你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >二次根式相关教学方案
  • 二次根式相关教学方案

    发表时间:2022-01-25

    一、教学目标

    1.了解的意义;

    2.掌握用简单的一元一次不等式解决中字母的取值问题;

    3.掌握的性质和,并能灵活应用;

    4.通过的计算培养学生的逻辑思维能力;

    5.通过性质和的介绍渗透对称性、规律性的数学美.

    二、教学重点和难点

    重点:(1)二次根的意义;(2)中字母的取值范围.

    难点:确定中字母的取值范围.

    三、教学方法

    启发式、讲练结合.

    四、教学过程

    (一)复习提问

    1.什么叫平方根、算术平方根?

    2.说出下列各式的意义,并计算:

    ,,,,,,,

    通过练习使学生进一步理解平方根、算术平方根的概念.

    观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,

    ,,,表示的是算术平方根.

    (二)引入新课

    我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:

    新课:

    定义:式子叫做.

    对于请同学们讨论论应注意的问题,引导学生总结:

    (1)式子只有在条件a≥0时才叫,是吗?呢?

    若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

    (2)是,而,提问学生:2是吗?显然不是,因此二次

    根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.

    例1当a为实数时,下列各式中哪些是?

    分析:,,,、、、四个是.因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是.

    例2x是怎样的实数时,式子在实数范围有意义?

    解:略.

    说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.

    例3当字母取何值时,下列各式为:

    (1)(2)(3)(4)

    分析:由的定义,被开方数必须是非负数,把问题转化为解不等式.

    解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是.

    (2)-3x≥0,x≤0,即x≤0时,是.

    (3),且x≠0,∴x>0,当x>0时,是.

    (4),即,故x-2≥0且x-2≠0,∴x>2.当x>2时,是.

    例4下列各式是,求式子中的字母所满足的条件:

    (1);(2);(3);(4)

    分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即:只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零.

    解:(1)由2a+3≥0,得.

    (2)由,得3a-1>0,解得.

    (3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是.所以所求字母x的取值范围是全体实数.

    (4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

    (三)小结(引导学生做出本节课学习内容小结)

    1.式子叫做,实际上是一个非负的实数a的算术平方根的表达式.

    2.式子中,被开方数(式)必须大于等于零.

    (四)练习和作业

    练习:

    1.判断下列各式是否是

    分析:(2)中,,是;(5)是.因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义.

    2.a是怎样的实数时,下列各式在实数范围内有意义?

    五、作业

    教材p.172习题11.1;a组1;b组1.

    六、板书设计

    jk251.cOm扩展阅读

    最简二次根式相关教学方案


    教学目标

    1.使学生理解最简二次根式的概念;

    2.掌握把二次根式化为最简二次根式的方法.

    教学重点和难点

    重点:化二次根式为最简二次根式的方法.

    难点:最简二次根式概念的理解.

    教学过程设计

    一、导入新课

    计算:

    我们再看下面的问题:

    简,得到

    从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便.

    二、新课

    答:

    1.被开方数的因数是整数或整式;

    2.被开方数中不含能开得尽方的因数或因式.

    满足上面两个条件的二次根式叫做最简二次根式.

    例1试判断下列各式中哪些是最简二次根式,哪些不是?为什么?

    解(l)不是最简二次根式.因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式.

    整数.

    (3)是最简二次根式.因为被开方数的因式x2+y2开不尽方,而且是整式.

    (4)是最简二次根式.因为被开方数的因式a-b开不尽方,而且是整式.

    (5)是最简二次根式.因为被开方数的因式5x开不尽方,而且是整式.

    (6)不是最简二次根式.因为被开方数中的因数8=22·2,含有开得尽的因数22.

    指出:从(1),(2),(6)题可以看到如下两个结论.

    1.在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;

    2.在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.

    例2把下列各式化为最简二次根式:

    分析:把被开方数分解因式或因数,再利用积的算术平方根的性质

    例3把下列各式化成最简二次根式:

    分析:题(l)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式.

    题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式.

    通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法.

    答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简.

    如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简.

    三、课堂练习

    1.在下列各式中,是最简二次根式的式子为[]

    的二次根式的式子有_____个.[]

    A.2B.3

    C.1D.0

    3.把下列各式化成最简二次根式:

    答案:

    1.B

    2.B

    四、小结

    1.最简二次根式必须满足两个条件:

    (1)被开方数的因数是整数,因式是整式;

    (2)被开方数中不含能开得尽方的因数或因式.

    2.把一个式子化为最简二次根式的方法是:

    (1)如果被开方数是整式或整数,先把它分解成因式(或因数)的积的形式,把开得尽方的因式(或因数)移到根号外;

    (2)如果被开方数含有分母,应去掉分母的根号.

    五、作业

    1.把下列各式化成最简二次根式:

    2.把下列各式化成最简二次根式:

    答案:

    二次根式的混合运算相关教学方案


    教学建议

    知识结构

    重难点分析

    本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

    本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

    教法建议

    1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

    2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

    3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

    学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃,,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

    教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

    鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

    (一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

    让学生先进行思考,解答。然后同学说出怎样进行。

    强调:运算顺序及运算律和有理数相同。

    (二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

    (三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

    学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

    对二次根式混合运算新课引入的建议

    复习:

    1.计算:(1);(2).

    解:(1)(2)

    ==

    =;=.

    2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

    答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为

    m(a+b+c)=ma+mb+mc

    多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为

    (a+b)(m+n)=am+an+bm+bn,

    其中a,b,m,n都是单项式。

    完全平方式是

    ;。

    在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行。引入新课。

    对二次根式混合运算学法的建议

    在进行时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如

    这里再顺便提一下,如

    这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出,等等.

    一、教学目标

    1.掌握.

    2.掌握乘法公式在混合运算的应用.

    3.通过,培养学生的运算能力.

    4.通过例题由浅入深,层层深入,激发学生求知的欲望

    二、教学设计

    小结、归纳、提高

    三、重点、难点解决办法

    1.教学重点:.

    2.教学难点:混合运算的应用.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    1.复习,运算律及乘法分式,引导学生口答,并强调数的运算律在根式运算中的适用,引入例题.

    2.通过例题由浅入深,层层深入,既提高学生学习的兴趣又激发学生求知的欲望;从例题的讲解中帮助寻找解题的方法,规律及注意点.

    3.通过大量的练习,以期形成自己所掌握的知识.

    七、教学步骤

    (-)明确目标

    前面学过二次根式的加减法的简单运算,但二次根式未必全是加减混合运算,它同样会出现二次根式的加、减、乘、除方等混合运算那么的法则是什么?又将怎样运用它进行化简计算,这就是本节课所要研究的问题—.

    (二)整体感知

    中,应注意运算的次序.这是进行二次根式混合运算的前提条件;通过适当地复习乘法分式,分母有理化知识,然后再进行的教学工作,将有助于更好地学习它;同样为了更好地理解还可以将它与数的运算律和运算方法进行对比,以帮助学生更好地理解并准确地掌握好该知识,达到事半功倍的作用.

    第一课时

    (-)教学过程

    【复习】

    运算律在二次根式混合运算中仍适用.

    各种整式乘法的法则.

    乘法公式:.

    提问:加法的交换律、结合律各是怎样的?乘法的交换律、结合律、分配津各是什么?

    强调数的运算律在根式运算中仍适用后,可引入例题.

    【例题】

    例1计算:

    (1);

    (2).

    解:略.

    注:①加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于学生理解和掌握.②在运算过程中,对于各个根式不一定要先化简,而是先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如,没有对先进行化简的必要,使计算繁琐,而是应先进行乘法运算,通过约分达到化简的目的.

    例2计算:

    (1);

    (2);

    (3).

    解:略.

    注:①由学生观察算式,找出特征:两个数的和与这两个数差的积;两个数的和或差的平方,联想乘法公式,与多项式的乘法相类似,二次根式的和相乘,适用乘法公式时,运用乘法公式.

    ②复习乘法公式,可选做几个小题.如,等.

    例3计算:

    (1);

    (2).

    解:略.

    ③引入有理化因式的概念

    例如,与,与.

    注:互为有理化因式是指两个代数式,其乘积不再含有二次根式.

    可适当再举例说明,如与,与、与,但与就不是互为有理化因式.

    (二)随堂练习

    计算:

    (1);(2);

    (3);(4);

    (5);(6);

    (7);(8);

    (9).

    解:(1).

    (2)

    (3)

    (4)

    (5)

    (6)

    (7).

    (8)

    (9)

    (三)总结、扩展

    对与整式的混合运算及数的混合运算比较,要注意运算的顺序及运算律在计算过程中的作用.

    有理化因式的概念需强调乘积的结果不再含有二次根式.

    练习:教材P198中1、2;教材P199中3.

    (四)布置作业

    教材P204中1、2、3.

    (五)板书设计

    标题

    1.复习内容例3……

    2.例题3.有理化因式

    例1……4.练习题

    例2……

    二次根式的教学方案


    一、教学目标

    1.了解的意义;

    2.掌握用简单的一元一次不等式解决中字母的取值问题;

    3.掌握的性质和,并能灵活应用;

    4.通过的计算培养学生的逻辑思维能力;

    5.通过性质和的介绍渗透对称性、规律性的数学美.

    二、教学重点和难点

    重点:(1)二次根的意义;(2)中字母的取值范围.

    难点:确定中字母的取值范围.

    三、教学方法

    启发式、讲练结合.

    四、教学过程

    (一)复习提问

    1.什么叫平方根、算术平方根?

    2.说出下列各式的意义,并计算:

    ,,,,,,,

    通过练习使学生进一步理解平方根、算术平方根的概念.

    观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,

    ,,,表示的是算术平方根.

    (二)引入新课

    我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:

    新课:

    定义:式子叫做.

    对于请同学们讨论论应注意的问题,引导学生总结:

    (1)式子只有在条件a≥0时才叫,是吗?呢?

    若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

    (2)是,而,提问学生:2是吗?显然不是,因此二次

    根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.

    例1当a为实数时,下列各式中哪些是?

    分析:,,,、、、四个是.因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是.

    例2x是怎样的实数时,式子在实数范围有意义?

    解:略.

    说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.

    例3当字母取何值时,下列各式为:

    (1)(2)(3)(4)

    分析:由的定义,被开方数必须是非负数,把问题转化为解不等式.

    解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是.

    (2)-3x≥0,x≤0,即x≤0时,是.

    (3),且x≠0,∴x>0,当x>0时,是.

    (4),即,故x-2≥0且x-2≠0,∴x>2.当x>2时,是.

    例4下列各式是,求式子中的字母所满足的条件:

    (1);(2);(3);(4)

    分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即:只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零.

    解:(1)由2a+3≥0,得.

    (2)由,得3a-1>0,解得.

    (3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是.所以所求字母x的取值范围是全体实数.

    (4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

    (三)小结(引导学生做出本节课学习内容小结)

    1.式子叫做,实际上是一个非负的实数a的算术平方根的表达式.

    2.式子中,被开方数(式)必须大于等于零.

    (四)练习和作业

    练习:

    1.判断下列各式是否是

    分析:(2)中,,是;(5)是.因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义.

    2.a是怎样的实数时,下列各式在实数范围内有意义?

    五、作业

    教材p.172习题11.1;a组1;b组1.

    六、板书设计

    二次根式的加减法相关教学方案


    (一)教学过程

    【复习提问】

    1.同类二次根式的定义.

    2.二次根式加减法的法则.

    3.加减运算中注意的问题.

    【例题】

    例1判断:

    (1);()

    (2);()

    (3);()

    (4);()

    (5).()

    (要求学生找出错误的原因,能进行加减运算的,要加以改正.)

    例2计算:

    (1).

    解:

    (2).

    解:

    (3).

    解:

    (4).

    解:

    小结:二次根式加减运算的步骤:

    (1)如果有括号,根据去括号法则去掉括号.

    (2)把不是最简二次根式的二次根式进行化简.

    (3)合并同类二次根式.

    例3当,时,求代数式的值.

    解:

    当时,时,

    原式

    例4已知,求下列各式的近似值(精确到0.01):

    (1);

    (2).

    解:(1).

    当时,

    原式.

    (2)

    当时,

    原式.

    注意:求值时,一般应对代数式先化简,再代入数值.

    (二)随堂练习

    计算:

    (1);

    (2);

    (3)已知,,求式子的近似值(精确到0.01).

    (三)总结、扩展

    正确地进行二次根式的加减法运算,需解决好几个环节:去括号,化简二次根式,确定同类二次根式,合并的方法等.

    可通过例题加以说明.

    练习:教材P191中2(6)、(7),3;P194中7

    (四)布置作业

    教材P193中3(7)、(8)、(9)、(10);教材P194中4(5)、(6),5.

    (五)板书设计

    标题

    1.例题2.练习题

    例1……3.小结

    例2……

    例3……

    八、背景知识与课外阅读

    二次根式的加减法法则与乘除法法则的区别

    运算

    二次根式乘除法

    同类二次根式的加减法

    系数

    系数相乘除

    系数相加减

    被开方数

    被开方数相乘除

    被开方数不变

    化简

    把最后结果化成最简二次根式

    可先化成最简二次根式再运算

    二次根式


    一、教学过程

    (一)复习提问

    1.什么叫二次根式?

    2.下列各式是二次根式,求式子中的字母所满足的条件:

    (3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

    (二)二次根式的简单性质

    上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

    我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

    这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

    请分析:引导学生答如时才成立。

    时才成立,即a取任意实数时都成立。

    我们知道

    如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

    例1计算:

    分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

    例2把下列非负数写成一个数的平方的形式:

    (1)5;(2)11;(3)1.6;(4)0.35.

    例3把下列各式写成平方差的形式,再分解因式:

    (1)4x2-1;(2)a4-9;

    (3)3a2-10;(4)a4-6a2+9.

    解:(1)4x2-1

    =(2x)2-12

    =(2x+1)(2x-1).

    (2)a4-9

    =(a2)2-32

    =(a2+3)(a2-3)

    (3)3a2-10

    (4)a4-6a2+32

    =(a2)2-6a2+32

    =(a2-3)2

    (三)小结

    1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

    2.关于公式的应用。

    (1)经常用于乘法的运算中.

    (2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

    (四)练习和作业

    练习:

    1.填空

    注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

    2.实数a、b在数轴上对应点的位置如下图所示:

    分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

    3.计算

    二、作业

    教材P.172习题11.1;A组2、3;B组2.

    补充作业:

    下列各式中的字母满足什么条件时,才能使该式成为二次根式?

    分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

    (1)由-|a-2b|≥0,得a-2b≤0,

    但根据绝对值的性质,有|a-2b|≥0,

    ∴|a-2b|=0,即a-2b=0,得a=2b.

    (2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

    ∴(m2+1)(m-n)≤0,又m2+1>0,

    ∴m-n≤0,即m≤n.

    说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

    三、板书设计

    数学教案-二次根式的混合运算相关教学方案


    一、教学目标

    1.理解分母有理化与除法的关系.

    2.掌握二次根式的分母有理化.

    3.通过二次根式的分母有理化,培养学生的运算能力.

    4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

    二、教学设计

    小结、归纳、提高

    三、重点、难点解决办法

    1.教学重点:分母有理化.

    2.教学难点:分母有理化的技巧.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    复习小结,归纳整理,应用提高,以学生活动为主

    七、教学过程

    【复习提问】

    二次根式混合运算的步骤、运算顺序、互为有理化因式.

    例1说出下列算式的运算步骤和顺序:

    (1)(先乘除,后加减).

    (2)(有括号,先去括号;不宜先进行括号内的运算).

    (3)辨别有理化因式:

    有理化因式:与,与,与…

    不是有理化因式:与,与…

    化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

    例如,、、等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

    引入新课题.

    【引入新课】

    化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.

    例2把下列各式的分母有理化:

    (1);(2);(3)

    解:略.

    注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

    (二)随堂练习

    1.把下列各式的分母有理化:

    (1);(2);

    (3);(4).

    解:(1).

    (2).

    另解:.

    (3)

    另解:.

    通过以上例题和练习题,可以看出,有关二次根式的除法,可先写成分式的形式,然后通过分母有理化进行运算,例如:

    ,现将分母有理化,就可以了.

    ,学生易发生如下错误,将式子变形为,而正确的做法是.

    2.计算:

    (1);

    (2);

    (3).

    解:(1)

    (2)

    (3)

    (三)小结

    1.强调二次根式混合运算的法则;

    2.注意对有理化因式的概括并寻找出它的规律.

    (1)如单独一项的有理化因式就是它本身.(2)如出现和、差形式的:的有理化因式为,的有理数化因式为.

    (2)练习:教材P202中1、2.

    (四)布置作业

    教材P205中4、5.

    (五)板书设计

    标题

    1.复习内容3.练习题一

    2.例44.练习题二

    最简二次根式的教学方案


    教学目标

    1.使学生理解最简二次根式的概念;

    2.掌握把二次根式化为最简二次根式的方法.

    教学重点和难点

    重点:化二次根式为最简二次根式的方法.

    难点:最简二次根式概念的理解.

    教学过程设计

    一、导入新课

    计算:

    我们再看下面的问题:

    简,得到

    从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便.

    二、新课

    答:

    1.被开方数的因数是整数或整式;

    2.被开方数中不含能开得尽方的因数或因式.

    满足上面两个条件的二次根式叫做最简二次根式.

    例1试判断下列各式中哪些是最简二次根式,哪些不是?为什么?

    解(l)不是最简二次根式.因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式.

    整数.

    (3)是最简二次根式.因为被开方数的因式x2+y2开不尽方,而且是整式.

    (4)是最简二次根式.因为被开方数的因式a-b开不尽方,而且是整式.

    (5)是最简二次根式.因为被开方数的因式5x开不尽方,而且是整式.

    (6)不是最简二次根式.因为被开方数中的因数8=22·2,含有开得尽的因数22.

    指出:从(1),(2),(6)题可以看到如下两个结论.

    1.在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;

    2.在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.

    例2把下列各式化为最简二次根式:

    分析:把被开方数分解因式或因数,再利用积的算术平方根的性质

    例3把下列各式化成最简二次根式:

    分析:题(l)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式.

    题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式.

    通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法.

    答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简.

    如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简.

    三、课堂练习

    1.在下列各式中,是最简二次根式的式子为[]

    的二次根式的式子有_____个.[]

    A.2B.3

    C.1D.0

    3.把下列各式化成最简二次根式:

    答案:

    1.B

    2.B

    四、小结

    1.最简二次根式必须满足两个条件:

    (1)被开方数的因数是整数,因式是整式;

    (2)被开方数中不含能开得尽方的因数或因式.

    2.把一个式子化为最简二次根式的方法是:

    (1)如果被开方数是整式或整数,先把它分解成因式(或因数)的积的形式,把开得尽方的因式(或因数)移到根号外;

    (2)如果被开方数含有分母,应去掉分母的根号.

    五、作业

    1.把下列各式化成最简二次根式:

    2.把下列各式化成最简二次根式:

    答案:

    二次根式的化简


    (第1课时)

    一、教学目标

    1.掌握二次根式的性质

    2.能够利用二次根式的性质化简二次根式

    3.通过本节的学习渗透分类讨论的数学思想和方法

    二、教学设计

    对比、归纳、总结

    三、重点和难点

    1.重点:理解并掌握二次根式的性质

    2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、多媒体

    六、师生互动活动设计

    复习对比,归纳整理,应用提高,以学生活动为主

    七、教学步骤

    (一)教学过程

    【复习引入】

    1.求值、、、…

    求值、、、…

    结论:当时,;

    当时,.

    2.求值、…

    结论:当时,式子有意义,,对于,不能为负数.

    3.求值、…

    结论:当时,.

    问:若根号内这个式子中的底数,根式还有意义吗?其值等于什么?

    例如,,其中-2与2互为相反数;,其中-3与3互为相反数;,其中与互为相反数.

    【讲解新课】

    提出问题:等于什么?引导学生讨论、猜测、联想,得到结论:

    教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若时,能否等于,以增强学生的辨别能力,加强学生对公式的理解和记忆.

    例1化简:

    (1);(2).

    解:(略).

    注:可看作,把先写为;

    可看作,把先写为.

    例2化简:.

    分析:底数是非负数还是负数将直接影响结果,这时要注意条件,由条件,可得.

    ∴.

    解:(略).

    例3化简下列各式:

    (1)();(2)();

    (3)();(4)().

    解:(1)∵

    ∴.

    (2)∵

    ∴,即.

    (3)∵

    ∴,即.

    (4)∵,

    ∵,即.

    ∴.

    注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.

    在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.

    (二)随堂练习

    1.求值:

    (1);(2);(3)();

    (4);(5).

    解:(1).

    (2).

    (3).

    (4).

    (5).

    注:,学生易与相混淆.

    2.化简:

    (1);(2);(3);

    (4)();(5)().

    解:(1).

    (2).

    (3).

    (4).

    (5).

    (三)总结、扩展

    对公式,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.

    (四)布置作业

    教材P213中1(2)、(3);2(1)、(2).

    (五)板书设计

    标题

    1.复习题4.练习题

    2.公式

    3.例题

    本文网址://www.jk251.com/jiaoan/7190.html

    【二次根式相关教学方案】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...