你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >经典初中教案指数函数与对数函数的性质及其应用
  • 经典初中教案指数函数与对数函数的性质及其应用

    发表时间:2022-02-16

    教案

    课题:指数函数与对数函数的性质及其应用

    课型:综合课

    教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

    重点:指数函数与对数函数的特性。

    难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

    教学方法:多媒体授课。

    学法指导:借助列表与图像法。

    教具:多媒体教学设备。

    教学过程:

    一、复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

    二、展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

    指数函数与对数函数关系一览表

    函数

    性质

    指数函数

    y=ax(a>0且a≠1)

    对数函数

    y=logax(a>0且a≠1)

    定义域

    实数集R

    正实数集(0,﹢∞)

    值域

    正实数集(0,﹢∞)

    实数集R

    共同的点

    (0,1)

    (1,0)

    单调性

    a>1增函数

    a>1增函数

    0<a<1减函数

    0<a<1减函数

    函数特性

    a>1

    当x>0,y>1

    当x>1,y>0

    当x<0,0<y<1

    当0<x<1,y<0

    0<a<1

    当x>0,0<y<1

    当x>1,y<0

    当x<0,y>1[合同帮帮网 wwW.551336.coM]

    当0<x<1,y>0

    反函数

    y=logax(a>0且a≠1)

    y=ax(a>0且a≠1)

    图像

    Y

    y=(1/2)xy=2x

    (0,1)

    X

    Y

    y=log2x

    (1,0)

    X

    y=log1/2x

    三、同一坐标系中将指数函数与对数函数进行合成,观察其特点,并得出y=log2x与y=2x、y=log1/2x与y=(1/2)x的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

    Y

    y=(1/2)xy=2xy=x

    (0,1)y=log2x

    (1,0)X

    y=log1/2x

    注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

    四、利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

    五、例题

    例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

    解:∵y=ax中,a=Л>1

    ∴此函数为增函数

    又∵﹣0.1>﹣0.5

    ∴(Л)(-0.1)>(Л)(-0.5)

    例⒉比较log67与log76的大小。

    解:∵log67>log66=1

    log76<log77=1

    ∴log67>log76

    注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

    例⒊求y=3√4-x2的定义域和值域。

    解:∵√4-x2有意义,须使4-x2≥0

    即x2≤4,|x|≤2

    ∴-2≤x≤2,即定义域为[-2,2]

    又∵0≤x2≤4,∴0≤4-x2≤4

    ∴0≤√4-x2≤2,且y=3x是增函数

    ∴30≤y≤32,即值域为[1,9]

    例⒋求函数y=√log0.25(log0.25x)的定义域。

    解:要函数有意义,须使log0.25(log0.25x)≥0

    又∵0<0.25<1,∴y=log0.25x是减函数

    ∴0<log0.25x≤1

    ∴log0.251<log0.25x≤log0.250.25

    ∴0.25≤x<1,即定义域为[0.25,1)

    六、课堂练习

    求下列函数的定义域

    1.y=8[1/(2x-1)]

    2.y=loga(1-x)2(a>0,且a≠1)

    七、评讲练习

    八、布置作业

    第113页,第10、11题。并预习指数函数与对数函数

    在物理、社会科学中的实际应用。

    jk251.cOm扩展阅读

    数学教案-指数函数与对数函数的性质及其应用教案模板


    教案

    课题:指数函数与对数函数的性质及其应用

    课型:综合课

    教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

    重点:指数函数与对数函数的特性。

    难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

    教学方法:多媒体授课。

    学法指导:借助列表与图像法。

    教具:多媒体教学设备。

    教学过程:

    一、复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

    二、展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

    指数函数与对数函数关系一览表

    函数

    性质

    指数函数

    y=ax(a>0且a≠1)

    对数函数

    y=logax(a>0且a≠1)

    定义域

    实数集r

    正实数集(0,﹢∞)

    值域

    正实数集(0,﹢∞)

    实数集r

    共同的点

    (0,1)

    (1,0)

    单调性

    a>1增函数

    a>1增函数

    0<a<1减函数

    0<a<1减函数

    函数特性

    a>1

    当x>0,y>1

    当x>1,y>0

    当x<0,0<y<1

    当0<x<1,y<0

    0<a<1

    当x>0,0<y<1

    当x>1,y<0

    当x<0,y>1

    当0<x<1,y>0

    反函数

    y=logax(a>0且a≠1)

    y=ax(a>0且a≠1)

    图像

    y

    y=(1/2)xy=2x

    (0,1)

    x

    y

    y=log2x

    (1,0)

    x

    y=log1/2x

    三、同一坐标系中将指数函数与对数函数进行合成,观察其特点,并得出y=log2x与y=2x、y=log1/2x与y=(1/2)x的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

    y

    y=(1/2)xy=2xy=x

    (0,1)y=log2x

    (1,0)x

    y=log1/2x

    注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

    四、利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

    五、例题

    例⒈比较(л)(-0.1)与(л)(-0.5)的大小。

    解:∵y=ax中,a=л>1

    ∴此函数为增函数

    又∵﹣0.1>﹣0.5

    ∴(л)(-0.1)>(л)(-0.5)

    例⒉比较log67与log76的大小。

    解:∵log67>log66=1

    log76<log77=1

    ∴log67>log76

    注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

    例⒊求y=3√4-x2的定义域和值域。

    解:∵√4-x2有意义,须使4-x2≥0

    即x2≤4,|x|≤2

    ∴-2≤x≤2,即定义域为[-2,2]

    又∵0≤x2≤4,∴0≤4-x2≤4

    ∴0≤√4-x2≤2,且y=3x是增函数

    ∴30≤y≤32,即值域为[1,9]

    例⒋求函数y=√log0.25(log0.25x)的定义域。

    解:要函数有意义,须使log0.25(log0.25x)≥0

    又∵0<0.25<1,∴y=log0.25x是减函数

    ∴0<log0.25x≤1

    ∴log0.251<log0.25x≤log0.250.25

    ∴0.25≤x<1,即定义域为[0.25,1)

    六、课堂练习

    求下列函数的定义域

    1.y=8[1/(2x-1)]

    2.y=loga(1-x)2(a>0,且a≠1)

    七、评讲练习

    八、布置作业

    第113页,第10、11题。并预习指数函数与对数函数

    在物理、社会科学中的实际应用。

    经典初中教案二次函数的应用时


    2.4二次函数的应用(2)

    教学目标:

    1、继续经历利用二次函数解决实际最值问题的过程。

    2、会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。

    3、发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。

    教学重点和难点:

    重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。

    难点:例2将现实问题数学化,情景比较复杂。

    教学过程:

    一、复习:

    1、利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:

    (1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。

    (2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。

    2、上节课我们讨论了用二次函数的性质求面积的最值问题。出示上节课的引例的动态

    图形(在周长为8米的矩形中)(多媒体动态显示)

    设问:(1)对角线(l)与边长(x)有什何关系?

    (2)对角线(l)是否也有最值?如果有怎样求?

    l与x并不是二次函数关系,而被开方数却可看成是关于x的二次函数,并且有最小值。引导学生回忆算术平方根的性质:被开方数越大(小)则它的算术平方根也越大(小)。指出:当被开方数取最小值时,对角线也为最小值。

    二、例题讲解

    例题2:b船位于a船正东26km处,现在a、b两船同时出发,a船发每小时12km的速度朝正北方向行驶,b船发每小时5km的速度向正西方向行驶,何时两船相距最近?最近距离是多少?

    多媒体动态演示,提出思考问题:(1)两船的距离随着什么的变化而变化?

    (2)经过t小时后,两船的行程是多少?两船的距离如何用t来表示?

    设经过t小时后ab两船分别到达a’,b’,两船之间距离为a’b’=ab’2+aa’2=(26-5t)2+(12t)2=169t2-260t+676。(这里估计学生会联想刚才解决类似的问题)

    因此只要求出被开方式169t2-260t+676的最小值,就可以求出两船之间的距离s的最小值。

    解:设经过t时后,a,bab两船分别到达a’,b’,两船之间距离为

    s=a’b’=ab’2+aa’2=(26-5t)2+(12t)2

    =169t2-260t+676=169(t-1013)2+576(t>0)

    当t=1013时,被开方式169(t-1013)2+576有最小值576。

    所以当t=1013时,s最小值=576=24(km)

    答:经过1013时,两船之间的距离最近,最近距离为24km

    练习:直角三角形的两条直角边的和为2,求斜边的最小值。

    三、课堂小结

    应用二次函数解决实际问题的一般步骤

    四、布置作业

    见作业本

    经典初中教案反比例函数及其图象


    教学设计示例1

    教学目标:

    1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

    2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

    3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

    4、体会数学从实践中来又到实际中去的研究、应用过程;

    5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

    教学重点:

    结合图象分析总结出反比例函数的性质;

    教学难点:描点画出反比例函数的图象

    教学用具:直尺

    教学方法:小组合作、探究式

    教学过程:

    1、从实际引出反比例函数的概念

    我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例

    即vt=S(S是常数);

    当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)

    从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

    (S是常数)

    (S是常数)

    一般地,函数(k是常数,)叫做反比例函数.

    如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.

    在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

    2、列表、描点画出反比例函数的图象

    例1、画出反比例函数与的图象

    解:列表

    x

    -6

    -5

    -4

    -3

    1

    2

    3

    4

    5

    6

    -1

    -1.2

    -1.5

    -2

    6

    3

    2

    1.5

    1.2

    1

    1

    1.2

    1.5

    2

    -6

    -3

    -2

    -1.5

    -1.2

    1

    说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

    一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线.

    3、观察图象,归纳、总结出反比例函数的性质

    前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

    显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

    (1)的图象在第一、三象限.可以扩展到k>0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.

    的讨论与此类似.

    抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.

    (2)函数的图象,在每一个象限内,y随x的增大而减小;

    从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数的图象,在每一个象限内,y随x的增大而减小.

    同样可以推出的图象的性质.

    (3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.

    函数的图象性质的讨论与次类似.

    4、小结:

    本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.

    5、布置作业习题13.81-4

    第1234页

    经典初中教案数学教案-函数学图象的性质


    初中数学活动课教案一

    函数图象的性质

    活动目标:

    1、利用几何画板的形象性,通过量的变化,验证并进一步研究

    函数图象的性质。

    2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几

    何规律。

    3、学会作简单函数的图象,并对图象作初步了解。

    4、通过本节课的教学,把几何画板作为学生认知的工具,从而激

    发学生学习和探索数学的兴趣。

    活动重点:图形的性质和规律的探索

    活动难点:几何画板的操作(作函数的图象)

    活动设施:微机室(有液晶投影仪和大屏幕或大彩电);软件:windows操作平台、几何画板、office2000等、教师准备好的五个画板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp、ymdl1.gsp、ymdl2.gsp。

    活动过程:

    一、展示活动主题和目标:

    二、活动过程:

    操作练习一:

    按下列步骤进行操作,并回答相应的问题。

    1、打开c:\sketch\hstx1.gsp画板文件;

    2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。

    ①当k>0时,图象经过哪几个象限?

    ②当k

    3、双击显示按钮后,在k>0和k

    4、先在坐标系内作出直线(或直接打开文件:c:\sketch\hstx2.gsp)

    附:作图步骤

    ①点击“文件”菜单中的“新绘图”命令;

    ②用“直尺工具”中的直线工具,在绘图板内画一直线,并用文本工具给直线上的两个空心点加上标签A和B;

    ③用“选择工具”选中直线后,点击“度量”菜单中的“方程”命令,得坐标系和直线的方程;然后,再进行以下操作,并回答问题:

    (1)用鼠标拖动直线进行平移,k和b中哪个变,哪个不变?

    (2)当直线通过原点时,b为多少?此时函数又叫什么函数?

    (3)拖动点A,使直线绕点B旋转,观察直线的倾斜程度与k之间的关系?

    操作练习二:

    1、打开文件:c:\sketch\hstx3.gsp

    2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关?

    3、上下移动c改变c的大小,看抛物线怎样变化?

    4、分别改变a、b的大小,看抛物线的对称轴是否发生变化?由3和4可知,抛物线的对称轴与什么有关?与什么无关?

    5、c保持不变,改变a、b时,抛抛线总是经过哪一点?

    6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系?

    7、双击显示按钮,再双击动画按钮,观察y随x怎样变化?

    8、当a=0时,函数的图象是什么?

    操作练习三:

    打开文件:c:\sketch\ymdl1.gsp

    圆的两弦AB、CD相交于圆内一点P,我们得到,如果把点P拖到圆外,上述结论是否成立?如果点在圆上呢?

    操作练习四:作函数y=x2-2的图象

    作图步骤:

    1、击“文件”菜单中“新绘图”命令,建立新的绘图板;

    2、点击“图表”菜单中的“建立坐标轴”;

    3、在横坐标轴上任找一点,用“文本工具”,加上标签“C”,选中C点,单击“度量”菜单中的“坐标”命令,得度量值,C:(-2.80,0.00),再用“选择工具”选择它。(度量值变黑)

    4、点击“度量”菜单中的“计算”命令,出现计算器;

    5、点击“数值”下拉式菜单中的“点C”的“x”值,按“确定”按纽,得Xc=-2.80再用“选择工具”选择它。(度量值变黑)

    6、点击“度量”菜单中的“计算”命令,出现计算器,再点击“数值”下拉式菜单中的“x[c]”,分别按计算器上的“∧”、“2”、“-”、“2”、“确定”按纽。得到代数式的值:xc2-2=14.45.

    7、用“选择工具”,分别选中Xc=-2.80xc2-2=14.45.(选取第二个对象要按键盘上的“shift”键的同时再选);

    8、点击“图表”菜单中的“绘出(x,y)”,得到点“E”。(如果看不到点E,说明它不在当前的视窗内,此时可调整C点,使该点出现在窗口内);

    9、分别选中点E和点C,点击“作图”菜单中的“轨迹”,得二次函数的图象。

    操作练习五:

    运用练习四的原理,绘制其它函数的图象(包括学过的和没有学过的),谈谈你对所绘函数图象的认识。

    经典初中教案一次函数的图象性质


    教学目标:

    1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。

    2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。

    3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。

    教学重点:

    1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。

    2、通过函数的性质及定义域范围求函数的最值。

    教学难点:

    从实际问题中抽象概括出运动变化的规律,建立函数关系式

    教学方法:讨论式教学法

    教学过程:

    例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?

    (1)几分钟让学生认真读题,理解题意

    (2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。

    解法(一)列表分析:

    设从A校调到C校x台,则调到D校(12―x)台,B校调到C校是(10―x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。

    根据题意:

    y=40x+80(12-x)+30(10-x)+50(x-4)

    y=40x+960-80x+300-30x+50x-200

    =-20x+1060(4≤x≤10,且x是正整数)

    y=-20x+1060是减函数。

    ∴当x=10时,y有最小值ymin=860

    ∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。

    解法(二)列表分析

    设从A校调到D校有x台,则调到C校(12―x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8―x)台,总运费为y。

    y=40(12–x)+80x+30(x–2)+50(8-x)

    =480–40x+80x+30x–60+400–50x

    =20x+820(2≤x≤8,且x是正整数)

    y=20x+820是增函数

    ∴x=2时,y有最小值ymin=860

    调配方案同解法(一)

    解法(三)列表分析:

    解略

    解法(四)列表分析:

    解略

    例2、公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件。经试销调查,发现销售量y(件),与销售单价x(元/件)可近似看作一次函数y=kx+b的关系

    (1)根据图象,求一次函数y=kx+b的表达式

    (2)设公司获得的毛利润(毛利润=销售总价―成本总价)为s元

    试用销售单价x表示毛利润s;

    解:如图所示

    直线过点(600,400),(700,300)

    ∴400=600k+b

    300=700k+b

    k=-1,b=1000

    ∴y=-x+1000(500≤x≤800)

    s=x(1000–x)-500(1000–x)

    =1000x–x2–500000+500x

    =-x2+1500x–500000(500≤x≤800)

    小结:本节课试图让学生体会到函数的本质是对应关系。在实际生活中,影响事物的因素往往是多方面的,而且它们之间存在一定的关系。数学是研究现实世界的空间形式和数量关系的科学。对于实际问题我们抽象概括出它的本质特征,将其数学化、形式化,形成数学模型。这个过程既体现了数学的高度抽象性,又因其高度的抽象性决定了数学的广泛应用性。

    作业:略

    探究活动

    (1)在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米.

    (2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元?

    答案:

    (1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x+y)+2x]=14×5,即

    又x>0,y>0,14×5-(5+2)x≤14×3,

    所以x=4时,y取最大值5.另三辆车行驶最远距离:(4+5)×200=1800(千米).

    (2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则

    所以45≤x≤55,即种蔬菜55亩,杂豆20亩,最大产值为121000元.

    (3)某果品公司急需汽车,但无力购买,公司经理想租一辆.一出租公司的出租条件为:每百千米租费110元;一个体出租车司机的条件为:每月付800元工资,另外每百千米付10元油费.问该果品公司租哪家的汽车合算?

    解设汽车每月所行里程为x百千米,于是,应付给出租公司的费用为y1=110x,应付给个体司机的费用为y2=800+10x.画出它们的图象,易得图象交点坐标为(8,8800).由图象可知,当x<8时,y1<y2;当x=8时,y1=y2,当x>8时,y1>y2.

    综合上述可知,汽车每月行驶里程少于800千米时,租国营出租汽车公司的汽车合算;每月行驶里程大于800千米时,租个体司机的汽车合算.因此,该果品公司应先估计一下每月用车的里程,然后根据估算的结果确定该租哪家的汽车.

    经典初中教案函数的图象


    教学目标:

    1、培养学生看图识图的能力.

    2、在识图过程中,渗透数形结合的数学思想.

    3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.

    4、激发学生学习数学的兴趣,培养学生的探索精神

    教学重点:培养学生看图识图的能力

    教学难点:渗透数形结合的数学思想

    教学用具:计算机、投影机

    教学方法:谈话法、分组讨论

    教学过程:

    1、阅读习题13.3的第四题

    学生阅读后,老师可以提问学生,分别回答:

    下图是北京春季某一天的

    2、提出看图说图的重要性

    随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.

    3、为学生提供相对丰富的素材,体会以图识性.

    例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?

    (读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).

    从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.

    如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.

    而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.

    例2、如图,是各月气温的分配图

    能从图中找出气温最低的月份,气温最高的月份.

    并判断出该地所处的气温带.

    分析:最高气温在7月,最低在2月.气温曲线的

    下限也在以上,即~之间,因此可判断出

    该地位于亚热带.

    (从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.

    例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.

    参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.

    以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业提前下发,也可以在上课时,由老师进行通俗的解释.

    右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.

    (1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线

    (2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.

    (3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.

    (注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.

    4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.

    5、作业:从其它学科或现实生活中找出曲线图,加以分析,提出你自己的想法.

    本文网址://www.jk251.com/jiaoan/11076.html

    【经典初中教案指数函数与对数函数的性质及其应用】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...