多边形面积的计算优秀模板
发表时间:2022-03-11教学内容:课本p12~13例1~3及相关的试一试和练一练教学目标:1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。教学重点:理解并掌握平行四边形的面积公式教学难点:理解平行四边形面积公式的推导过程教学过程:一、复习导入:1、说出学过的平面图形,哪些图形的面积你会求?二、探究新知:1、教学例1:(1)出示例1中的第1组图要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较。(2)出示例1中的第2组图要求:还可以怎样比较两个图形面积的大小?(转化的方法)(3)揭示课题:师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)2、教学例2:(1)出示一个平行四边形,你能想办法把这个平行四边形转化成学过的图形吗?(2)学生操作,教师巡视指导。(3)学生交流操作情况(4)教室用课件或教具进行演示并小结。师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。(5)小组讨论:转化后的图形和原图有什么联系?①转化后长方形的面积与原平行四边形面积相等吗?②长方形的长与平行四边形的底有什么关系?③长方形的宽与平行四边形的高有什么关系?(6)学生总结,形成下面的板书:3、教学例3:(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。转化后的长方形平行四边形长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)(2)学生操作,反馈交流。(3)用字母表示面公式:s=ah(板书)三、巩固练习:1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。2、指导完成练一练:强调底和高的对应关系。四、总结:
Jk251.coM编辑推荐
角形面积的计算练习优秀模板
第四课时:三角形面积的计算练习课
教学内容:练习三第4—10题及思考题
教学目标:
使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积
教学过程:
一、第4题口算下面各题,将结果直接填写在书上。
第5题可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
平行边形面积的计算〉教学反思
本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。
结合我班的实际情况,我改变了这种教学模式,先出示一已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。
第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,为什么会变小呢?平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。
第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。
第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。
通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。
平行边形面积的计算说稿 优秀小学教案 教案精选
平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
2、教学目标:
(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。
(2)通过操作,让学生尝试用转化的思想方法解决新的问题。
(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。
3、教学重点:平行四边形的面积计算。
4、教学难点:理解平行四边形面积计算公式的推导过程。
二、教法学法
平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作观察思考归纳概括初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知形成表象抽象概念。
教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。
三、教学过程
(一)复习铺垫
教具逐个出示:
1、图(1)是什么图形?它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?
2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?
学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)
3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?
学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)
(二)导入新课
图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)
你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。
(三)引导探究
1、学生独立思考,动手操作,尝试计算平行四边形的面积。
(教师巡视,学生计算1号学具纸片平行四边形的面积)
谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。
到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)
反馈交流:根据学生的回答教具演示“转化过程”。