你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >二次根式
  • 二次根式

    发表时间:2022-02-02

    一、教学过程

    (一)复习提问

    1.什么叫二次根式?

    2.下列各式是二次根式,求式子中的字母所满足的条件:

    (3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

    (二)二次根式的简单性质

    上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

    我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

    这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

    请分析:引导学生答如时才成立。

    时才成立,即a取任意实数时都成立。

    我们知道

    如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

    例1计算:

    分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

    例2把下列非负数写成一个数的平方的形式:

    (1)5;(2)11;(3)1.6;(4)0.35.

    例3把下列各式写成平方差的形式,再分解因式:

    (1)4x2-1;(2)a4-9;[工作汇报网 WwW.GSI8.COm]

    (3)3a2-10;(4)a4-6a2+9.

    解:(1)4x2-1

    =(2x)2-12

    =(2x+1)(2x-1).

    (2)a4-9

    =(a2)2-32

    =(a2+3)(a2-3)

    (3)3a2-10

    (4)a4-6a2+32

    =(a2)2-6a2+32

    =(a2-3)2

    (三)小结

    1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

    2.关于公式的应用。

    (1)经常用于乘法的运算中.

    (2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

    (四)练习和作业

    练习:

    1.填空

    注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

    2.实数a、b在数轴上对应点的位置如下图所示:

    分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

    3.计算

    二、作业

    教材P.172习题11.1;A组2、3;B组2.

    补充作业:

    下列各式中的字母满足什么条件时,才能使该式成为二次根式?

    分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

    (1)由-|a-2b|≥0,得a-2b≤0,

    但根据绝对值的性质,有|a-2b|≥0,

    ∴|a-2b|=0,即a-2b=0,得a=2b.

    (2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

    ∴(m2+1)(m-n)≤0,又m2+1>0,

    ∴m-n≤0,即m≤n.

    说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

    三、板书设计

    Jk251.coM编辑推荐

    二次根式的乘法


    教学建议

    知识结构:

    重点难点分析:

    本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.

    本节难点是与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.

    教法建议:

    1.由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解时可以结合积的算术平方根的性质,让学生把握两者的关系。

    2.积的算术平方根的性质和()及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。

    教学设计示例

    (一)

    一、教学目标

    1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.

    2.会进行简单的运算.

    3.使学生能联系几何课中学习的勾股定理解决实际问题.

    4.使学生了解比较二次根式的大小的方法.

    二、教学重点和难点

    1.重点:会利用积的算术平方根的性质化简二次根式,会进行简单的运算.

    2.难点:与积的算术平方根的关系及应用.

    三、教学方法

    从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.

    四、教学手段

    利用投影仪.

    五、教学过程

    (一)引入新课

    观察下面的例子:

    于是可得到:

    又如:

    类似地可以得到:

    (二)新课

    积的算术平方根.

    由前面所举特殊的例子,引导学生总结出:一般地,有(a≥0,b≥0).

    积的算术平方根,等于积中各因式的算术平方根的积.

    要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.

    根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.

    例1把下面各数分解因数:

    (1)20;(2)42;(3)63;(4)128.

    说明:通过本题复习分解因数,为利用积的算术平方根公式化简二次根式打下基础.

    解:略.

    例2化简:

    (1)(2)

    (3)(4)

    分析:本题需要用积的算术平方根公式进行化简,题目中的被开方数都是具体数字,学生便于理解,在讲完例2后可以总结化简的方法.

    解:(1)

    (2)

    (3)

    (4)

    说明:①(a≥0,b≥0)可以推广为(a≥0,b≥0,c≥0).

    ②这个小题与本章章头图与章序言的内容有联系,解答了章序言中提出的一个问题.

    ③(4)小题要首先用平方差公式分解成积的形式,才可以用积的算术平方根公式进行化简.

    ④通过例2可以看出,如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简.

    通过例2,我们根据算术平方根的定义,可得出:,,等结果,于是可以总结出:一般地,有

    (a≥0)

    关于a<0时,,这种情况将在本章最后一小节专门研究.

    例3化简:

    (1);(2)

    分析:由例3,让学生注意,在本章中,未加特别说明时,字母一般表示正数,但在实际问题中不一定非是正数不可,如第(1)小题,a可以是负数,根据学生实际情况,可适当引导学生展开小组的讨论,渗透分类讨论的思想.

    解:(1)

    (2)

    说明:x2+y2这个式子不能再开方了,进一步强调积的算术平方根公式的特点.

    例4如右图,在△ABC中,∠C=90°,4C=10cm,BC=24cm.求AB.

    解:∵AB2=AC2+BC2

    (cm)

    答:AB长26cm.

    (三)小结

    1.本节课讲了积的算术平方根的性质

    (a≥0,b≥0).

    通过分式的应用,让学生进一步总结,为什么必须有a≥0、b≥0这个条件,而没有这个条件上述性质不成立.

    问学生:当a<0,b<0,也有意义,为什么一定要a≥0、b≥0呢?

    引导学生说出:若a<0,b<0,,在实数范围内没有意义.公式显然不成立.

    2.利用积的算术平方根的性质,化简二次根式的方法.

    3.结合几何课学习的勾股定理,提高学生解决实际问题的能力.

    (四)练习

    1.化简:

    (1);(2);

    (3);(4);

    (5);(6);

    (7);(8)

    2.计算:

    (1);(2);

    (3);(4)

    3.已知一个直角三角形的斜边c=21,一条直角边b=4,求另一条直角边a.

    六、作业

    教材P.177习题11.2;A组1、2、3、4、5.

    七、板书设计

    最简二次根式


    一、教学目标

    1.使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式.

    2.使学生掌握化简一个二次根式成最简二次根式的方法.

    3.使学生了解把二次根式化简成最简二次根式在实际问题中的应用.

    二、教学重点和难点

    1.重点:能够把所给的二次根式,化成最简二次根式.

    2.难点:正确运用化一个二次根式成为最简二次根式的方法.

    三、教学方法

    通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法.

    四、教学手段

    利用投影仪.

    五、教学过程

    (一)引入新课

    提出问题:如果一个正方形的面积是0.5m2,那么它的边长是多少?能不能求出它的近似值?

    了.这样会给解决实际问题带来方便.

    (二)新课

    由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

    这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数.

    总结满足什么样的条件是最简二次根式.即:满足下列两个条件的二次根式,叫做最简二次根式:

    1.被开方数的因数是整数,因式是整式.

    2.被开方数中不含能开得尽方的因数或因式.

    例1指出下列根式中的最简二次根式,并说明为什么.

    分析:

    说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式.前面二次根式的运算结果也都是最简二次根式.

    例2把下列各式化成最简二次根式:

    说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简.

    例3把下列各式化简成最简二次根式:

    说明:

    1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简.

    2.要提问学生

    问题,通过这个小题使学生明确如何使用化简中的条件.

    通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题.

    注意:

    ①化简时,一般需要把被开方数分解因数或分解因式.

    ②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化.

    (三)小结

    1.满足什么条件的根式是最简二次根式.

    2.把一个二次根式化成最简二次根式的主要方法.

    (四)练习

    1.指出下列各式中的最简二次根式:

    2.把下列各式化成最简二次根式:

    六、作业

    教材P.187习题11.4;A组1;B组1.

    七、板书设计

    二次根式的除法


    教学建议

    知识结构:

    重点难点分析:

    是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.

    教学难点是与商的算术平方根的关系及应用.与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.

    教法建议:

    1.本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.

    2.本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论法则,并运用这一法则进行简单的运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.

    3.引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励中国学习联盟胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.

    教学设计示例

    一、教学目标

    1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

    2.会进行简单的运算;

    3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

    4.培养学生利用公式进行化简与计算的能力;

    5.通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

    6.通过分母有理化的教学,渗透数学的简洁性.

    二、教学重点和难点

    1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的运算,还要使学生掌握采用分母有理化的方法进行.

    2.难点:与商的算术平方根的关系及应用.

    三、教学方法

    从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

    内容可引导学生自学,进行总结对比.

    四、教学手段

    利用投影仪.

    五、教学过程

    (一)引入新课

    学生回忆及得算数平方根和性质:(a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)

    学生观察下面的例子,并计算:

    由学生总结上面两个式的关系得:

    类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

    (二)新课

    商的算术平方根.

    一般地,有(a≥0,b>0)

    商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

    让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.

    引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.

    例1化简:

    (1);(2);(3);

    解∶(1)

    (2)

    (3)

    说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数.

    例2化简:

    (1);(2);

    解:(1)

    (2)

    让学生观察例题中分母的特点,然后提出,的问题怎样解决?

    再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决.

    学生讨论本节课所学内容,并进行小结.

    (三)小结

    1.商的算术平方根的性质.(注意公式成立的条件)

    2.会利用商的算术平方根的性质进行简单的二次根式的化简.

    (四)练习

    1.化简:

    (1);(2);(3).

    2.化简:

    (1);(2);(3)

    六、作业

    教材P.183习题11.3;A组1.

    七、板书设计

    二次根式教案模板


    一、教学过程

    (一)复习提问

    1.什么叫二次根式?

    2.下列各式是二次根式,求式子中的字母所满足的条件:

    (3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

    (二)二次根式的简单性质

    上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

    我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

    这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

    请分析:引导学生答如时才成立。

    时才成立,即a取任意实数时都成立。

    我们知道

    如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

    例1计算:

    分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

    例2把下列非负数写成一个数的平方的形式:

    (1)5;(2)11;(3)1.6;(4)0.35.

    例3把下列各式写成平方差的形式,再分解因式:

    (1)4x2-1;(2)a4-9;

    (3)3a2-10;(4)a4-6a2+9.

    解:(1)4x2-1

    =(2x)2-12

    =(2x+1)(2x-1).

    (2)a4-9

    =(a2)2-32

    =(a2+3)(a2-3)

    (3)3a2-10

    (4)a4-6a2+32

    =(a2)2-6a2+32

    =(a2-3)2

    (三)小结

    1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

    2.关于公式的应用。

    (1)经常用于乘法的运算中.

    (2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

    (四)练习和作业

    练习:

    1.填空

    注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

    2.实数a、b在数轴上对应点的位置如下图所示:

    分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

    3.计算

    二、作业

    教材P.172习题11.1;A组2、3;B组2.

    补充作业:

    下列各式中的字母满足什么条件时,才能使该式成为二次根式?

    分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

    (1)由-|a-2b|≥0,得a-2b≤0,

    但根据绝对值的性质,有|a-2b|≥0,

    ∴|a-2b|=0,即a-2b=0,得a=2b.

    (2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

    ∴(m2+1)(m-n)≤0,又m2+1>0,

    ∴m-n≤0,即m≤n.

    说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

    三、板书设计

    二次根式相关教学方案


    一、教学目标

    1.了解的意义;

    2.掌握用简单的一元一次不等式解决中字母的取值问题;

    3.掌握的性质和,并能灵活应用;

    4.通过的计算培养学生的逻辑思维能力;

    5.通过性质和的介绍渗透对称性、规律性的数学美.

    二、教学重点和难点

    重点:(1)二次根的意义;(2)中字母的取值范围.

    难点:确定中字母的取值范围.

    三、教学方法

    启发式、讲练结合.

    四、教学过程

    (一)复习提问

    1.什么叫平方根、算术平方根?

    2.说出下列各式的意义,并计算:

    ,,,,,,,

    通过练习使学生进一步理解平方根、算术平方根的概念.

    观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,

    ,,,表示的是算术平方根.

    (二)引入新课

    我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:

    新课:

    定义:式子叫做.

    对于请同学们讨论论应注意的问题,引导学生总结:

    (1)式子只有在条件a≥0时才叫,是吗?呢?

    若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

    (2)是,而,提问学生:2是吗?显然不是,因此二次

    根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.

    例1当a为实数时,下列各式中哪些是?

    分析:,,,、、、四个是.因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是.

    例2x是怎样的实数时,式子在实数范围有意义?

    解:略.

    说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.

    例3当字母取何值时,下列各式为:

    (1)(2)(3)(4)

    分析:由的定义,被开方数必须是非负数,把问题转化为解不等式.

    解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是.

    (2)-3x≥0,x≤0,即x≤0时,是.

    (3),且x≠0,∴x>0,当x>0时,是.

    (4),即,故x-2≥0且x-2≠0,∴x>2.当x>2时,是.

    例4下列各式是,求式子中的字母所满足的条件:

    (1);(2);(3);(4)

    分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即:只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零.

    解:(1)由2a+3≥0,得.

    (2)由,得3a-1>0,解得.

    (3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是.所以所求字母x的取值范围是全体实数.

    (4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

    (三)小结(引导学生做出本节课学习内容小结)

    1.式子叫做,实际上是一个非负的实数a的算术平方根的表达式.

    2.式子中,被开方数(式)必须大于等于零.

    (四)练习和作业

    练习:

    1.判断下列各式是否是

    分析:(2)中,,是;(5)是.因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义.

    2.a是怎样的实数时,下列各式在实数范围内有意义?

    五、作业

    教材p.172习题11.1;a组1;b组1.

    六、板书设计

    二次根式的教学方案


    一、教学目标

    1.了解的意义;

    2.掌握用简单的一元一次不等式解决中字母的取值问题;

    3.掌握的性质和,并能灵活应用;

    4.通过的计算培养学生的逻辑思维能力;

    5.通过性质和的介绍渗透对称性、规律性的数学美.

    二、教学重点和难点

    重点:(1)二次根的意义;(2)中字母的取值范围.

    难点:确定中字母的取值范围.

    三、教学方法

    启发式、讲练结合.

    四、教学过程

    (一)复习提问

    1.什么叫平方根、算术平方根?

    2.说出下列各式的意义,并计算:

    ,,,,,,,

    通过练习使学生进一步理解平方根、算术平方根的概念.

    观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,

    ,,,表示的是算术平方根.

    (二)引入新课

    我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:

    新课:

    定义:式子叫做.

    对于请同学们讨论论应注意的问题,引导学生总结:

    (1)式子只有在条件a≥0时才叫,是吗?呢?

    若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

    (2)是,而,提问学生:2是吗?显然不是,因此二次

    根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.

    例1当a为实数时,下列各式中哪些是?

    分析:,,,、、、四个是.因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是.

    例2x是怎样的实数时,式子在实数范围有意义?

    解:略.

    说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.

    例3当字母取何值时,下列各式为:

    (1)(2)(3)(4)

    分析:由的定义,被开方数必须是非负数,把问题转化为解不等式.

    解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是.

    (2)-3x≥0,x≤0,即x≤0时,是.

    (3),且x≠0,∴x>0,当x>0时,是.

    (4),即,故x-2≥0且x-2≠0,∴x>2.当x>2时,是.

    例4下列各式是,求式子中的字母所满足的条件:

    (1);(2);(3);(4)

    分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即:只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零.

    解:(1)由2a+3≥0,得.

    (2)由,得3a-1>0,解得.

    (3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是.所以所求字母x的取值范围是全体实数.

    (4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

    (三)小结(引导学生做出本节课学习内容小结)

    1.式子叫做,实际上是一个非负的实数a的算术平方根的表达式.

    2.式子中,被开方数(式)必须大于等于零.

    (四)练习和作业

    练习:

    1.判断下列各式是否是

    分析:(2)中,,是;(5)是.因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义.

    2.a是怎样的实数时,下列各式在实数范围内有意义?

    五、作业

    教材p.172习题11.1;a组1;b组1.

    六、板书设计

    二次根式初中教案精选


    一、教学过程

    (一)复习提问

    1.什么叫二次根式?

    2.下列各式是二次根式,求式子中的字母所满足的条件:

    (3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

    (二)二次根式的简单性质

    上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

    我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

    这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

    请分析:引导学生答如时才成立。

    时才成立,即a取任意实数时都成立。

    我们知道

    如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

    例1计算:

    分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

    例2把下列非负数写成一个数的平方的形式:

    (1)5;(2)11;(3)1.6;(4)0.35.

    例3把下列各式写成平方差的形式,再分解因式:

    (1)4x2-1;(2)a4-9;

    (3)3a2-10;(4)a4-6a2+9.

    解:(1)4x2-1

    =(2x)2-12

    =(2x+1)(2x-1).

    (2)a4-9

    =(a2)2-32

    =(a2+3)(a2-3)

    (3)3a2-10

    (4)a4-6a2+32

    =(a2)2-6a2+32

    =(a2-3)2

    (三)小结

    1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

    2.关于公式的应用。

    (1)经常用于乘法的运算中.

    (2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

    (四)练习和作业

    练习:

    1.填空

    注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

    2.实数a、b在数轴上对应点的位置如下图所示:

    分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

    3.计算

    二、作业

    教材P.172习题11.1;A组2、3;B组2.

    补充作业:

    下列各式中的字母满足什么条件时,才能使该式成为二次根式?

    分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

    (1)由-|a-2b|≥0,得a-2b≤0,

    但根据绝对值的性质,有|a-2b|≥0,

    ∴|a-2b|=0,即a-2b=0,得a=2b.

    (2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

    ∴(m2+1)(m-n)≤0,又m2+1>0,

    ∴m-n≤0,即m≤n.

    说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

    三、板书设计

    本文网址://www.jk251.com/jiaoan/8546.html

    【二次根式】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...