你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >数学教案-分式的基本性质教案模板
  • 数学教案-分式的基本性质教案模板

    发表时间:2022-01-28

    第一课时

    (一)教学过程

    【复习提问】

    1.分式的定义?

    2.分数的基本性质?有什么用途?

    【新课】

    1.类比分数的基本性质,由学生小结出分式的基本性质:

    分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

    (其中是不等于零的整式.)

    2.加深对分式基本性质的理解:

    例1下列等式的右边是怎样从左边得到的?

    (1);

    由学生口述分析,并反问:为什么?

    解:∵

    ∴.

    (2);

    学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)

    解:∵

    ∴.

    (3)

    学生口答.

    解:∵,

    ∴.

    例2填空:

    (1);

    (2);

    (3);

    (4).

    把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.

    例3不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.

    (1);

    分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

    解:.

    (2).

    解:.

    例4判断取何值时,等式成立?

    学生分组讨论后得出结果:

    ∴.

    (二)随堂练习

    1.当为何值时,与的值相等()

    A.B.C.D.

    2.若分式有意义,则,满足条件为()

    A.B.C.D.以上答案都不对

    3.下列各式不正确的是()

    A.B.

    C.D.

    4.若把分式的和都扩大两倍,则分式的值

    A.扩大两倍B.不变

    C.缩小两倍D.缩小四倍

    (三)总结、扩展

    1.分式的基本性质.

    2.性质中的可代表任何非零整式.

    3.注意挖掘题目中的隐含条件.

    4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件.

    (四)布置作业

    教材P61中2、3;P62中B组的1

    (五)板书设计

    jK251.com其他人还在看

    数学教案-不等式它的基本性质初中教案精选


    一、素质教育目标

    (一)知识教学点

    1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    2.灵活运用不等式的基本性质进行不等式形.

    (二)能力训练点

    培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.

    (三)德育渗透点

    培养学生积极主动的参与意识和勇敢尝试、探索的精神.

    (四)美育渗透点

    通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

    二、学法引导

    1.教学方法:观察法、探究法、尝试指导法、讨论法.

    2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

    三、重点难点疑点及解决办法

    (一)重点

    掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    (二)难点

    正确应用不等式的三条基本性质进行不等式变形.

    (三)疑点

    弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.

    (四)解决办法

    讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.

    四、课时安排

    一课时

    五、教具学具准备

    投影仪或电脑、自制胶片.

    六、师生互动活动设计

    1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.

    2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.

    3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.

    七、教学步骤

    (-)明确目标

    本节课主要学习不等式的三条基本性质并能熟练地加以应用.

    (二)整体感知

    通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.

    (三)教学过程

    1.创设情境,复习引入

    什么是等式?等式的基本性质是什么?

    学生活动:独立思考,指名回答.

    教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

    请同学们继续观察习题:

    (1)用“>”或“<”填空.

    ①7+3____4+3②7+(-3)____4+(-3)

    ③7×3____4×3④7×(-3)____4×(-3)

    (2)上述不等式中哪题的不等号与7>4一致?

    学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

    【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

    不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

    学生活动:观察思考,猜想出不等式的性质.

    教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

    师生活动:师生共同叙述不等式的性质,同时教师板书.

    不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

    对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

    学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.

    【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?

    师生活动:由学生概括总结不等式的其他性质,同时教师板书.

    不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

    不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.

    师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

    学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.

    强调:要特别注意不等式基本性质3.

    实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

    不等式的基本性质与等式的基本性质有哪些区别、联系?

    学生活动:思考、同桌讨论.

    归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.

    ①若,则,;

    ②若,且,则,;

    ③若,且,则,.

    师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.

    注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.

    2.尝试反馈,巩固知识

    请学生先根据自己的理解,解答下面习题.

    例1根据不等式的基本性质,把下列不等式化成或的形式.

    (1)(2)(3)(4)

    学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

    教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

    解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.

    所以

    (2)根据不等式基本性质1,两边都减去,得

    (3)根据不等式基本性质2,两边都乘以2,得

    (4)根据不等式基本性质3,两边都除以-4得

    【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

    例2设,用“<”或“>”填空.

    (1)(2)(3)

    学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.

    解:(1)因为,两边都减去3,由不等式性质1,得

    (2)因为,且2>0,由不等式性质2,得

    (3)因为,且-4<0,由不等式性质3,得

    教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

    注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

    【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

    3.变式训练,培养能力

    (1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)

    ①∵∴()②∵∴()

    ③∵∴()④∵∴()

    ⑤∵∴⑥∵∴()

    学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.

    答案:

    ①(A)②(B)

    ③(C)④(C)

    ⑤(C)⑥(A)

    【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.

    (2)单项选择:

    ①由得到的条件是()

    A.B.C.D.

    ②由由得到的条件是()

    A.B.C.D.

    ③由得到的条件是()

    A.B.C.D.是任意有理数

    ④若,则下列各式中错误的是()

    A.B.C.D.

    师生活动:教师选出答案,学生判断正误并说明理由.

    答案:①A②D③C④D

    (3)判断正误,正确的打“√”,错误的打“×”

    ①∵∴()②∵∴()

    ③∵∴()④若,则∴,()

    学生活动:一名学生说出答案,其他学生判断正误.

    答案:①√②×③√④×

    【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.

    (四)总结、扩展

    1.本节重点:

    (1)掌握不等式的三条基本性质,尤其是性质3.

    (2)能正确应用性质对不等式进行变形.

    2.注意事项:

    (1)要反复对比不等式性质与等式性质的异同点.

    (2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.

    3.考点剖析:

    不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.

    八、布置作业

    (一)必做题:P61A组4,5.

    (二)选做题:P62B组1,2,3.

    参考答案

    (一)4.(1)(2)(3)(4)

    5.(1)(2)(3)(4)

    (5)(6)

    (二)1.(1)(2)(3)

    2.(1)(2)(3)(4)

    3.(1)(2)(3)

    九、板书设计

    6.1不等式和它的基本性质(二)

    一、不等式的基本性质

    1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.

    若,则,.

    2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则.

    3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则.

    二、应用

    例1解(1)(2)

    (3)(4)

    例2解(1)(2)

    (3)

    三、小结

    注意不等式性质3的应用.

    十、背景知识与课外阅读

    盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?

    数学教案-不等式它的基本性质的教学方案


    教学建议

    一、知识结构

    二、重点、难点分析

    本节教学的重点是不等式的三条基本性质.难点是不等式的基本性质3.掌握不等式的三条基本性质是进一步学习一元一次不等式(组)的解法等后续知识的基础.

    1.不等式的概念

    用不等号(“<”、“>”或“≠”表示不等关系的式子,叫做不等式.

    另外,(“≥”是把“>”、“=”)结合起来,读作“大于或等于”,或记作“≮”,亦即“不小于”)、(“≤”是把“<”、“=”结合起来,读作“小于或等于”,或记作“≯”,也就是“不大于”)等等,也都是不等式.

    2.当不等式的两边都加上或乘以同一个正数或负数时,所得结果仍是不等式.但变形所得的不等式中不等号的方向,有的与原不等式中不等号的方向相同,有的则不相同.因而叙述时不能笼统说成“……仍是不等式”,而应明确变形所得的不等式中不等号的方向.

    3.不等式成立与不等式不成立的意义

    例如:在不等式中,字母表示未知数.当取某一数值时,的值小于2,我们就说当时,不等式成立;当取另外某一个数值时,的值不小于2,我们就说当时,不等式不成立.

    4.不等式的三条基本性质是不等式变形的重要依据,性质1、2类似等式性质,不等号的方向不改变,性质3不等号的方向改变,这是不等式独有的性质,也是初学者易错的地方,因此要特别注意.

    一、素质教育目标

    (-)知识教学点

    1.了解不等式的意义.

    2.理解什么是不等式成立,掌握不等式是否成立的判定方法.

    3.能依题意准确迅速地列出相应的不等式.

    (二)能力训练点

    1.培养学生运用类比方法研究相关内容的能力.

    2.训练学生运用所学知识解决实际问题的能力.

    (三)德育渗透点

    通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识.

    (四)美育渗透点

    通过不等式的学习,渗透具有不等量关系的数学美.

    二、学法引导

    1.教学方法:观察法、引导发现法、讨论法.

    2.学生学法:只有准确理解不等号的几种形式的意义,才能在实际中进行灵活的运用.

    三、重点难点疑点及解决办法

    (一)重点

    掌握不等式是否成立的判定方法;依题意列出正确的不等式.

    (二)难点

    依题意列出正确的不等式

    (三)疑点

    如何把题目中表示不等关系的词语准确地翻译成相应的数学符号.

    (四)解决方法

    在正确理解不等号的意义后,通过抓住体现不等量的关系的词语就能准确列出相应的不等式.

    四、课时安排

    一课时.

    五、教具学具准备

    投影仪或电脑、自制胶片.

    六、师生互动活动设计

    1.创设情境,通过复习有关等式的知识,自然导入新课的学习,激发学生的学习热情.

    2.从演示的有关实验中,探究相应的不等量关系,从学生的讨论、分析中探究代数式的不等关系的几种常见形式.

    3.从师生的互动讲解练习中掌握不等式的有关知识,并培养学生具有一定的灵活应用能力.

    七、教学步骤

    (一)明确目标

    本节课主要学习依题意正确迅速地列出不等式.

    (二)整体感知

    通过复习等式创设情境,自然过渡到不等式的学习过程中,又通过细心的分析、审题寻找出正确的不等量关系,从而列出正确的不等式.

    (三)教学过程

    1.创设情境,复习导入

    我们已经学过等式和它的基本性质,请同学们观察下面习题,思考并回答:

    (1)什么是等式?等式中“=”两侧的代数式能否交换?“=”是否具有方向性?

    (2)已知数值:-5,,3,0,2,7,判断:上述数值哪些使等式成立?哪些使等式不成立?

    学生活动:首先自己思考,然后指名回答.

    教师释疑:①“=”表示相等关系,它没有方向性,等号两例可以相互交换,有时不交换只是因为书写习惯,例如方程的解.

    ②判断数取何值,等式成立和不成立实质上是在判断给定的数值是否为方程的解,因为等式为一元一次方程,它只有惟一解,所以等式只有在时成立,此外,均不成立.

    【教法说明】设置上述习题,目的是使学生温故而知新,为学习本节内容提供必要的知识准备.

    2.探索新知,讲授新课

    不等式和等式既有联系,又有区别,大家在学习时要自觉进行对比,请观察演示实验并回答:演示说明什么问题?

    师生活动:教师演示课本第54页天平称物重的两个实例(同时指出演示中物重为克,每个砝码重量均为1克),学生观察实验,思考后回答:演示中天平若不平衡说明天平两边所放物体的重量不相等.

    【教法说明】结合实际生活中同类量之间具有一种不相等关系的实例引入不等式的知识,能激发学生的学习兴趣.

    在实际生活中,像演示这样同类量之间具有不相等关系的例子是大量的、普遍的,这种关系需用不等式来表示.那么什么是不等式呢?请看:

    ,,

    ,,

    提问:(l)上述式子中有哪些表示数量关系的符号?(2)这些符号表示什么关系?(3)这些符号两侧的代数式可以随意交换位置吗?(4)什么叫不等式?

    学生活动:观察式予,思考并回答问题.

    答案:(1)分别使用“<”“>”“≠”.(2)表示不等关系.(3)不可以随意互换位置.(4)用不等号表示不等关系的式子叫不等式.

    不等号除了“<”“>”“≠”之外,还有无其他形式?

    学生活动:同桌讨论,尝试得到结论.

    教师释疑:①不等号除“<”“>”“≠”外,还有“≥”“≤”两种形式(“≥”是指“>”与“=”结合起来,读作“大于或等于”,也可理解成“不小于”;同理“≤”读作“小于或等于”,也可理解成“不大于”.)现在,我们来研究用“>”“<”表示的不等式.

    ②不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互交换,例如,不能写成.

    【教法说明】①通过学生自己观察思考,进而猜测出不等式的意义,这种教法充分发挥了学生的主体作用.

    ②通过教师释疑,学生对不等号的种类及其使用有了进一步的了解.

    3.尝试反馈,巩固知识

    同类量之间的大小关系常用“>”“<”来表示,请同学们根据自己对不等式的理解,解答习题.

    (1)用“<”或“>”境空.(抢答)

    ①4___-6;②-1____0③-8___-3;④-4.5___-4.

    (2)用不等式表示:

    ①是正数;②是负数;③与3的和小于6;④与2的差大于-1;⑤的4倍大于等于7;⑥的一半小于3.

    (3)学生独立完成课本第55页例1.

    注意:不是所有同类量都可以比较大小,例如不在同一直线上的两个力,它们只有等与不等关系,而无大小关系,这一点无需向学生说明.

    学生活动:第(l)题抢答;第(2)题在练习本上完成,由两个学生板演,完成之后,由学生判断板演是否正确

    教师活动:巡视辅导,统计做题正确的人数,同时给予肯定或鼓励.

    【教法说明】①第(1)题是为了调动积极性,强化竞争意识;第(2)题则是为了训练学生书面表述能力.

    ②教学时要注意引导学生将题目中表示不等关系的词语翻译成相应的不等号,例如“小于”用“<”表示,“大于等于”用“≥”表示.

    下面研究什么使不等式成立,请同学们尝试解答习题:

    已知数值;-5,,3,0,2,-2.5,5.2;

    (1)判断:上述数值哪些使不等式成立?哪些使不成立?

    (2)说出几个使不等式成立的的数值;说出几个使不成立的数值.

    学生活动:同桌研究讨论,尝试得到答案.

    教师活动:引导学生回答,使未知数的取值不仅有正整数,还有负数、零、小数.

    师生总结:判定不等式是否成立的方法就是:如果不等号两侧数值的大小关系与不等另一致,称不等式成立;否则不成立.例如对于;当时,的值小于6,就说时不等式成立;当时,的值不小于6,就说时,不成立.

    【教法说明】通过学生自己举例,培养他们运用已有的知识探索新知识的意识,同时也活跃了课堂气氛.

    4.变式训练,培养能力

    (1)当取下列数值时,不等式是否成立?

    -7,0,0.5,1,,10

    (2)①用不等式表示:与3的和小于等于(不大于)6;

    ②写出使上述不等式成立的几个的数值;

    ③取何值时,不等式总成立?取何值时不成立?

    学生在练习本上完成1题,2题,同桌订正;教师抽查,强调注意事项.

    【教法说明】

    ①使学生进一步了解使不等式成立的未知数的值可以有多个,为6.2讲解不等式的解集做准备.

    ②强化思维能力和归纳总结能力.

    (四)总结、扩展

    学生小结,师生共同完善:

    本节课的重点内容:1.掌握不等式是否成立的判断方法;2.依题意列出正确的不等式.

    注意:列不等式时,要注意把表示不等关系的词语用相庆的不等号来表示.例如“不大于”用“≤”表示,而不用“<”表示,这一点学生容易出现错误.

    八、布置作业

    (一)必做题:P61A组1,2,3.

    (二)选做题:

    1.单项选择

    (1)绝对值小于3的非负整数有()

    A.1,2B.0,1C.0,1,2D.0,1,3

    (2)下列选项中,正确的是()

    A.不是负数,则

    B.是大于0的数,则

    C.不小于-1,则

    D.是负数,则

    2.依题意列不等式

    (1)的3倍与7的差是非正数

    (2)与6的和大于9且小于12

    (3)A市某天的最低气温是-5℃,最高气温是10℃,设这天气温为℃,则满足的条件是____________________.

    【设计说明】1.再现本节重点,巩固所学知识.

    2.有层次性地布置作业,可以调动全体学生的学习积极性,这也是实施素质教育的具体体现.

    参考答案

    1.<,<,>,>,<,<

    2.5.2,6,8.3,11是的解,-10,-7,-4.5,0,3不是解

    3.(1)(2)(3)(4)

    (二)1.(1)C(2)D

    2.(1)(2)(3)

    九、板书设计

    6.1不等式和它的基本性质(一)

    一、什么叫不等式?

    用:“>”“<”“≠”“≥”“≤”表示不等关系的式子叫不等式.

    重点研究“>”“<”

    二、依题意列不等式

    “大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;

    三、不等式能否成立

    时,(√);时,(×);

    时,(×)

    四、归纳总结重点

    (一)依题意列不等式.

    (二)会判断不等式是否成立.

    十、背景知识与课外阅读

    费马数

    费马(P.deFermat)是17世纪法国著名数学家,是法国南部土鲁斯议会的议员,他在数论、解析几何、概率论三个方面都有重要贡献.他无意发表自己的著作,平生没有完整的著作问世.去世后,人们才把他写在书页空白处和给朋友的书信中,以及一些陈旧手稿中的论述收集汇编成书.费马特别爱好数论,在这方面有好几项成就,如费马数、费马小定理、费马大定理等.

    费马于1640年前后,在验算了形如

    的数当的值分别为

    3,5,17,257,65537

    后(请注意这些数均为质数)便宣称:对于为任何自然数,是质数.

    大约过了100年,1732年数学家欧拉(L.Euler)指出

    从而否定了费马的上述结论(猜想).

    尔后,人们又对进行了大量研究,发现在中,除了上述五个质数外,人们尚未再发现新的质数.

    虽然费马的这个猜想是错误的,但为了纪念这位数学家,人们仍把这种形式的数叫做费马数.

    经典初中教案不等式它的基本性质


    教学建议

    一、知识结构

    二、重点、难点分析

    本节教学的重点是不等式的三条基本性质.难点是不等式的基本性质3.掌握不等式的三条基本性质是进一步学习一元一次不等式(组)的解法等后续知识的基础.

    1.不等式的概念

    用不等号(“<”、“>”或“≠”表示不等关系的式子,叫做不等式.

    另外,(“≥”是把“>”、“=”)结合起来,读作“大于或等于”,或记作“≮”,亦即“不小于”)、(“≤”是把“<”、“=”结合起来,读作“小于或等于”,或记作“≯”,也就是“不大于”)等等,也都是不等式.

    2.当不等式的两边都加上或乘以同一个正数或负数时,所得结果仍是不等式.但变形所得的不等式中不等号的方向,有的与原不等式中不等号的方向相同,有的则不相同.因而叙述时不能笼统说成“……仍是不等式”,而应明确变形所得的不等式中不等号的方向.

    3.不等式成立与不等式不成立的意义

    例如:在不等式中,字母表示未知数.当取某一数值时,的值小于2,我们就说当时,不等式成立;当取另外某一个数值时,的值不小于2,我们就说当时,不等式不成立.

    4.不等式的三条基本性质是不等式变形的重要依据,性质1、2类似等式性质,不等号的方向不改变,性质3不等号的方向改变,这是不等式独有的性质,也是初学者易错的地方,因此要特别注意.

    一、素质教育目标

    (-)知识教学点

    1.了解不等式的意义.

    2.理解什么是不等式成立,掌握不等式是否成立的判定方法.

    3.能依题意准确迅速地列出相应的不等式.

    (二)能力训练点

    1.培养学生运用类比方法研究相关内容的能力.

    2.训练学生运用所学知识解决实际问题的能力.

    (三)德育渗透点

    通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识.

    (四)美育渗透点

    通过不等式的学习,渗透具有不等量关系的数学美.

    二、学法引导

    1.教学方法:观察法、引导发现法、讨论法.

    2.学生学法:只有准确理解不等号的几种形式的意义,才能在实际中进行灵活的运用.

    三、重点·难点·疑点及解决办法

    (一)重点

    掌握不等式是否成立的判定方法;依题意列出正确的不等式.

    (二)难点

    依题意列出正确的不等式

    (三)疑点

    如何把题目中表示不等关系的词语准确地翻译成相应的数学符号.

    (四)解决方法

    在正确理解不等号的意义后,通过抓住体现不等量的关系的词语就能准确列出相应的不等式.

    四、课时安排

    一课时.

    五、教具学具准备

    投影仪或电脑、自制胶片.

    六、师生互动活动设计

    1.创设情境,通过复习有关等式的知识,自然导入新课的学习,激发学生的学习热情.

    2.从演示的有关实验中,探究相应的不等量关系,从学生的讨论、分析中探究代数式的不等关系的几种常见形式.

    3.从师生的互动讲解练习中掌握不等式的有关知识,并培养学生具有一定的灵活应用能力.

    七、教学步骤

    (一)明确目标

    本节课主要学习依题意正确迅速地列出不等式.

    (二)整体感知

    通过复习等式创设情境,自然过渡到不等式的学习过程中,又通过细心的分析、审题寻找出正确的不等量关系,从而列出正确的不等式.

    (三)教学过程

    1.创设情境,复习导入

    我们已经学过等式和它的基本性质,请同学们观察下面习题,思考并回答:

    (1)什么是等式?等式中“=”两侧的代数式能否交换?“=”是否具有方向性?

    (2)已知数值:-5,,3,0,2,7,判断:上述数值哪些使等式成立?哪些使等式不成立?

    学生活动:首先自己思考,然后指名回答.

    教师释疑:①“=”表示相等关系,它没有方向性,等号两例可以相互交换,有时不交换只是因为书写习惯,例如方程的解.

    ②判断数取何值,等式成立和不成立实质上是在判断给定的数值是否为方程的解,因为等式为一元一次方程,它只有惟一解,所以等式只有在时成立,此外,均不成立.

    【教法说明】设置上述习题,目的是使学生温故而知新,为学习本节内容提供必要的知识准备.

    2.探索新知,讲授新课

    不等式和等式既有联系,又有区别,大家在学习时要自觉进行对比,请观察演示实验并回答:演示说明什么问题?

    师生活动:教师演示课本第54页天平称物重的两个实例(同时指出演示中物重为克,每个砝码重量均为1克),学生观察实验,思考后回答:演示中天平若不平衡说明天平两边所放物体的重量不相等.

    【教法说明】结合实际生活中同类量之间具有一种不相等关系的实例引入不等式的知识,能激发学生的学习兴趣.

    在实际生活中,像演示这样同类量之间具有不相等关系的例子是大量的、普遍的,这种关系需用不等式来表示.那么什么是不等式呢?请看:

    ,,

    ,,

    提问:(l)上述式子中有哪些表示数量关系的符号?(2)这些符号表示什么关系?(3)这些符号两侧的代数式可以随意交换位置吗?(4)什么叫不等式?

    学生活动:观察式予,思考并回答问题.

    答案:(1)分别使用“<”“>”“≠”.(2)表示不等关系.(3)不可以随意互换位置.(4)用不等号表示不等关系的式子叫不等式.

    不等号除了“<”“>”“≠”之外,还有无其他形式?

    学生活动:同桌讨论,尝试得到结论.

    教师释疑:①不等号除“<”“>”“≠”外,还有“≥”“≤”两种形式(“≥”是指“>”与“=”结合起来,读作“大于或等于”,也可理解成“不小于”;同理“≤”读作“小于或等于”,也可理解成“不大于”.)现在,我们来研究用“>”“<”表示的不等式.

    ②不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互交换,例如,不能写成.

    【教法说明】①通过学生自己观察思考,进而猜测出不等式的意义,这种教法充分发挥了学生的主体作用.

    ②通过教师释疑,学生对不等号的种类及其使用有了进一步的了解.

    3.尝试反馈,巩固知识

    同类量之间的大小关系常用“>”“<”来表示,请同学们根据自己对不等式的理解,解答习题.

    (1)用“<”或“>”境空.(抢答)

    ①4___-6;②-1____0③-8___-3;④-4.5___-4.

    (2)用不等式表示:

    ①是正数;②是负数;③与3的和小于6;④与2的差大于-1;⑤的4倍大于等于7;⑥的一半小于3.

    (3)学生独立完成课本第55页例1.

    注意:不是所有同类量都可以比较大小,例如不在同一直线上的两个力,它们只有等与不等关系,而无大小关系,这一点无需向学生说明.

    学生活动:第(l)题抢答;第(2)题在练习本上完成,由两个学生板演,完成之后,由学生判断板演是否正确

    教师活动:巡视辅导,统计做题正确的人数,同时给予肯定或鼓励.

    【教法说明】①第(1)题是为了调动积极性,强化竞争意识;第(2)题则是为了训练学生书面表述能力.

    ②教学时要注意引导学生将题目中表示不等关系的词语翻译成相应的不等号,例如“小于”用“<”表示,“大于等于”用“≥”表示.

    下面研究什么使不等式成立,请同学们尝试解答习题:

    已知数值;-5,,3,0,2,-2.5,5.2;

    (1)判断:上述数值哪些使不等式成立?哪些使不成立?

    (2)说出几个使不等式成立的的数值;说出几个使不成立的数值.

    学生活动:同桌研究讨论,尝试得到答案.

    教师活动:引导学生回答,使未知数的取值不仅有正整数,还有负数、零、小数.

    师生总结:判定不等式是否成立的方法就是:如果不等号两侧数值的大小关系与不等另一致,称不等式成立;否则不成立.例如对于;当时,的值小于6,就说时不等式成立;当时,的值不小于6,就说时,不成立.

    【教法说明】通过学生自己举例,培养他们运用已有的知识探索新知识的意识,同时也活跃了课堂气氛.

    4.变式训练,培养能力

    (1)当取下列数值时,不等式是否成立?

    -7,0,0.5,1,,10

    (2)①用不等式表示:与3的和小于等于(不大于)6;

    ②写出使上述不等式成立的几个的数值;

    ③取何值时,不等式总成立?取何值时不成立?

    学生在练习本上完成1题,2题,同桌订正;教师抽查,强调注意事项.

    【教法说明】

    ①使学生进一步了解使不等式成立的未知数的值可以有多个,为6.2讲解不等式的解集做准备.

    ②强化思维能力和归纳总结能力.

    (四)总结、扩展

    学生小结,师生共同完善:

    本节课的重点内容:1.掌握不等式是否成立的判断方法;2.依题意列出正确的不等式.

    注意:列不等式时,要注意把表示不等关系的词语用相庆的不等号来表示.例如“不大于”用“≤”表示,而不用“<”表示,这一点学生容易出现错误.

    八、布置作业

    (一)必做题:P61A组1,2,3.

    (二)选做题:

    1.单项选择

    (1)绝对值小于3的非负整数有()

    A.1,2B.0,1C.0,1,2D.0,1,3

    (2)下列选项中,正确的是()

    A.不是负数,则

    B.是大于0的数,则

    C.不小于-1,则

    D.是负数,则

    2.依题意列不等式

    (1)的3倍与7的差是非正数

    (2)与6的和大于9且小于12

    (3)A市某天的最低气温是-5℃,最高气温是10℃,设这天气温为℃,则满足的条件是____________________.

    【设计说明】1.再现本节重点,巩固所学知识.

    2.有层次性地布置作业,可以调动全体学生的学习积极性,这也是实施素质教育的具体体现.

    参考答案

    1.<,<,>,>,<,<

    2.5.2,6,8.3,11是的解,-10,-7,-4.5,0,3不是解

    3.(1)(2)(3)(4)

    (二)1.(1)C(2)D

    2.(1)(2)(3)

    九、板书设计

    6.1(一)

    一、什么叫不等式?

    用:“>”“<”“≠”“≥”“≤”表示不等关系的式子叫不等式.

    重点研究“>”“<”

    二、依题意列不等式

    “大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;

    三、不等式能否成立

    时,(√);时,(×);

    时,(×)

    四、归纳总结重点

    (一)依题意列不等式.

    (二)会判断不等式是否成立.

    十、背景知识与课外阅读

    费马数

    费马(P.deFermat)是17世纪法国著名数学家,是法国南部土鲁斯议会的议员,他在数论、解析几何、概率论三个方面都有重要贡献.他无意发表自己的著作,平生没有完整的著作问世.去世后,人们才把他写在书页空白处和给朋友的书信中,以及一些陈旧手稿中的论述收集汇编成书.费马特别爱好数论,在这方面有好几项成就,如费马数、费马小定理、费马大定理等.

    费马于1640年前后,在验算了形如

    的数当的值分别为

    3,5,17,257,65537

    后(请注意这些数均为质数)便宣称:对于为任何自然数,是质数.

    大约过了100年,1732年数学家欧拉(L.Euler)指出

    从而否定了费马的上述结论(猜想).

    尔后,人们又对进行了大量研究,发现在中,除了上述五个质数外,人们尚未再发现新的质数.

    虽然费马的这个猜想是错误的,但为了纪念这位数学家,人们仍把这种形式的数叫做费马数.

    数学教案-基本作图教案模板


    教学目标:

    1、知识目标:

    (1)要掌握尺规作图的方法及一般步骤;

    (2)掌握五种基本作图,明确尺规作图的意义。

    2、能力目标:

    (1)通过“作图题”练习,提高学生的几何语言表达能力;

    (2)通过画图,培养学生的作图能力及动手能力.

    3、情感目标:

    (1)体验数学语言的简洁严谨。

    (2)体会数学作图语言和图形的和谐统一。

    教学重点:熟练掌握五个基本作图,作图时要做到规范使用尺规,规范使用作图语言,规范地按照步骤作出图形。

    教学难点:作图语言的准确应用,作图的规范与准确。

    教学用具:直尺,圆规

    教学方法:讲练结合法

    教学过程:

    前面我们学习了全等三角形的性质、判定及一些较简单的几何证明题.在学习中常常感到需要有准确、方便的画图方法,画出符合条件的几何图形.本节我们学习这种几何作图方法.

    1、阅读教材,理解概念

    学生阅读教材第一部分,并回答问题:

    (1)尺规作图:在几何里,把限定用直尺和圆规来画图,称为尺规作图.

    (学生使用的尺子都有刻度,这里告诉学生,直尺是用来画直线的,或者延长线段、射线成直线的.我们作图时,可以使用一般的刻度尺、三角板,只要不用它们去度量长度,就是这里所说的直尺)

    (2)基本作图:最基本、最常用的尺规作图,通常称基本作图.

    一些复杂的尺规作图,都是由基本作图组成的,第一册里曾讲过用尺规作一条线段等于已知线段,这是一种基本作图,下面再介绍几种基本作图:

    练习:作一条线段等于已知线段

    2、讲解例题,熟悉语言

    教师边作图边用语言叙述作法,让学生听懂。

    前面我们学会了用直尺和圆规作一条线段等于已知线段,学习判定两个三角形全等“边边边”公理时曾经已知三边画三角形得到边边边公理而因全等三角形的对应角相等,进而达到角相等的目的.

    1.作一个角等于已知角

    分析:解作图题的方法与证明题解法不相同,它一般应包括已知,求作。对于作图首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。

    已知:AOB

    求作:使=AOB

    分析:假设∠AOB已作出,且∠AOB=∠AOB,如图2,在OA、OB、OA、OB上取点C、D、C、D,使OC=OD=OC=OD,那么△COD≌△COD.

    由此可知,要作出∠AOB,使∠AOB=∠AOB,只要作出△OCD,使OC=OC,OD=OD,CD=CD,这就是前面学过的“已知三边画三角形”.

    作法:1、作射线

    2、以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D

    3、以点为圆心,以OC长为半径作弧,交于

    4、以点为圆心,以CD长为半径作弧,交前弧于

    5、经过点作射线。就是所求的角

    证明:连结CD、CD,由作法可知

    △COD≌△COD(SSS)

    ∴∠COD=∠COD(全等三角形对应角相等).

    即∠AOB=∠AOB.

    说明:作图题的证明,常以作法为根据,只要“作法”中写明了作的是什么,证明中就可以用它作根据去证明.注意,在作图题的“证明”中,一般过程都写得比较简单.如这个证明三角形全等的地方,把条件省略了.

    练习:如图3,在∠AOB的外部作∠AOC,使∠AOC=∠AOB.

    首先要求作图工具——直尺(无刻度)、圆规.

    然后引导学生分析题意,弄清已知是什么,求作是什么?画出已知条件(一个角),写出已知、求作.在求作中先写出什么图形,再写使它合乎什么条件.

    作法可让学生或教师作图,学生叙述作法.

    让学生写出证明过程.

    2.平分已知角

    前面我们用量角器作一个已知角∠AOB的平分线OC,怎样用尺规来画已知角的平分线呢?

    分析:如图4,假如∠AOB的平分线OC已经画出,在前面角的平分线的研究中,我们用折线的实验发现:如果有OE=OD,那么CE=CD.这个实验也启发我们:如果有OE=OD,CE=CD,那么OC平分∠AOB吗?

    用“SSS”公理易证△OEC≌△ODC,∠EOC=∠DOC,即OC平分∠AOB.于是容易看出,要作∠AOB的平分线OC,在于怎样才能找到起关键作用的点C?

    怎样确定点C呢?不难看出,为了确定C点,必须先找点E、D.以O为圆心,任意长为半径作弧,分别交OA、OB于D、E,那么OD=OE吗?再分别以D、E为圆心,适当的长度为半径作弧,设两弧交于点C,那么CD=CE吗?而D、E为圆心,“适当”的长度为半径作弧,两弧有一交点时,怎样的长度才“适当”呢?

    已知:∠AOB如图5

    求作:射线OC,使∠AOC=∠BOC.

    作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.

    (2)分别以D、E为圆心,大于的长为半径作弧,在内,两弧交于点C.

    (3)作射线OC.

    OC就是所求的射线.

    证明:连结CD、CE,由作法可知

    △ODC≌△OEC

    ∴∠COD=∠COE(全等三角形的对应角相等).

    即∠AOC=∠BOC.

    小结:

    (1)基本作图1、2有一个不同之点,即基本作图2要把射线OC作在∠AOB内部,位置有指定性,基本作图1所作的∠AOB并不受∠AOB的位置限制,但通常把∠AOB作在∠AOB的近旁.

    (2)作图工具只限直尺和圆规,用铅笔画图,并保留作图过程中的辅助线(作图痕迹).

    (3)只画图的题,要求画完图,写明所求作的图形.如基本作图中要写出“∠AOB就是所求的角.”

    3.经过一点作已知直线的垂线

    分两种情况来考虑:

    (1)经过已知直线上的一点作这条直线的垂线.

    (2)经过已知直线外的一点作这条直线的垂线.

    引导学生写出解题的全过程:已知、求作、作法、证明.关键地方和疑点要向学生解释清楚.

    分析:现在要寻找“经过直线外一点作这条直线的垂线”的方法,能利用角平分线的作法吗?如图6,用直尺和圆规作∠AOB的平分线OF,如果画出直线DE,那么∠AOB的平分线OF与直线DE垂直吗?为什么?

    如果我们把D、E看成一条直线上的两点,那么点O就是这条直线外的一点,图6启发我们经过直线DE外一点O作这条直线的垂线的关键在于确定点F,你会确定点F吗?

    ①已知:直线AB和AB上一点C,如图7.

    求作:AB的垂线,使它经过点C.

    作法:证明引导学生写出.

    ②已知:直线AB和AB外一点C,如图8.

    求作:AB的垂线,使它经过点C.

    作法:引导学生写出,要向学生说明所取的点K必须要使它和C在AB的两旁,通过反例说明不这样作不行的道理.对教材中略去的证明要让学生补出来.提示:连结CD、CE、FD、FE,设CF与AB交于点O.首先证明△CDF≌△CEF,再证明△CDO≌△CEO或△FDO≌△FEO,从而得∠DOF=∠EOF=90°.

    4.作线段的垂直平分线

    先让学生理解线段垂直平分线的概念.

    垂直于一条线段并且平分这条线段的直线,叫做这条线段的垂直平分线,或中垂线.

    分析:在图6中OF是线段DE的垂直平分线吗?为什么?

    想一想:确定线段DE的垂直平分线的关键是什么?

    引导学生写出已知、求作、作法.参照1.让学生补上证明过程.以判定两个三角形全等的公理或推论为根据,做几何作图题的证明,一方面可以使学生确信作图的正确性;另一方面也可以复习巩固证明三角形全等的方法.

    因为直线CD与线段AB的交点,就是AB的中点,所以我们也用这种方法作线段的中点.

    小结:

    作角平分线、垂线、中垂线从本质上讲是一致的:根据“SSS”公理,确定两点,从而确定所求直(射)线.

    至此,基本作图共讲了5个,第一章中有一个“作一条线段等于已知线段”,本章又有4个.对于这些基本作图应该牢固掌握,灵活运用,因为它是几何作图的基础.反复练习5个基本作图,让学生熟悉解作图题的全过程,及时准确总结出几种常见几何作图语言即作图范句

    例4、已知:线段

    求作:,使

    作法:1、作线段BC=a

    2、分别以点B、C为圆心,以为半径作弧,两弧交于点A

    3、连结AB、AC

    就是所求作的三角形

    例5、已知两角和其中一角的对边,求作三角形

    已知:

    求作:

    作法:1、作线段

    2、在BC的同侧作

    DE、EC交于点A。

    为所求的三角形

    证明:(略)

    让学生补充证明。

    3、总结归纳,便于掌握

    (一)常用的作图语言:

    (1)过点、作线段或射线、直线;(2)连结两点、;(3)在线段或射线上截取=;(4)以点为圆心,以的长为半径作圆(或画弧),交于点;(5)分别以点,点为圆心,以,的长为半径作弧,两弧相交于点;(6)延长到点,使=。

    (二)作图题说明

    在作图中,有属于基本作图的地方,写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了。

    (1)作线段=;(2)作∠=∠;(3)作(射线)平分∠;

    (4)过点作,垂足为点;(5)作线段的垂直平分线;

    4、课堂练习,巩固内容

    (1)平分已知角

    (2)作线段的垂直平分线

    学生板书并讲解,教师点评。

    5、布置作业:

    a、书面作业P88#1

    b、上交作业P88#3、9

    板书设计:

    不等式它的基本性质


    一、素质教育目标

    (一)知识教学点

    1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    2.灵活运用不等式的基本性质进行不等式形.

    (二)能力训练点

    培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.

    (三)德育渗透点

    培养学生积极主动的参与意识和勇敢尝试、探索的精神.

    (四)美育渗透点

    通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

    二、学法引导

    1.教学方法:观察法、探究法、尝试指导法、讨论法.

    2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

    三、重点·难点·疑点及解决办法

    (一)重点

    掌握不等式的三条基本性质,尤其是不等式的基本性质3.

    (二)难点

    正确应用不等式的三条基本性质进行不等式变形.

    (三)疑点

    弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.

    (四)解决办法

    讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.

    四、课时安排

    一课时

    五、教具学具准备

    投影仪或电脑、自制胶片.

    六、师生互动活动设计

    1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.

    2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.

    3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.

    七、教学步骤

    (-)明确目标

    本节课主要学习不等式的三条基本性质并能熟练地加以应用.

    (二)整体感知

    通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.

    (三)教学过程

    1.创设情境,复习引入

    什么是等式?等式的基本性质是什么?

    学生活动:独立思考,指名回答.

    教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

    请同学们继续观察习题:

    (1)用“>”或“<”填空.

    ①7+3____4+3②7+(-3)____4+(-3)

    ③7×3____4×3④7×(-3)____4×(-3)

    (2)上述不等式中哪题的不等号与7>4一致?

    学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

    【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

    不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

    学生活动:观察思考,猜想出不等式的性质.

    教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

    师生活动:师生共同叙述不等式的性质,同时教师板书.

    不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

    对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

    学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.

    【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?

    师生活动:由学生概括总结不等式的其他性质,同时教师板书.

    不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

    不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.

    师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

    学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.

    强调:要特别注意不等式基本性质3.

    实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

    不等式的基本性质与等式的基本性质有哪些区别、联系?

    学生活动:思考、同桌讨论.

    归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.

    ①若,则,;

    ②若,且,则,;

    ③若,且,则,.

    师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.

    注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.

    2.尝试反馈,巩固知识

    请学生先根据自己的理解,解答下面习题.

    例1根据不等式的基本性质,把下列不等式化成或的形式.

    (1)(2)(3)(4)

    学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

    教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

    解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.

    所以

    (2)根据不等式基本性质1,两边都减去,得

    (3)根据不等式基本性质2,两边都乘以2,得

    (4)根据不等式基本性质3,两边都除以-4得

    【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

    例2设,用“<”或“>”填空.

    (1)(2)(3)

    学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.

    解:(1)因为,两边都减去3,由不等式性质1,得

    (2)因为,且2>0,由不等式性质2,得

    (3)因为,且-4<0,由不等式性质3,得

    教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

    注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

    【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

    3.变式训练,培养能力

    (1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)

    ①∵∴()②∵∴()

    ③∵∴()④∵∴()

    ⑤∵∴⑥∵∴()

    学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.

    答案:

    ①(A)②(B)

    ③(C)④(C)

    ⑤(C)⑥(A)

    【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.

    (2)单项选择:

    ①由得到的条件是()

    A.B.C.D.

    ②由由得到的条件是()

    A.B.C.D.

    ③由得到的条件是()

    A.B.C.D.是任意有理数

    ④若,则下列各式中错误的是()

    A.B.C.D.

    师生活动:教师选出答案,学生判断正误并说明理由.

    答案:①A②D③C④D

    (3)判断正误,正确的打“√”,错误的打“×”

    ①∵∴()②∵∴()

    ③∵∴()④若,则∴,()

    学生活动:一名学生说出答案,其他学生判断正误.

    答案:①√②×③√④×

    【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.

    (四)总结、扩展

    1.本节重点:

    (1)掌握不等式的三条基本性质,尤其是性质3.

    (2)能正确应用性质对不等式进行变形.

    2.注意事项:

    (1)要反复对比不等式性质与等式性质的异同点.

    (2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.

    3.考点剖析:

    不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.

    八、布置作业

    (一)必做题:P61A组4,5.

    (二)选做题:P62B组1,2,3.

    参考答案

    (一)4.(1)(2)(3)(4)

    5.(1)(2)(3)(4)

    (5)(6)

    (二)1.(1)(2)(3)

    2.(1)(2)(3)(4)

    3.(1)(2)(3)

    九、板书设计

    6.1不等式和它的基本性质(二)

    一、不等式的基本性质

    1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.

    若,则,.

    2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则.

    3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则.

    二、应用

    例1解(1)(2)

    (3)(4)

    例2解(1)(2)

    (3)

    三、小结

    注意不等式性质3的应用.

    十、背景知识与课外阅读

    盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?

    数学教案-合比性质等比性质例教案模板


    石佛镇素质教育研讨会

    教研课

    教案设计

    教者:龙秀明

    教学课题:合比性质和等比性质

    教学目标:1、掌握合比性质的等比性质,并会用它们进行简单的比例变形

    2、会将合比性质、等比性质用于比例线段。

    3、提高学生类比联想、推广命题的能力。

    教学重、难点:

    熟练地、灵活地运用合比性质与等比性质。

    课前准备:

    小黑板、幻灯机及幻灯片。

    教学过程:

    一、复习引入:

    我们在前边学习了线段的比,比例的有关概念及性质,那么请同学们回忆

    1、什么叫线段的比?

    2、什么叫成比例线段?

    我们还学习了比例的基本性质,那么,除此之外,比例还有一些什么性质呢?

    这就是本节课我们将要研究的比例的合比性质与等比性质。(出示课题:合比性质与等比性质)

    那么,通过本节课的学习我们要达到一个什么样的要求呢?(出示小黑板)看学习目标1、2,(全班同学齐读)

    下边请同学们再回忆,我们在上一章学习的平等线等分线段定理是如何叙述的?(抽同学回答)

    请看幻灯(投影显示)

    二、(用特殊化方法)探索合比性质。

    1、复习,已知:一组平行线在直线l上截得的线段AB=BC=CD=DE=EF则由平行线等分线段定理可得一个结论:即A´B´=B´C´=C´D´=D´E´=E´F´。

    2、将上述结论改写成比例式,由此猜想得出结论,引导学生思考:如果设在l上截得的每一份为k,问AD=?DF=?

    又设在l1上截得的一等份为m,问A´D´=?D´F´=?

    观察以上分析,可得出一个什么样的结论?

    又观察与有什么关系?对于一般的比例

    式都有这一个关系吗?请猜一猜。

    猜想:学生口述(同学间可相互讨论、研究)

    教师根据学生口述、写出:

    如果

    3、证明猜想,得出合比性质,

    我们这个猜想,是否正确呢?

    (1)启发学生观察,已知与未知的关系,寻找证明思路,证法一:(设比法)

    证法二、(利用等比性质2)

    ∵∴∴

    (2)类比联想,得到分比性质。

    如果

    学生自由讨论,可仿上边自己证明结论。

    在今后,这两种情形都叫合比性质,即

    如果

    (3)理解合比性质的内容,师生一起用文字语言叙述。

    4、类比联想,将合比性质推广。

    在合比性质的表达式中,

    (1)比例的二、四项保持不变,

    (2)比例的前后磺对应求和或差,作为新比例式的第一、三比例项。

    由此,可作出以下类比联想,并使用比例的基本性质进行证明。

    猜想一,(教师引导)如果

    二……如果

    三……如果等等。

    对这几个猜想出来的问题,其基本思考方法有两种:

    (1)通过一定的方法,将它们变形利用合比性质的结果,证明时,可灵活运用以下变形方法。

    ①同时交换比例的内或外项,(更比)

    如果

    ②同时交换比例的前后项,(反比)

    如果

    比如证明猜想三,如果

    (2)对原合比性质的证明方法进行类比、联想来进行证明(设比法)

    三、利用合比性质来证明等比性质的特例,并推广。

    1、练习(投影显示)

    证明:

    2、观察上述练习的两个结论,并对一般情况作出猜想,对练习中相等的比值的比个数进行推广。

    如果

    3、利用设比法进行证明,得出等比性质,同学们自己练习,后与教材P20对比。

    4、强调证明方法“设比法”。

    设几个相等的比值为k,用它们表示出每个比的前项(或后项)利用代数运算证明比例问题,这种思想方法在比例问题中经常用到。

    四、简单运用(出示小黑板)

    (1)已知:,

    (2)已知:

    (3)已知:=

    注意:①合比性质与等比性质的证明方法和结论都很重要,都可用来证明有关比例式的问题。如第三题一问

    解法1、

    解法2、

    第二问可用解法2。

    ②还常以另一种形式出现,即x:y:z=4:3:6但此时不能设。

    五、师生共同小结,看书完成P203练习

    1、合比性质,等比性质及常用变形,尤其注意等比性质的使用条件。

    2、证明两个性质时所用到的“设比法”的证明方法。

    3、类比联想,推广命题,由特殊到一般,再进行证明的方法。

    六、练习:(1)已知求的值;

    (2)已知求的值;

    (3)已知求的值;

    (4)已知试求的值。

    由(4)题思考通过作第(4)题得出结论,结合前边所学内容猜想,你能得出什么结论,并试证之。

    板书设计:

    合比性质与等比性质

    1、合比性质:2、等比性质:小黑板①②③

    内容内容小结1、

    证明:证明:2、

    推广①推广

    本文网址://www.jk251.com/jiaoan/7727.html

    【数学教案-分式的基本性质教案模板】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...