你的位置:
  • 范文大全
  • >教案
  • >高中教案
  • >导航
  • >圆的方程【推荐】
  • 圆的方程【推荐】

    发表时间:2022-01-16

    【www.jk251.com - 圆的方程】

    做为高中教师,我们经常会接触到教案的撰写,教案也是老师开展教学活动的依据,一份完整的教案有许多内容,自己的高中教案如何写呢?小编为你推荐《圆的方程【推荐】》,希望您喜欢。

    教学目标

    (1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.

    (2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.

    (3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.

    (4)掌握直线和圆的位置关系,会求圆的切线.

    (5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.

    教学建议

    教材分析

    (1)知识结构

    (2)重点、难点分析

    ①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求,用解决相关问题.

    ②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.

    教法建议

    (1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.

    (2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.

    (3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.

    (4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.

    教学设计示例

    圆的一般方程

    教学目标:

    (1)掌握圆的一般方程及其特点.

    (2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.

    (3)能用待定系数法,由已知条件求出圆的一般方程.

    (4)通过本节课学习,进一步掌握配方法和待定系数法.

    教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

    (2)用待定系数法求.

    教学难点:圆的一般方程特点的研究.

    教学用具:计算机.

    教学方法:启发引导法,讨论法.

    教学过程:

    【引入】

    前边已经学过了圆的标准方程

    把它展开得

    任何都可以通过展开化成形如

    的方程

    【问题1】

    形如①的方程的曲线是否都是圆?

    师生共同讨论分析:

    如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

    显然②是不是圆方程与是什么样的数密切相关,具体如下:

    (1)当时,②表示以为圆心、以为半径的圆;

    (2)当时,②表示一个点;

    (3)当时,②不表示任何曲线.

    总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

    圆的一般方程的定义:

    当时,①表示以为圆心、以为半径的圆,

    此时①称作圆的一般方程.

    即称形如的方程为圆的一般方程.

    【问题2】圆的一般方程的特点,与圆的标准方程的异同.

    (1)和的系数相同,都不为0.

    (2)没有形如的二次项.

    圆的一般方程与一般的二元二次方程

    相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

    圆的一般方程与圆的标准方程各有千秋:

    (1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

    (2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

    【实例分析】

    例1:下列方程各表示什么图形.

    (1);

    (2);

    (3).

    学生演算并回答

    (1)表示点(0,0);

    (2)配方得,表示以为圆心,3为半径的圆;

    (3)配方得,当、同时为0时,表示原点(0,0);当、不同时为0时,表示以为圆心,为半径的圆.

    例2:求过三点,,的,并求出圆心坐标和半径.

    分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.

    解:设为

    因为、、三点在圆上,则有

    解得:,,

    所求为

    可化为

    圆心为,半径为5.

    请同学们再用标准方程求解,比较两种解法的区别.

    【概括总结】通过学生讨论,师生共同总结:

    (1)求多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.

    (2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.

    下面再看一个问题:

    例3:经过点作圆的割线,交圆于、两点,求线段的中点的轨迹.

    解:圆的方程可化为,其圆心为,半径为2.设是轨迹上任意一点.

    化简得

    点在曲线上,并且曲线为圆内部的一段圆弧.

    【练习巩固】

    (1)方程表示的曲线是以为圆心,4为半径的圆.求、、的值.(结果为4,-6,-3)

    (2)求经过三点、、的.

    分析:用圆的一般方程,代入点的坐标,解方程组得为.

    (3)课本第79页练习1,2.

    【小结】师生共同总结:

    (1)圆的一般方程及其特点.

    (2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.

    (3)用待定系数法求.

    【作业】课本第82页5,6,7,8.

    【板书设计】

    圆的一般方程

    圆的一般方程

    例1:

    例2:

    例3:

    练习:

    小结:

    作业:

    jK251.com其他人还在看

    圆的方程


    教学目标

    (1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.

    (2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.

    (3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.

    (4)掌握直线和圆的位置关系,会求圆的切线.

    (5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.

    教学建议

    教材分析

    (1)知识结构

    (2)重点、难点分析

    ①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求,用解决相关问题.

    ②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.

    教法建议

    (1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.

    (2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.

    (3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.

    (4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.

    教学设计示例

    圆的一般方程

    教学目标:

    (1)掌握圆的一般方程及其特点.

    (2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.

    (3)能用待定系数法,由已知条件求出圆的一般方程.

    (4)通过本节课学习,进一步掌握配方法和待定系数法.

    教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

    (2)用待定系数法求.

    教学难点:圆的一般方程特点的研究.

    教学用具:计算机.

    教学方法:启发引导法,讨论法.

    教学过程:

    【引入】

    前边已经学过了圆的标准方程

    把它展开得

    任何都可以通过展开化成形如

    的方程

    【问题1】

    形如①的方程的曲线是否都是圆?

    师生共同讨论分析:

    如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

    显然②是不是圆方程与是什么样的数密切相关,具体如下:

    (1)当时,②表示以为圆心、以为半径的圆;

    (2)当时,②表示一个点;

    (3)当时,②不表示任何曲线.

    总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

    圆的一般方程的定义:

    当时,①表示以为圆心、以为半径的圆,

    此时①称作圆的一般方程.

    即称形如的方程为圆的一般方程.

    【问题2】圆的一般方程的特点,与圆的标准方程的异同.

    (1)和的系数相同,都不为0.

    (2)没有形如的二次项.

    圆的一般方程与一般的二元二次方程

    相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

    圆的一般方程与圆的标准方程各有千秋:

    (1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

    (2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

    【实例分析】

    例1:下列方程各表示什么图形.

    (1);

    (2);

    (3).

    学生演算并回答

    (1)表示点(0,0);

    (2)配方得,表示以为圆心,3为半径的圆;

    (3)配方得,当、同时为0时,表示原点(0,0);当、不同时为0时,表示以为圆心,为半径的圆.

    例2:求过三点,,的,并求出圆心坐标和半径.

    分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.

    解:设为

    因为、、三点在圆上,则有

    解得:,,

    所求为

    可化为

    圆心为,半径为5.

    请同学们再用标准方程求解,比较两种解法的区别.

    【概括总结】通过学生讨论,师生共同总结:

    (1)求多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.

    (2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.

    下面再看一个问题:

    例3:经过点作圆的割线,交圆于、两点,求线段的中点的轨迹.

    解:圆的方程可化为,其圆心为,半径为2.设是轨迹上任意一点.

    化简得

    点在曲线上,并且曲线为圆内部的一段圆弧.

    【练习巩固】

    (1)方程表示的曲线是以为圆心,4为半径的圆.求、、的值.(结果为4,-6,-3)

    (2)求经过三点、、的.

    分析:用圆的一般方程,代入点的坐标,解方程组得为.

    (3)课本第79页练习1,2.

    【小结】师生共同总结:

    (1)圆的一般方程及其特点.

    (2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.

    (3)用待定系数法求.

    【作业】课本第82页5,6,7,8.

    【板书设计】

    圆的一般方程

    圆的一般方程

    例1:

    例2:

    例3:

    练习:

    小结:

    作业:

    曲线方程(小编推荐)


    教学目标

    (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.

    (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.

    (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.

    (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.

    (5)进一步理解数形结合的思想方法.

    教学建议

    教材分析

    (1)知识结构

    曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.

    (2)重点、难点分析

    ①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.

    ②本节的难点是曲线方程的概念和求曲线方程的方法.

    教法建议

    (1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.

    (2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.

    (3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.

    (4)从集合与对应的观点可以看得更清楚:

    设表示曲线上适合某种条件的点的集合;

    表示二元方程的解对应的点的坐标的集合.

    可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

    (5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.

    这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

    文字语言中的几何条件数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的,的代数方程

    由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”

    (6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.

    教学设计示例

    课题:求曲线的方程(第一课时)

    教学目标:

    (1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

    (2)进一步理解曲线的方程和方程的曲线.

    (3)初步掌握求曲线方程的方法.

    (4)通过本节内容的教学,培养学生分析问题和转化的能力.

    教学重点、难点:求曲线的方程.

    教学用具:计算机.

    教学方法:启发引导法,讨论法.

    教学过程:

    【引入】

    1.提问:什么是曲线的方程和方程的曲线.

    学生思考并回答.教师强调.

    2.坐标法和解析几何的意义、基本问题.

    对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

    (1)根据已知条件,求出表示平面曲线的方程.

    (2)通过方程,研究平面曲线的性质.

    事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

    【问题】

    如何根据已知条件,求出曲线的方程.

    【实例分析】

    例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

    首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

    解法一:易求线段的中点坐标为(1,3),

    由斜率关系可求得l的斜率为

    于是有

    即l的方程为

    分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

    (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

    证明:(1)曲线上的点的坐标都是这个方程的解.

    设是线段的垂直平分线上任意一点,则

    将上式两边平方,整理得

    这说明点的坐标是方程的解.

    (2)以这个方程的解为坐标的点都是曲线上的点.

    设点的坐标是方程①的任意一解,则

    到、的距离分别为

    所以,即点在直线上.

    综合(1)、(2),①是所求直线的方程.

    至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

    解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

    由两点间的距离公式,点所适合的条件可表示为

    将上式两边平方,整理得

    果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

    这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

    让我们用这个方法试解如下问题:

    例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

    分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

    求解过程略.

    【概括总结】通过学生讨论,师生共同总结:

    分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

    首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

    (1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

    (2)写出适合条件的点的集合

    (3)用坐标表示条件,列出方程;

    (4)化方程为最简形式;

    (5)证明以化简后的方程的解为坐标的点都是曲线上的点.

    一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

    上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

    下面再看一个问题:

    例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

    【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

    解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

    由距离公式,点适合的条件可表示为

    将①式移项后再两边平方,得

    化简得

    由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

    【练习巩固】

    题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.

    分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

    根据条件,代入坐标可得

    化简得

    由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

    【小结】师生共同总结:

    (1)解析几何研究研究问题的方法是什么?

    (2)如何求曲线的方程?

    (3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

    【作业】课本第72页练习1,2,3;

    【板书设计】

    §7.6求曲线的方程

    坐标法:

    解析几何:

    基本问题:

    (1)

    (2)

    例1:

    例2:

    求曲线方程的步骤:

    例3

    练习:

    小结:

    作业:

    直线的方程


    教学目标

    (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出.

    (2)理解直线方程几种形式之间的内在联系,能在整体上把握.

    (3)掌握直线方程各种形式之间的互化.

    (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

    (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

    (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

    教学建议

    1.教材分析

    (1)知识结构

    由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

    (2)重点、难点分析

    ①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出.

    解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.

    直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.

    ②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.

    2.教法建议

    (1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

    (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.

    直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

    (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

    (4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.

    求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.

    (5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).

    (6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.

    (7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.

    (8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.

    教学设计示例

    直线方程的一般形式

    教学目标:

    (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

    (2)理解直线与二元一次方程的关系及其证明

    (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

    教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.

    教学用具:计算机

    教学方法:启发引导法,讨论法

    教学过程:

    下面给出教学实施过程设计的简要思路:

    教学设计思路:

    (一)引入的设计

    前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

    问:说出过点(2,1),斜率为2的,并观察方程属于哪一类,为什么?

    答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

    肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

    问:求出过点,的,并观察方程属于哪一类,为什么?

    答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

    肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

    启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

    学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

    【问题1】“任意都是二元一次方程吗?”

    (二)本节主体内容教学的设计

    这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

    学生或独立研究,或合作研究,教师巡视指导.

    经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

    思路一:…

    思路二:…

    ……

    教师组织评价,确定最优方案(其它待课下研究)如下:

    按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.

    当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.

    当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

    学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

    平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

    综合两种情况,我们得出如下结论:

    在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.

    至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.

    同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

    学生们不难得出:二者可以概括为统一的形式.

    这样上边的结论可以表述如下:

    在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.

    启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

    【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

    不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

    师生共同讨论,评价不同思路,达成共识:

    回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即

    (1)当时,方程可化为

    这是表示斜率为、在轴上的截距为的直线.

    (2)当时,由于、不同时为0,必有,方程可化为

    这表示一条与轴垂直的直线.

    因此,得到结论:

    在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.

    为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.

    【动画演示】

    演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.

    至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

    (三)练习巩固、总结提高、板书和作业等环节的设计在此从略

    数学教案-直线的方程(小编推荐)


    教学目标

    (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.

    (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.

    (3)掌握直线方程各种形式之间的互化.

    (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

    (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

    (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

    教学建议

    1.教材分析

    (1)知识结构

    由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

    (2)重点、难点分析

    ①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.

    解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.

    直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.

    ②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.

    2.教法建议

    (1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

    (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.

    直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

    (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

    (4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.

    求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.

    (5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).

    (6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.

    (7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.

    (8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.

    教学设计示例

    直线方程的一般形式

    教学目标:

    (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

    (2)理解直线与二元一次方程的关系及其证明

    (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

    教学重点、难点:直线方程的一般式.直线与二元一次方程(不同时为0)的对应关系及其证明.

    教学用具:计算机

    教学方法:启发引导法,讨论法

    教学过程:

    下面给出教学实施过程设计的简要思路:

    教学设计思路:

    (一)引入的设计

    前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

    问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

    答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

    肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

    问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?

    答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

    肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

    启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

    学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

    【问题1】“任意直线的方程都是二元一次方程吗?”

    (二)本节主体内容教学的设计

    这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

    学生或独立研究,或合作研究,教师巡视指导.

    经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

    思路一:…

    思路二:…

    ……

    教师组织评价,确定最优方案(其它待课下研究)如下:

    按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.

    当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.

    当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

    学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

    平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

    综合两种情况,我们得出如下结论:

    在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.

    至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.

    同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

    学生们不难得出:二者可以概括为统一的形式.

    这样上边的结论可以表述如下:

    在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.

    启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

    【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

    不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

    师生共同讨论,评价不同思路,达成共识:

    回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即

    (1)当时,方程可化为

    这是表示斜率为、在轴上的截距为的直线.

    (2)当时,由于、不同时为0,必有,方程可化为

    这表示一条与轴垂直的直线.

    因此,得到结论:

    在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.

    为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.

    【动画演示】

    演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.

    至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

    (三)练习巩固、总结提高、板书和作业等环节的设计在此从略

    关于椭圆及其标准方程1的高中教案推荐


    教学目标

    1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

    2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

    3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

    4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

    5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.

    教学建议

    教材分析

    1.知识结构

    2.重点难点分析

    重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

    椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.

    (1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

    另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

    (2)根据椭圆的定义求标准方程,应注意下面几点:

    ①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

    ②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

    ③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

    ④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

    (3)两种标准方程的椭圆异同点

    中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.

    椭圆的焦点在轴上标准方程中项的分母较大;

    椭圆的焦点在轴上标准方程中项的分母较大.

    另外,形如中,只要,,同号,就是椭圆方程,它可以化为.

    (4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

    教法建议

    (1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.

    为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。

    例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.

    (2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历

    为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.

    (3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。

    教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。

    教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。

    (4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质

    在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。

    (5)注意椭圆的定义与椭圆的标准方程的联系

    在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.

    (6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.

    推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)

    (7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.

    (8)在学习新知识的基础上要巩固旧知识

    椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.

    (9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。

    第12页

    关于理想气体状态方程()的高中教案推荐


    理想气体的状态方程

    一、教学目标

    1、知识目标:

    (1)理解“理想气体”的概念。

    (2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。

    (3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。

    2、能力目标

    通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。

    3、情感目标

    通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。

    二、重点、难点分析

    1、理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。

    2、对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。

    三、教具

    1、投影幻灯机、书写用投影片。

    2、气体定律实验器、烧杯、温度计等。

    四、主要教学过程

    (一)引入新课

    玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。

    (二)教学过程设计

    1、关于“理想气体”概念的教学

    设问:

    (1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由

    实验总结归纳得出来的?答案是:由实验总结归纳得出的。

    (2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。

    老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。这就是说,当温度足够低或压强足够大时,任何气体都被液化了,

    当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。

    出示投影片(1):

    p

    (Pa)

    pV值(PaL)

    空气

    1

    100

    200

    500

    1000

    1.000

    1.0690

    1.1380

    1.3565

    1.7200

    1.000

    0.9941

    1.0483

    1.3900

    2.0685

    1.000

    0.9265

    0.9140

    1.1560

    1.7355

    1.000

    0.9730

    1.0100

    1.3400

    1.9920

    说明讲解:投影片(l)所示是在温度为0℃,压强为Pa的条件下取1L几种常见实际气体保持温度不变时,在不同压强下用实验测出的pV乘积值。从表中可看出在压强为Pa至Pa之间时,实验结果与玻意耳定律计算值,近似相等,当压强为Pa时,玻意耳定律就完全不适用了。

    这说明实际气体只有在一定温度和一定压强范围内才能近似地遵循玻意耳定律和查理定律。而且不同的实际气体适用的温度范围和压强范围也是各不相同的。为了研究方便,我们假设这样一种气体,它在任何温度和任何压强下都能严格地遵循玻意耳定律和查理定律。我们把这样的气体叫做“理想气体”。(板书“理想气体”概念意义。)

    2.推导理想气体状态方程

    前面已经学过,对于一定质量的理想气体的状态可用三个状态参量p、V、T来描述,且知道这三个状态参量中只有一个变而另外两个参量保持不变的情况是不会发生的。换句话说:若其中任意两个参量确定之后,第三个参量一定有唯一确定的值。它们共同表征一定质量理想气体的唯一确定的一个状态。根据这一思想,我们假定一定质量的理想气体在开始状态时各状态参量为(),经过某变化过程,到末状态时各状态参量变为(),这中间的变化过程可以是各种各样的,现假设有两种过程:

    第一种:从()先等温并使其体积变为,压强随之变为,此中间状态为()再等容并使其温度变为,则其压强一定变为,则末状态()。

    第二种:从()先等容并使其温度变为,则压强随之变为,此中间状态为(),再等温并使其体积变为,则压强也一定变为,也到末状态(),如投影片所示。

    出示投影片(2):

    将全班同学分为两大组,根据玻意耳定律和查理定律,分别按两种过程,自己推导理想气体状态过程。(即要求找出与间的等量关系。)

    基本方法是:解联立方程或消去中间状态参量或均可得到:

    这就是理想气体状态方程。它说明:一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。

    3.推导并验证盖·吕萨克定律

    设问:(1)若上述理想气体状态方程中,,方程形式变化成怎样的形式?

    答案:或

    (2)本身说明气体状态变化有什么特点?

    答案:说明等效地看作气体做等压变化。(即压强保持不变的变化)

    由此可得出结论:当压强不变时,一定质量的理想气体的体积与热力学温度成正比。

    这个结论最初是法国科学家盖·吕萨克在研究气体膨胀的实验中得到的,也叫盖·吕萨克定律。它也属于实验定律。当今可以设计多种实验方法来验证这一结论。今天我们利用在验证玻意耳定律中用过的气体定律实验器来验证这一定律。

    演示实验:实验装置如图所示,此实验保持压强不变,只是利用改变烧杯中的水温来确定三个温度状态,这可从温度计上读出,再分别换算成热力学温度,再利用气体实验器上的刻度值作为达热平衡时,被封闭气体的体积值,分别为,填入下表:

    出示投影幻灯片(3):

    然后让学生用计算器迅速算出、、,只要读数精确,则这几个值会近似相等,从而证明了盖·吕萨克定律。

    4.课堂练习

    出示投影幻灯片(4),显示例题(1):

    例题一水银气压计中混进了空气,因而在27℃,外界大气压为758毫米汞柱时,这个水银气压计的读数为738毫米汞柱,此时管中水银面距管顶80毫米,当温度降至-3℃时,这个气压计的读数为743毫米汞柱,求此时的实际大气压值为多少毫米汞柱?

    教师引导学生按以下步骤解答此题:

    (1)该题研究对象是什么?

    答案:混入水银气压计中的空气。

    (2)画出该题两个状态的示意图:

    (3)分别写出两个状态的状态参量:

    (S是管的横截面积)。

    (4)将数据代入理想气体状态方程:

    解得

    (三)课堂小结

    1.在任何温度和任何压强下都能严格遵循气体实验定律的气体叫理想气体。

    2.理想气体状态方程为:

    3.盖·吕萨克定律是指:一定质量的气体在压强不变的条件下,它的体积与热力学温度成正比。

    五、说明

    1.“理想气体”如同力学中的“质点”、“弹簧振子”一样,是一种理想的物理模型,是一种重要的物理研究方法。对“理想气体”研究得出的规律在很大温度范围和压强范围内都能适用于实际气体,因此它是有很大实际意义的。

    2.本节课设计的验证盖·吕萨克定律的实验用的是温州师院教学仪器厂制造的J2261型气体定律实验器;实验中确定的三个温度状态应相对较稳定(即变化不能太快)以便于被研究气体与烧杯中的水能达稳定的热平衡状态,使读数较为准确。建议选当时的室温为,冰水混合物的温度,即0℃或0℃附近的温度为,保持沸腾状态的温度,即100℃或接近100℃为。这需要教师在课前作充分的准备,才能保证在课堂得出较理想的结论。作者做的一组实验值如下表所示,供参考。

    室温℃

    K

    K

    K

    直线的方程 精选版


    教学目标

    (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出.

    (2)理解直线方程几种形式之间的内在联系,能在整体上把握.

    (3)掌握直线方程各种形式之间的互化.

    (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

    (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

    (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

    教学建议

    1.教材分析

    (1)知识结构

    由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

    (2)重点、难点分析

    ①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出.

    解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.

    直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.

    ②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.

    2.教法建议

    (1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

    (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.

    直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

    (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

    (4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.

    求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.

    (5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).

    (6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.

    (7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.

    (8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.

    教学设计示例

    直线方程的一般形式

    教学目标:

    (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

    (2)理解直线与二元一次方程的关系及其证明

    (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

    教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.

    教学用具:计算机

    教学方法:启发引导法,讨论法

    教学过程:

    下面给出教学实施过程设计的简要思路:

    教学设计思路:

    (一)引入的设计

    前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

    问:说出过点(2,1),斜率为2的,并观察方程属于哪一类,为什么?

    答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

    肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

    问:求出过点,的,并观察方程属于哪一类,为什么?

    答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

    肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

    启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

    学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

    【问题1】“任意都是二元一次方程吗?”

    (二)本节主体内容教学的设计

    这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

    学生或独立研究,或合作研究,教师巡视指导.

    经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

    思路一:…

    思路二:…

    ……

    教师组织评价,确定最优方案(其它待课下研究)如下:

    按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.

    当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.

    当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

    学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

    平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

    综合两种情况,我们得出如下结论:

    在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.

    至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.

    同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

    学生们不难得出:二者可以概括为统一的形式.

    这样上边的结论可以表述如下:

    在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.

    启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

    【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

    不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

    师生共同讨论,评价不同思路,达成共识:

    回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即

    (1)当时,方程可化为

    这是表示斜率为、在轴上的截距为的直线.

    (2)当时,由于、不同时为0,必有,方程可化为

    这表示一条与轴垂直的直线.

    因此,得到结论:

    在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.

    为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.

    【动画演示】

    演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.

    至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

    (三)练习巩固、总结提高、板书和作业等环节的设计在此从略

    【圆的方程【推荐】】相关推荐
    关于化学反应中的能量变化的高中教案推荐

    教学目标知识目标使学生了解化学反应中的能量变化,理解放热反应和吸热反应;介绍燃料充分燃烧的条件,培养学生节约能源和保护环境意识;通过学习和查阅资料,使学生了解我国及世界能源储备和开发;通过布置研究性课...

    关于电流教案示例的高中教案推荐

    (-)教学目的1.知道电荷的定向移动形成电流;2.知道电流方向的规定;3.知道什么叫电源和电源的作用。(二)教具验电器两个,带绝缘柄的金属棒一根,橡胶棒一根,毛皮一块,带座小灯泡一个,开关一个,干电池...