分析和概括的能力;

    3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.

    教学重点:的判定方法和性质.

    教学难点:直线和圆的三种位置关系的研究及运用.

    教学设计:

    (一)基本概念

    1、观察:(组织学生,使学生从感性认识到理性认识)

    2、归纳:(引导学生完成)

    (1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点

    3、概念:(指导学生完成)

    由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

    (1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

    (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

    (3)相离:直线和圆没有公共点时,叫做直线和圆相离.

    研究与理解:

    ①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.

    ②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

    (二)直线与圆的位置关系的数量特征

    1、迁移:点与圆的位置关系

    (1)点P在⊙O内d

    (2)点P在⊙O上d=r;

    (3)点P在⊙O外d>r.

    2、归纳概括:

    如果⊙O的半径为r,圆心O到直线l的距离为d,那么

    (1)直线l和⊙O相交d

    (2)直线l和⊙O相切d=r;

    (3)直线l和⊙O相离d>r.

    (三)应用

    例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

    (1)r=2cm;(2)r=2.4cm;(3)r=3cm.

    学生自主完成,老师指导学生规范解题过程.

    解:(图形略)过C点作CD⊥AB于D,

    在Rt△ABC中,∠C=90°,

    AB=,

    ∵,∴AB·CD=AC·BC,

    ∴(cm),

    (1)当r=2cm时CD>r,∴圆C与AB相离;

    (2)当r=2.4cm时,CD=r,∴圆C与AB相切;

    (3)当r=3cm时,CD<r,∴圆C与AB相交.

    练习P105,1、2.

    (四)小结:

    1、知识:(指导学生归纳)

    2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.

    (五)作业:教材P115,1(1)、2、3.

    探究活动

    问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.

    略解:由正三角形的边长为6厘米,可得它一边上的高为9厘米.

    ①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.

    ②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即

    直线圆的位置关系的教学方案


    1.知识结构

    2.重点、难点分析

    重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.

    难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

    3.教法建议

    本节内容需要一个课时.

    (1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

    (2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

    第12页

    直线与圆的位置关系相关教学方案


    《直线和圆的位置关系》的教学设计

    太平溪九四中学何风光

    一、素质教育目标

    ㈠知识教学点

    ⒈使学生理解直线和圆的位置关系。

    ⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

    ㈡能力训练点

    直线圆的位置关系相关教学方案


    1.知识结构

    2.重点、难点分析

    重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.

    难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

    3.教法建议

    本节内容需要一个课时.

    (1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

    (2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.

    教学目标:

    1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;

    2、通过的探究,向学生渗透分类、数形结合的思想,培养学生

    观察、分析和概括的能力;

    3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.

    教学重点:的判定方法和性质.

    教学难点:直线和圆的三种位置关系的研究及运用.

    教学设计:

    (一)基本概念

    1、观察:(组织学生,使学生从感性认识到理性认识)

    2、归纳:(引导学生完成)

    (1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点

    3、概念:(指导学生完成)

    由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

    (1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

    (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

    (3)相离:直线和圆没有公共点时,叫做直线和圆相离.

    研究与理解:

    ①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.

    ②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

    (二)直线与圆的位置关系的数量特征

    1、迁移:点与圆的位置关系

    (1)点P在⊙O内d

    (2)点P在⊙O上d=r;

    (3)点P在⊙O外d>r.

    2、归纳概括:

    如果⊙O的半径为r,圆心O到直线l的距离为d,那么

    (1)直线l和⊙O相交d

    (2)直线l和⊙O相切d=r;

    (3)直线l和⊙O相离d>r.

    (三)应用

    例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

    (1)r=2cm;(2)r=2.4cm;(3)r=3cm.

    学生自主完成,老师指导学生规范解题过程.

    解:(图形略)过C点作CD⊥AB于D,

    在Rt△ABC中,∠C=90°,

    AB=,

    ∵,∴AB·CD=AC·BC,

    ∴(cm),

    (1)当r=2cm时CD>r,∴圆C与AB相离;

    (2)当r=2.4cm时,CD=r,∴圆C与AB相切;

    (3)当r=3cm时,CD<r,∴圆C与AB相交.

    练习P105,1、2.

    (四)小结:

    1、知识:(指导学生归纳)

    2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.

    (五)作业:教材P115,1(1)、2、3.

    探究活动

    问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.

    略解:由正三角形的边长为6厘米,可得它一边上的高为9厘米.

    ①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.

    ②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即

    经典初中教案数学教案-直线圆的位置关系


    公开课教案

    授课时间:2004.11.17早上第二节授课班级:初三、1班授课教师:

    教学内容:7.7直线和圆的位置关系

    教学目标:

    知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

    2.初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。

    过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

    想,培养学生观察、分析、概括、知识迁移的能力;

    2.通过例题教学,培养学生灵活运用知识的解决能力。

    情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

    教学重点:直线和圆的位置关系的判定方法和性质

    教学难点:直线和圆的三种位置关系的研究及运用

    教学程序设计:

    程序

    教师活动

    学生活动

    备注

    创设

    问题

    情景

    利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的距离两方面体会直线和圆的不同位置关系。

    学生看投影并思考问题

    调动学生积极主动参与数学活动中.

    今天我们学习7.7直线和圆的位置关系。

    1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

    2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。

    例1(课本第89页例)

    例2如图,正方形ABCD,边长

    为5,AC与BD交于点O,过点

    O作EF∥AB分别交AD、BC于

    点E、F。以A为圆心,为

    半径作圆,则⊙A与直线BD、EF、BC位置关系怎样,说明理由。

    学生观察、讨论、概括、总结后回答

    学生讨论试解看清条件与图形做出正确的判断

    问题的提出及解决,为深刻理解直线和圆的概念做好铺垫

    类比点和圆的位置关系来得到新知识

    从多个角度对所学知识加以运用

    反馈

    训练

    应用

    提高

    练习1:教材P.90中1,2.

    练习2:在Rt△ABC中,∠C=900,AC=3,AB=5,若以C为圆心、r为半径作圆,那么()

    (1)当直线AB与⊙C相切时,r的取值范围是

    (1)当直线AB与⊙C相离时,r的取值范围是

    (1)当直线AB与⊙C相交时,r的取值范围是

    学生在练习本上笔答,互相帮助、纠正

    培养了团结协作,相互交流的精神,也培养了学生正确的书写习惯

    小结

    提高

    直线和圆的位置关系:

    指导学生回答

    探究

    活动

    问题:如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数

    布置

    作业

    1、课本第101页7.3A组第2、3题

    2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

    本文网址://www.jk251.com/jiaoan/53147.html

    【[教案系列] 《直线和圆的位置关系》教学思考】相关推荐
    五年级下学期班主任工作计划 优秀范文模板

    充分准备一份教案是一名优秀教师的职责所在,我们可以通过教案来进行更好的教学,每一位教师都要慎重考虑教案的设计,你是否在烦恼教案怎么写呢?可以看看本站收集的《五年级下学期班主任工作计划 优秀范文模板》,希望能够为您提供参考。五年级下学期班主任工作计划新的一学期又开始了,为了在新的学期里把工作做好,把我...

    2025春四年级班主任工作计划

    按照学校要求,教师都需要用到教案,教案在我们教师的教学中非常重要,做好教案对我们未来发展有着很重要的意义,如何才能写好教案呢?下面是小编特地为大家整理的“春四年级班主任工作计划”。20xx春四年级下学期班主任工作计划本学期我继续担任四年级的班主任,为了更好地开展工作,现拟订本学期班主任工作计划。一、...