你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >平方差公式
  • 平方差公式

    发表时间:2022-01-20

    教学建议

    一、知识结构

    二、重点、难点分析

    本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.

    1.是由多项式乘法直接计算得出的:

    与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.

    2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.

    只要符合公式的结构特征,就可运用这一公式.例如

    在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.

    3.关于的特征,在学习时应注意:

    (1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.

    (2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).

    (3)公式中的和可以是具体数,也可以是单项式或多项式.

    (4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.

    三、教法建议

    1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.

    2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即

    (a+b)(a-b)=a2+ab-ab-b2=a2-b2.

    这样得出,并且把这类乘法的实质讲清楚了.

    3.通过例题、练习与小结,教会学生如何正确应用.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),

    (1+2x)(1-2x)=12-(2x)2=1-4x2

    ↓↓↓↓↑↑

    (a+b)(a-b)=a2-b2.

    这样,学生就能正确应用公式进行计算,不容易出差错.

    另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.

    教学目标

    1.使学生理解和掌握,并会用公式进行计算;

    2.注意培养学生分析、综合和抽象、概括以及运算能力.

    教学重点和难点

    重点:的应用.

    难点:用公式的结构特征判断题目能否使用公式.

    教学过程设计

    一、师生共同研究

    我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.

    让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:

    两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

    (当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)

    继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的.

    在此基础上,让学生用语言叙述公式.

    二、运用举例变式练习

    例1计算(1+2x)(1-2x).

    解:(1+2x)(1-2x)

    =12-(2x)2

    =1-4x2.

    教师引导学生分析题目条件是否符合特征,并让学生说出本题中a,b分别表示什么.

    例2计算(b2+2a3)(2a3-b2).

    解:(b2+2a3)(2a3-b2)

    =(2a3+b2)(2a3-b2)

    =(2a3)2-(b2)2

    =4a6-b4.

    教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用进行计算.

    课堂练习

    运用计算:

    (l)(x+a)(x-a);(2)(m+n)(m-n);

    (3)(a+3b)(a-3b);(4)(1-5y)(l+5y).

    例3计算(-4a-1)(-4a+1).

    让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.

    解法1:(-4a-1)(-4a+1)

    =[-(4a+l)][-(4a-l)]

    =(4a+1)(4a-l)

    =(4a)2-l2

    =16a2-1.

    解法2:(-4a-l)(-4a+l)

    =(-4a)2-l

    =16a2-1.

    根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用,就能比较简捷地得到答案.

    课堂练习

    1.口答下列各题:

    (l)(-a+b)(a+b);(2)(a-b)(b+a);

    (3)(-a-b)(-a+b);(4)(a-b)(-a-b).

    2.计算下列各题:

    (1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

    教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.

    三、小结

    1.什么是?

    2.运用公式要注意什么?(www.GSI8.COM 工作汇报网)

    (1)要符合公式特征才能运用;

    (2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.

    四、作业

    1.运用计算:

    (l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

    (3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

    (5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);

    2.计算:

    (1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

    (3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).

    热门文章青少年思想道德建设

    当前我国作文教学改革的新趋势

    古诗三首(墨梅竹石石灰吟)

    第一场雪

    Unit2Lookatme第五课时

    植物妈妈有办法

    威尼斯的小艇

    等比数列的前n项和

    相关文章·多项式的乘法

    ·单项式与多项式相乘

    ·单项式的乘法

    ·幂的乘方与积的乘方(二)

    ·幂的乘方与积的乘方

    ·同底数幂的乘法(二)

    ·同底数幂的乘法

    ·一元一次不等式组和它的解法

    中“课件”

    中“课件”

    JK251.com延伸阅读

    完全平方公式_教案模板


    教学目标:

    1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;

    2.会推导完全平方公式,并能运用公式进行简单的计算;

    3.了解完全平方公式的几何背景.教学重点:

    1.弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;

    2.会用完全平方公式进行运算.教学难点:会用完全平方公式进行运算教学过程:一、探索练习:

    一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(图略)

    用不同的形式表示实验田的总面积,并进行比较你发现了什么?

    观察得到的式子,想一想:

    (1)(a+b)2等于什么?你能不能用多项式乘法法则说明理由呢?

    (2)(a-b)2等于什么?小颖写出了如下的算式:

    (a-b)2=[a+(—b)]2.

    她是怎么想的?你能继续做下去吗?

    由此归纳出完全平方公式:

    (a+b)2=a2+2ab+b2

    (a-b)2=a2—2ab+b2

    教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来.

    例:(利用完全平方公式计算)

    (1)(2x-3)2

    解:(2x-3)2

    =(2x)2-2·(2x)·3+32

    =4x–12x+9二、巩固练习:

    1.下列各式中哪些可以运用完全平方公式计算_______________

    (1);(2);

    (3);(4).

    2.计算下列各式:

    (1);(2);(3);

    (4);(5);

    (6).

    4.填空:

    (1)_____________;(2);

    (3);三、提高练习:

    1.求的值,其中

    2.若小结:熟记完全平方公式,会用完全平方公式进行运算.作业:课本p36习题1.13:1、2.教学后记:学生基本上能套用平方差公式进行运算,但是也有出现以下错误:(1)(a+b)2=a2+b2(2)(+a)(2-a)=6-a2对公式的真正理解有待加强.

    经典初中教案§完全平方公式


    教学目标在具体情景中进一步理解完全平方公式,能正确运用完全平方公式和平方差公式进行计算.重点、难点根据公式的特征及问题的特征选择适当的公式计算.教学过程一、议一议1.边长为(a+b)的正方形面积是多少?2.边长分别为a、b拍的两个正方形面积和是多少?3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答(1)(a+b)(2)a+b(3)因为(a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面积比(2)中的正方形面积大.二、做一做例1.利用完全平方式计算1.102,2.197师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便.学生活动:在练习本上演示此题.让学生叙述,教师板书.解:1.102=(100+2)2.197=(200-3)=100+2lOO2+2,=200-22O03十3,=10000+400+4=40000-1200+9=10404=38809例2.计算:1.(x-3)-x2.(2a+b-)(2a-b+)师生共同分析:1中(x-3)可利用完全平方公式.学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1.(x-3)-x=x+6x+9-x=6x+9师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.最后教师板书解题过程.解:2.(2a+b-)(2a-b+)=[2a+(b-)][2a-(b-)]=(2a)-(b-)=4a-(b-3b+)=4a-b+3b-三、试一试计算:1.(a+b+c)2.(a+b)师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c)=[a+(b+c)]对于(2)可化为(a+b)=(a+b)(a+b).学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述,教师板书.解:1.(a+b+c)=[a+(b+c)]=(a+b)+2(a+b)c+c=a+2ab+b+2ac+2bc+c=a+b+c+2ab+2ac+2bc四、随堂练习P381五、小结本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(a±b)=a±b的错误,或(a±b)=a±ab+b(漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.六、作业课本习题1.14P381、2、3.七、教后反思§1.9整式的除法第一课时单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义.2.理解单项式除法法则,会进行单项式除以单项式运算.重点、难点重点:单项式除以单项式的运算.难点:单项式除以单项式法则的理解.教学过程一、议一议,探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由1.xy÷x,(8mn)÷(2mn),(abc)÷(3ab).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即()·x=xy,由单项式乘以单项式法则可得(xy)·x=xy,因此,xy÷x=xy.另外,根据同底数幂的除法法则,由约分也可得=xy.学生动笔:写出(2)(3)题的结果.教师板书:xy÷x=xy,(8mn)÷(2mn)=4n,(abc)÷(3ab)=abc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.二、做一做,巩固新知例1计算1.(-xy)÷(3xy)2.(10abc)÷(5abc)3.(2xy)(-7xy)÷(14xy)4.(2a+b)÷(2a+b)学生活动:在练习本上计算.教师引导学生按法则进行运算,首先确定它们的系数,把系数的商作为商的系数,其次确定相同的字母,在被除式中出现的字母作为商中可能含有的字母,相同字母的指数之差作为商式中对应字母的指数,只在被除式中含有的字母指数不变,最后化简.第(1)(2)题对照法则进行,第(3)题要按运算顺序进行.第(4)题先把(2a+b)看作一个整体(一个字母)相除,后用完全平方公式计算.教师板书如下:解:1.(-xy)÷(3xy)2.(10abc)÷(5abc)=(-÷3)xy=(10÷5)abc=-y=2abc3.(2xy)(-7xy)÷(14xy)4.(2a+b)÷(2a+b)=8xy(-7xy)÷(14xy)=(2a+b)=-56xy÷(14xy)=(2a+b)=-4xy=4a+4ab+b三、随堂练习P401学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正.教师巡回检查,对存在问题及时更正.待四名板演同学完成后,师生共同订正.四、小结本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:1.系数相除与同底数幂相除的区别;2.符号问题;3.指数相同的同底数幂相除商为1而不是0;4.在混合运算中,要注意运算的顺序.五、作业课本习题1.15.P411、2.3六、教后反思

    数学教案-完全平方公式


    课题:完全平方公式

    一、教材分析:

    (一)教材的地位与作用

    本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

    (1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

    (2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

    (3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。

    (二)教学目标的确定

    在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:

    1、知识目标:

    理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

    2、能力目标:

    渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

    3、情感目标:

    培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

    (三)教学重点与难点

    完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

    本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

    本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

    二、教学方法与手段

    (一)教学方法:

    针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

    采用小组讨论,大组竞赛等多种形式激发学习兴趣。

    (二)教学手段:

    利用投影仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。

    (三)学法指导:

    在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

    三、教材处理

    根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。

    四、教学程序

    教学过程

    设计意图

    一、

    完全平方公式相关教学方案


    教学建议

    一、知识结构

    二、重点、难点分析

    本节教学的重点是的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).是进行代数运算与变形的重要的知识基础。

    1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:

    这两个公式是根据乘方的意义与多项式的乘法法则得到的.

    这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.

    2.只要符合这一公式的结构特征,就可以运用这一公式.

    在运用公式时,有时需要进行适当的变形,例如可先变形为或或者,再进行计算.

    在运用公式时,防止发生这样错误.

    3.运用计算时,要注意:

    (1)切勿把此公式与公式混淆,而随意写成.

    (2)切勿把“乘积项”中的2丢掉.

    (3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.

    4.与都叫做.为了区别,我们把前者叫做两数和的,后者叫做两数差的.

    三、教法建议

    1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“”连结起来,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用进行计算.

    2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.

    3.如何使学生记牢公式呢?我们注意了以下两点.

    (1)既讲“法”,又讲“理”

    在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.

    (2)讲联系、讲对比、讲特点

    对于类似的内容学生容易混淆,比如在本节出现的(a+b)2=a2+b2的错误,其原因是把和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.

    教学设计示例

    一、教学目标

    1.理解的意义,准确掌握两个公式的结构特征.

    2.熟练运用公式进行计算.

    3.通过推导公式训练学生发现问题、探索规律的能力.

    4.培养学生用数形结合的方法解决问题的数学思想.

    5.渗透数学公式的结构美、和谐美.

    二、学法引导

    1.教学方法:尝试指导法、讲练结合法.

    2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用计算时,要注意:

    (1)切勿把此公式与公式混淆,而随意写成.

    (2)切勿把“乘积项”2ab中的2丢掉.

    (3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

    三、重点·难点及解决办法

    (一)重点

    掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

    (二)难点

    综合运用平方差公式与进行计算.

    (三)解决办法

    加强对公式结构特征的深入理解,在反复练习中掌握公式的应用.

    四、课时安排

    一课时.

    五、教具学具准备

    投影仪或电脑、自制胶片.

    六、师生互动活动设计

    1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

    2.引入,让学生用文字概括公式的内容,培养抽象的数字思维能力.

    3.举例分析如何正确使用,师生共练完成本课时重点内容.

    4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

    七、教学步骤

    (一)明确目标

    本节课重点学习及其应用.

    (二)整体感知

    掌握好的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

    (三)教学过程

    1.计算导入;求得公式

    (1)叙述平方差公式的内容并用字母表示;

    (2)用简便方法计算

    ①103×97

    ②103×103

    (3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

    学生活动:编题、解题,然后两至三个学生说出题目和结果.

    要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

    法公式”.

    引例:计算,

    学生活动:计算,,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

    或合并为:

    教师引导学生用文字概括公式.

    方法:由学生概括,教师给予肯定、否定或更正,同时板书.

    两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

    【教法说明】

    ①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

    ②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识方法,因此推导可以由计算直接得出.

    2.结合图形,理解公式

    根据图形完成下列问题:

    如图:A、B两图均为正方形,

    (1)图A中正方形的面积为____________,(用代数式表示)

    图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

    (2)图B中,正方形的面积为____________________,

    Ⅲ的面积为______________,

    Ⅰ、Ⅱ、Ⅳ的面积和为____________,

    用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

    分别得出结论:

    学生活动:在教师引导下回答问题.

    【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

    3.探索新知,讲授新课

    (1)引例:计算

    教师讲解:在中,把x看成a,把2y看成b,在中把2x看成a,把3y看成b,则、,就可用来计算,即

    【教法说明】引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

    (2)例1运用计算:

    ①②③

    学生活动:学生独立在练习本上尝试解题,3个学生板演.

    【教法说明】让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

    4.尝试反馈,巩固知识

    练习一

    运用计算:

    (1)(2)(3)

    (4)(5)(6)

    (7)(8)(9)

    (l0)

    学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

    5.变式训练,培养能力

    练习二

    运用计算:

    (l)(2)(3)(4)

    学生活动:学生分组讨论,选代表解答.

    练习三

    (1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

    甲的计算过程是:原式

    乙的计算过程是:原式

    丙的计算过程是:原式

    丁的计算过程是:原式

    (2)想一想,与相等吗?为什么?

    与相等吗?为什么?

    学生活动:观察、思考后,回答问题.

    【教法说明】练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解与之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

    练习四

    运用乘法公式计算:

    (l)(2)

    (3)(4)

    学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

    【教法说明】这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

    (四)总结、扩展

    这节课我们学习了乘法公式中的.

    引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

    八、布置作业

    P1331,2.(3)(4).

    参考答案

    略.

    完全平方公式的教学方案


    一、教材分析:

    (一)教材的地位与作用

    本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

    (1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

    (2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

    (3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。

    (二)教学目标的确定

    在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:

    1、知识目标:

    理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

    2、能力目标:

    渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

    3、情感目标:

    培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

    (三)教学重点与难点

    完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

    本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

    本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

    二、教学方法与手段

    (一)教学方法:

    针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

    采用小组讨论,大组竞赛等多种形式激发学习兴趣。

    (二)教学手段:

    利用投影仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。

    (三)学法指导:

    在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

    三、教材处理

    根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。

    四、教学程序

    教学过程

    设计意图

    一、

    1.8完全平方公式(2)的教学方案


    教学目标:

    1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.

    2.会运用完全平方公式进行一些数的简便运算.

    3.综合运用平方差和完全平方公式进行整式的简便运算.教学重点:

    1.运用完全平方公式进行一些数的简便运算;

    2.综合运用平方差和完全平方公式进行整式的简便运算.教学难点:灵活运用平方差和完全平方公式进行整式的简便运算.活动准备:学生熟记公式教学过程:(一)课前复习:

    算下列各题:

    1.;2.;3.;4.;

    5.;6.;7..

    通过教科书中一个有趣的分糖果场景,使学生进一步巩固,同时帮助学生进一步理解与的关系.(二)提出问题,引入新课:

    若没有计算器的情况下,你能很快算出9982的结果吗?(三)新课:

    1.例:利用完全平方公式计算:(1)1022;(2)1972.

    先分析,再课件演示解答过程

    2.练习:利用完全平方公式计算:(1)982;(2)2032.

    3.例:计算:(1);(2).

    方法一:按运算顺序先用完全平方公式展开,再合并同类项;

    方法二:先利用平方差公式,再合并同类项.

    注意:(2)中按完全平方公式展开后,必须加上括号

    4.练习:计算:(1);

    (2);

    (3).

    5.例:计算:(1);

    (2).

    练习:.

    6.补例:若,则k=_________;

    若是完全平方式,则k=________.(四)小结:

    利用完全平方公式可以进行一些简便的计算,并体会公式中

    的字母既可以表示单项式,也可以表示多项式.(五)作业:第38页习题1、2、3

    教后记:

    简便计算完成得较好,但形如的计算多数同学没有掌握,不会分组拆项.

    完全平方公式北师大版七年级数学


    一、教学目标:

    经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平方公式的运用。

    二、教学过程:

    1.检查学生的“预习知识树”,导入课题:

    师:前面学习了平方差公式,同学们对平方差公式的结构特点、运用以及学习公式的意义有了初步的认识。今天,我们继续学习、研究另一种“乘法公式”——完全平方公式。请拿出你的“预习知识树”,小组内互查并交流,在预习中有疑问的同学请询问。

    (活动:老师巡视、检查学生的预习情况,并解答学生在预习中存在的问题)生:(互查、讨论“预习知识树”,有问题的询问问题。)师:(老师点评学生预习情况,并出示老师做的“知识树”,引出课题:完全平方公式。)说明:把预习提到课前,利用“知识树”引导学生自学,学生可以独立思考、自主学习,也可合作交流、讨论研究,这样预习会更充分,听讲时就能有准备、有选择;一上课,老师就检查“预习知识树”,了解学生新课学习情况,适当点拨,在课堂上留出更多的时间大量拓展、提高,发展学生的能力。

    2.自学检测,制造通用工具:师:下面进行自学检测.计算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

    (活动:投影显示练习题。)生:(四人到黑板上板演,答错了,由学生纠正,老师再点评。)师:观察练习,公式中的a、b可代表什么?

    生:可以表示一个数,也可以表示一个单项式、多项式。

    说明:点评时,老师反复引导学生分清题目中哪部分相当于公式中的a,哪部分相当于公式中的b,就是让学生明确“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律,即制造通用工具。在前面学习平方差公式时,学生应该认识到这个道理,在这里再次强化。

    师:说得非常好,明确“公式中的a、b可以表示一个数,也可以表示一个单项式、多项式”的变化规律,就能正确运用公式解题了。显然,刚做的练习题是由公式变化来的,若是变下去,能变多少道题?

    生:无数道。师:最终是几道题?生:一道。说明:这就是老师的“暗线”语言,引导学生明白从公式出发,反映在a、b上只是取值不同,可以演变出无数道题,是“解压”的过程,最终还是利用公式解题,所有的题目只有“一道”,只是形式不同,这又是“压缩”的过程,把握了变化规律才能更好地解题。

    师:你会变了吗?请各小组编题。(活动:四人小组先在组内讨论、交流,再推选完成最快的两个小组出示题目,其他小组同学练习。)说明:引导学生现场出题,一是激发学生兴趣、活跃气氛,二是验证变化规律。

    师:下面思考,如何计算:(a+b+c)2生1:可根据多项式乘以多项式来计算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

    师:不错。还有其他方法吗?生2:也可以把其中的(a+b)两项看成一项,变成[(a+b)+c]2的形式,就能直接运用完全平方公式了。

    师:说得非常好。两种方法都可以,但哪种更简单呢?请你任选一种,完成练习。

    生:(紧张地做题,同时找两个学生到黑板上板演。)师:这道题若是变为(a+b+c+d)2,你会做吗?

    生:(齐答)会。师:怎么办?生1:把其中(a+b)看做一项,(c+d)看做一项,还是利用完全平方公式解题。

    生2:还有其他分组方式,如把(a+c)看做一项,(b+d)看做一项,也能直接运用公式解题。

    师:方法一样吗?生:一样的。师:还能变下去吗?这样可以变出多少道题?

    生:无数道。师:最终是几道题?生:(齐答)一道题。师:现在,老师相信每个学生都会解这样的题了。课下,请同学们思考:如果把(a+b)2的指数变化一下,又可以变出多少道题,你能计算出来吗?

    (活动:投影显示一组题目,如(a+b)3、(a+b)4……)说明:这就是老师进一步利用这个例子论证“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律。

    3.通过大量的习题验证通用工具,学生并且自造通用工具。

    师:通过前面的检测,看出同学们已经基本掌握了完全平方公式。下面进入达标检测。

    (活动:投影显示达标检测题)1.填空:

    ①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③当x=5,y=2,则(x+y)(x-y)-(x-y)2=_________。

    2.计算:

    ①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.计算:(x+2y+3)(x+2y-3)生:(积极

    、主动地在作业本上完成上面练习题。)师:(巡视,批阅完成快的学生的作业,最后集体点评,只讲不会的。)说明:第2①

    题,可先变形为[-(2m+n)]2,再按(a+b)2的公式展开,也可直接理解成-2m与n的差,按(a-b)2计算;第2②题将(2-3a2)变形为-(3a2-2),原式可转化为-(3a2-2)2,直接运用公式计算;第2④题把(n+3)看做a

    、n看做b,逆用平方差公式也是一种解法,同时训练学生的逆向思维;第3题是下节课训练内容,在这里可以提前,引导学生通过变形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3]·[(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,这里还是把(x+2y)看做a、3看做b,进一步验证了“通用工具”,即“解决某一类问题的一种思维方式或方法”。拓展提高还是在“变”上下功夫,要求学生能较熟练掌握,逐步达到脑算的层次,水到渠成,能力自然提高,学生就会自造“通用工具”了。

    4.嫁接“知识树”,推荐作业。师:本节课你有什么收获?还有什么问题吗?

    (活动:再次投影本节课“知识树”。)生:这节课我们学习、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是单项式也可以是多项式,能运用公式解题了,能力上又有新的提高.师:课下完成本节课的作业.[投影显示]思考题:计算(a+b+c)2、(a+b+c+d)2的结果,观察有什么规律,感兴趣的同学还可计算(a+b)3、(a+b)4的结果,你又能发现什么规律.预习指导:①课本第38-39页内容,重点研究例3两个题目的解题方法,能尝试独自解答课后随堂练习或习题,②设计下节课“知识树”,优化本单元“知识树”。说明:本环节是将本节课“知识树”

    移植到乘法公式的单元“知识树”上,整体构建知识,同时更加强化了学生的“能力树”。作业是推荐性的作业,达标检测就是“堂堂清”,学生课下只须做好预习作业就行了,这样会有更多自由安排的时间,发展个性。

    方差教案模板


    教学设计示例1

    第一课时

    素质教育目标

    (一)知识教学点

    使学生了解、标准差的意义,会计算一组数据的与标准差.

    (二)能力训练点

    1.培养学生的计算能力.

    2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力.

    (三)德育渗透点

    1.培养学生认真、耐心、细致的学习态度和学习习惯.

    2.渗透数学来源于实践,又反过来作用于实践的观点.

    (四)美育渗透点

    通过本节课的教学,渗透了数学知识的抽象美及反映在图像上的形象美,激发学生对美好事物的追求,提高学生对数学美的鉴赏力.

    重点·难点·疑点及解决办法

    1.教学重点:概念.

    2.教学难点:概念.

    3.教学疑点:学生不易理解为什么要用去描述一组数据的波动大小,为什么不可以用各数据与其平均数的差的来和来衡量这组数据的波动大小呢?为什么对各数据与其平均数的差不取其绝对值,而将其平方呢?对这些问题教师在剖析定义时要讲清楚.

    4.解决办法:教师要讲清,标准差的意义,即它们都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.

    教学步骤

    (一)明确目标

    前面我们学习了平均数、众数及中位数,它们都是描述一组数据的集中趋势的量,这节课我们将进一步学习衡量样本(或一组数据)和总体的另一类特征数——、标准差及其计算.

    这种开门见山式引入课题,能迅速将学生的注意力集中起来,进入新课讲解.

    (二)整体感知

    对于一组数据来说,我们除了关心它的集中趋势以外,还关心它的波动大小.衡量这个波动大小的最常用的特征数,就是和标准差.

    (三)教学过程

    1.请同学们看下面的问题:(用幻灯出示)

    两台机床同时生产直径是40毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,结果如下(单位:毫米)

    机床甲

    40

    39.8

    40.1

    40.2

    39.9

    40

    40.2

    39.8

    40.2

    39.8

    机床乙

    40

    40

    39.9

    40

    39.9

    40.2

    40

    40.1

    40

    39.9

    上面表中的数据如图所示

    教师引导学生观察表格中的数据和图,提出问题:怎样能说明在使所生产的10个零件的直径符合规定方面,哪个机床做得好呢?

    对于这个问题,学生会马上想到计算它们的平均数.教师可把学生分成两级分别计算这两组数据的平均数.(请两名同学到黑板计算)

    计算的结果说明两组数据的平均数都等于规定尺寸40毫米.这时教师引导学生思考,这能说明两个机床做的一样好吗?不能!我们再观察上图(给学生充分的时间观察,找出左右两图的区别)从图中看到,机床甲生产的零件的直径与规定尺寸偏差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸偏差较小,比较集中在40毫米线的附近.这

    说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.

    教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).

    通过引例的学习,使学生理解为什么要研究数据波动的大小,为提出概念做好了准

    备.

    2.概念

    教师讲解,为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:

    设在一组数据中,各数据与它们的平均数的差的平方分别是,那么我们用它们的平均数,即用

    来衡量这组数据的波动大小,并把它叫做这组数据的.一组数据越大,说明这组数据波动越大.教师要剖析公式中每一个元素的意义,以便学生理解和掌握.

    在学生理解概念时,可能会提出疑问:为什么要这样定义?(教师说明,在表示各数据与其平均数的倔离程度时,为了防止正偏差与负偏差的相互抵消)为什么对各数据与其平均数的差不取其绝对值,而要将它们平方?(教师说明,这主要是因为在很多问题里,含有绝对值的式子不便于运算,且在衡量一组数据波动大小的“功能”上,更强些)为什么要除以数据个数n?(是为了消除数据个数的影响).

    在学生理解了概念之后,再回到了引例中,通过计算机床甲、乙两组数据的,再根据理论说明哪个机床做得更好.

    教师范解

    从知道,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大.

    这样做使学生深刻体会到数学来源于实践,又反过来作用实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.

    3.例1(用幻灯出示)已知两组数据:

    甲:9.910.39.810.110.4109.89.7

    乙:10.2109.510.310.59.69.810.1

    分别计算这两组数据的.

    让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名好学生到黑板计算.

    解:根据公式②(取),有

    从知道,乙组数据比甲组数据波动大.

    4.标准差概念

    在有些情况下,需要用到的算术平方根

    并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.

    教师引导学生分析与标准差的区别与联系:

    计算标准差要比计算多开一次平方,但它的度量单位与原数据一致,有时用它比较方便.

    课堂练习教材P165中(1)、(2)

    (四)总结、扩展

    知识小结:通过这节课的学习,使我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;而描述一组数据的波动大小的量不止一种,最常用的是和标准差.与标准差这两个概念既有联系又有区别.

    方法小结:求一组数据的方法;先求平均数,再利用③求,求一组数据标准差的方法:先求这组数据的,然后再求的算术平方根.

    布置作业

    教材P173中1,2(1)(2)

    板书设计

    14.3(一)

    公式③引例例1

    标准差公式④

    教学设计示例2

    一、教学目的

    1.使学生了解、标准差的意义,会计算一组数据的与标准差.

    2.使学生了解样本、样本标准差、总体的意义.

    二、教学重点、难点

    重点:、标准差、样本、样本标准差、总体的意义.

    难点:样本、样本标准差的计算.

    三、教学过程

    复习提问

    计算一组数据的平均数有哪些方法?

    引入新课

    在很多实际问题中,只知道一组数据的平均数是不够的,还需要知道这组数据的波动大小.如何了解数据的波动大小?这正是我们要解决的问题.

    新课

    引例两台机床同时生产直径是40毫米的零件.为了检验产品质量,从产品中抽出10件进行测量,结果如下(单位:毫米):

    表中数据表成如下形式:

    可在此处让学生用公式②分别计算这两组数据的平均数(还可提问学生a取什么值最好,这样学生能在教师的启发下得到a=40最合适).当学生算出如下平均数:

    让学生思考,两组数据的平均数都等于规定尺寸40毫米时,甲、乙两机床性能是否都一样好?提出问题让学生议议后,再引导学生看图1,让学生认识到“机床甲生产的零件的直径与规定尺寸编差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸的偏差较小,比较集中在40毫米线的附近.”这说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.

    这反映出,对一组数据,除需要了解它们的平均水平以外,还常常需要了解它们的波动大小(即偏离平均数的大小).

    在此处要告诉学生:描述一组数据的波动大小,可以采用不止一种办法.本课介绍即是一种方法.即:

    来衡量这组数据的波动大小,并把它叫做这组数据的.

    要强调“一组数据越大,说明这组数据波动越大”.条件许可时,还可介绍③式可表示为:

    接下来可以请两个学生计算引例中机床甲、乙两组数据的.

    从0.026>0.008可以比较出,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大.(接下来教师再给出如下例题.)

    例1已知两组数据:

    分别计算这两组数据的.

    讲此例后,要强调求解步骤为:

    (1)求平均数;(2)求;(3)比较得出结论.

    此后接前面问题说,用来衡量一组数据的波动的方法还可用一组数据的标准差,即

    公式④(即标准差)也是用来衡量一组数据波动大小的重要的量.

    在本节引例中,两组数据的标准差,可让学生算一下,得出:

    说明:计算标准差要比计算多开一次平方,但它的度量单位与原数据一致,有时用它比较方便.

    小结

    1.本课学了计算一组数据的的公式③.

    2.本课在的基础上又学了计算一组数据的标准差的公式④.

    练习:选用课本练习题.

    作业:选用课本习题.

    四、教学注意问题

    要注意通过例题讲好求题目的解题格式.

    教学设计示例3

    一、教学目的

    1.使学生进一步理解、标准差的意义.

    2.使学生掌握利用简化公式计算一组数据的的方法.

    3.使学生会根据同类问题两组数据的(或标准差)比较两组数据的波动情况.

    二、教学重点、难点

    重点:简化计算一组数据的公式.

    难点:利用(或标准差)比较两组数据的波动情况.

    三、教学过程

    复习提问

    1.什么是一组数据的、标准差?

    2.一组数据的和标准差应如何计算?

    引入新课

    我们看到,用公式③计算一组数据的比较麻烦.那么,有否较简便的计算方法呢?

    新课

    教师应在黑板上进行如下推导:

    推导上述公式后,可让学生仿①~④四个公式的方法归纳推理出如下结论:

    一般地,如果一组数据的个数是n,那么它们的可以用下面的公式计算:

    在这时,教师要强调:当一组数据中的数较小时,用公式⑤计算比公式③计算少了求各数据与平均数的差一步,因此比较方便.

    例2计算下面数据的(结果保留到小数点后第1位):

    3-121-33

    教师可让学生共同来完成此例.

    接下来教师按教材指出,当一组数据较大时,可按下述公式计算:

    其中x'1=x1-a,x'2=x2-a,…,x'n=xn-a,x1,x2,…,xn是原已知的n个数据,a是接近这组数据的平均数的一个常数.

    为使学生对公式⑥加深印象,可让学生用公式⑥解下例.

    例3甲、乙两个小组各10名学生的英语口语测验成绩如下(单位:分):

    哪个小组学生的成绩比较整齐?

    解后,指出解题步骤有如下三步:

    (3)代入公式⑥计算并比较得解.

    小结

    1.本课介绍了当一组数据中的数值较小时,用以计算的简化计算公式⑤.

    2.本课又学习了当一组数据中的数值较大时,用以计算的简化公式⑥.

    练习:选用课本练习题.

    作业:选用课本习题.

    补充作业

    2.甲、乙两组数据的之和为13,标准差之和为5,且甲的波动比乙的波动大,求它们各自的标准差.(答案:S甲=3,S乙=2.)

    3.在某次数学考试中,甲、乙两校各8个班,不及格的人数分别如下:

    分别计算这两组数据的平均数与.

    四、教学注意问题

    要注意给学生讲如下三点:

    1.与标准差是衡量样本和总体波动大小的特征数.

    2.用简化计算公式求较为方便.

    3.对同类问题的两组数据,小的波动小、大的波动大.

    方差相关教学方案


    教学设计示例1

    第一课时

    素质教育目标

    (一)知识教学点

    使学生了解、标准差的意义,会计算一组数据的与标准差.

    (二)能力训练点

    1.培养学生的计算能力.

    2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力.

    (三)德育渗透点

    1.培养学生认真、耐心、细致的学习态度和学习习惯.

    2.渗透数学来源于实践,又反过来作用于实践的观点.

    (四)美育渗透点

    通过本节课的教学,渗透了数学知识的抽象美及反映在图像上的形象美,激发学生对美好事物的追求,提高学生对数学美的鉴赏力.

    重点·难点·疑点及解决办法

    1.教学重点:概念.

    2.教学难点:概念.

    3.教学疑点:学生不易理解为什么要用去描述一组数据的波动大小,为什么不可以用各数据与其平均数的差的来和来衡量这组数据的波动大小呢?为什么对各数据与其平均数的差不取其绝对值,而将其平方呢?对这些问题教师在剖析定义时要讲清楚.

    4.解决办法:教师要讲清,标准差的意义,即它们都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.

    教学步骤

    (一)明确目标

    前面我们学习了平均数、众数及中位数,它们都是描述一组数据的集中趋势的量,这节课我们将进一步学习衡量样本(或一组数据)和总体的另一类特征数——、标准差及其计算.

    这种开门见山式引入课题,能迅速将学生的注意力集中起来,进入新课讲解.

    (二)整体感知

    对于一组数据来说,我们除了关心它的集中趋势以外,还关心它的波动大小.衡量这个波动大小的最常用的特征数,就是和标准差.

    (三)教学过程

    1.请同学们看下面的问题:(用幻灯出示)

    两台机床同时生产直径是40毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,结果如下(单位:毫米)

    机床甲

    40

    39.8

    40.1

    40.2

    39.9

    40

    40.2

    39.8

    40.2

    39.8

    机床乙

    40

    40

    39.9

    40

    39.9

    40.2

    40

    40.1

    40

    39.9

    上面表中的数据如图所示

    教师引导学生观察表格中的数据和图,提出问题:怎样能说明在使所生产的10个零件的直径符合规定方面,哪个机床做得好呢?

    对于这个问题,学生会马上想到计算它们的平均数.教师可把学生分成两级分别计算这两组数据的平均数.(请两名同学到黑板计算)

    计算的结果说明两组数据的平均数都等于规定尺寸40毫米.这时教师引导学生思考,这能说明两个机床做的一样好吗?不能!我们再观察上图(给学生充分的时间观察,找出左右两图的区别)从图中看到,机床甲生产的零件的直径与规定尺寸偏差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸偏差较小,比较集中在40毫米线的附近.这

    说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.

    教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).

    通过引例的学习,使学生理解为什么要研究数据波动的大小,为提出概念做好了准

    备.

    2.概念

    教师讲解,为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:

    设在一组数据中,各数据与它们的平均数的差的平方分别是,那么我们用它们的平均数,即用

    来衡量这组数据的波动大小,并把它叫做这组数据的.一组数据越大,说明这组数据波动越大.教师要剖析公式中每一个元素的意义,以便学生理解和掌握.

    在学生理解概念时,可能会提出疑问:为什么要这样定义?(教师说明,在表示各数据与其平均数的倔离程度时,为了防止正偏差与负偏差的相互抵消)为什么对各数据与其平均数的差不取其绝对值,而要将它们平方?(教师说明,这主要是因为在很多问题里,含有绝对值的式子不便于运算,且在衡量一组数据波动大小的“功能”上,更强些)为什么要除以数据个数n?(是为了消除数据个数的影响).

    在学生理解了概念之后,再回到了引例中,通过计算机床甲、乙两组数据的,再根据理论说明哪个机床做得更好.

    教师范解

    从知道,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大.

    这样做使学生深刻体会到数学来源于实践,又反过来作用实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.

    3.例1(用幻灯出示)已知两组数据:

    甲:9.910.39.810.110.4109.89.7

    乙:10.2109.510.310.59.69.810.1

    分别计算这两组数据的.

    让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名好学生到黑板计算.

    解:根据公式②(取),有

    从知道,乙组数据比甲组数据波动大.

    4.标准差概念

    在有些情况下,需要用到的算术平方根

    并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.

    教师引导学生分析与标准差的区别与联系:

    计算标准差要比计算多开一次平方,但它的度量单位与原数据一致,有时用它比较方便.

    课堂练习教材P165中(1)、(2)

    (四)总结、扩展

    知识小结:通过这节课的学习,使我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;而描述一组数据的波动大小的量不止一种,最常用的是和标准差.与标准差这两个概念既有联系又有区别.

    方法小结:求一组数据的方法;先求平均数,再利用③求,求一组数据标准差的方法:先求这组数据的,然后再求的算术平方根.

    布置作业

    教材P173中1,2(1)(2)

    板书设计

    14.3(一)

    公式③引例例1

    标准差公式④

    教学设计示例2

    一、教学目的

    1.使学生了解、标准差的意义,会计算一组数据的与标准差.

    2.使学生了解样本、样本标准差、总体的意义.

    二、教学重点、难点

    重点:、标准差、样本、样本标准差、总体的意义.

    难点:样本、样本标准差的计算.

    三、教学过程

    复习提问

    计算一组数据的平均数有哪些方法?

    引入新课

    在很多实际问题中,只知道一组数据的平均数是不够的,还需要知道这组数据的波动大小.如何了解数据的波动大小?这正是我们要解决的问题.

    新课

    引例两台机床同时生产直径是40毫米的零件.为了检验产品质量,从产品中抽出10件进行测量,结果如下(单位:毫米):

    表中数据表成如下形式:

    可在此处让学生用公式②分别计算这两组数据的平均数(还可提问学生a取什么值最好,这样学生能在教师的启发下得到a=40最合适).当学生算出如下平均数:

    让学生思考,两组数据的平均数都等于规定尺寸40毫米时,甲、乙两机床性能是否都一样好?提出问题让学生议议后,再引导学生看图1,让学生认识到“机床甲生产的零件的直径与规定尺寸编差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸的偏差较小,比较集中在40毫米线的附近.”这说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.

    这反映出,对一组数据,除需要了解它们的平均水平以外,还常常需要了解它们的波动大小(即偏离平均数的大小).

    在此处要告诉学生:描述一组数据的波动大小,可以采用不止一种办法.本课介绍即是一种方法.即:

    来衡量这组数据的波动大小,并把它叫做这组数据的.

    要强调“一组数据越大,说明这组数据波动越大”.条件许可时,还可介绍③式可表示为:

    接下来可以请两个学生计算引例中机床甲、乙两组数据的.

    从0.026>0.008可以比较出,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大.(接下来教师再给出如下例题.)

    例1已知两组数据:

    分别计算这两组数据的.

    讲此例后,要强调求解步骤为:

    (1)求平均数;(2)求;(3)比较得出结论.

    此后接前面问题说,用来衡量一组数据的波动的方法还可用一组数据的标准差,即

    公式④(即标准差)也是用来衡量一组数据波动大小的重要的量.

    在本节引例中,两组数据的标准差,可让学生算一下,得出:

    说明:计算标准差要比计算多开一次平方,但它的度量单位与原数据一致,有时用它比较方便.

    小结

    1.本课学了计算一组数据的的公式③.

    2.本课在的基础上又学了计算一组数据的标准差的公式④.

    练习:选用课本练习题.

    作业:选用课本习题.

    四、教学注意问题

    要注意通过例题讲好求题目的解题格式.

    教学设计示例3

    一、教学目的

    1.使学生进一步理解、标准差的意义.

    2.使学生掌握利用简化公式计算一组数据的的方法.

    3.使学生会根据同类问题两组数据的(或标准差)比较两组数据的波动情况.

    二、教学重点、难点

    重点:简化计算一组数据的公式.

    难点:利用(或标准差)比较两组数据的波动情况.

    三、教学过程

    复习提问

    1.什么是一组数据的、标准差?

    2.一组数据的和标准差应如何计算?

    引入新课

    我们看到,用公式③计算一组数据的比较麻烦.那么,有否较简便的计算方法呢?

    新课

    教师应在黑板上进行如下推导:

    推导上述公式后,可让学生仿①~④四个公式的方法归纳推理出如下结论:

    一般地,如果一组数据的个数是n,那么它们的可以用下面的公式计算:

    在这时,教师要强调:当一组数据中的数较小时,用公式⑤计算比公式③计算少了求各数据与平均数的差一步,因此比较方便.

    例2计算下面数据的(结果保留到小数点后第1位):

    3-121-33

    教师可让学生共同来完成此例.

    接下来教师按教材指出,当一组数据较大时,可按下述公式计算:

    其中x'1=x1-a,x'2=x2-a,…,x'n=xn-a,x1,x2,…,xn是原已知的n个数据,a是接近这组数据的平均数的一个常数.

    为使学生对公式⑥加深印象,可让学生用公式⑥解下例.

    例3甲、乙两个小组各10名学生的英语口语测验成绩如下(单位:分):

    哪个小组学生的成绩比较整齐?

    解后,指出解题步骤有如下三步:

    (3)代入公式⑥计算并比较得解.

    小结

    1.本课介绍了当一组数据中的数值较小时,用以计算的简化计算公式⑤.

    2.本课又学习了当一组数据中的数值较大时,用以计算的简化公式⑥.

    练习:选用课本练习题.

    作业:选用课本习题.

    补充作业

    2.甲、乙两组数据的之和为13,标准差之和为5,且甲的波动比乙的波动大,求它们各自的标准差.(答案:S甲=3,S乙=2.)

    3.在某次数学考试中,甲、乙两校各8个班,不及格的人数分别如下:

    分别计算这两组数据的平均数与.

    四、教学注意问题

    要注意给学生讲如下三点:

    1.与标准差是衡量样本和总体波动大小的特征数.

    2.用简化计算公式求较为方便.

    3.对同类问题的两组数据,小的波动小、大的波动大.

    本文网址://www.jk251.com/jiaoan/6273.html

    【平方差公式】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...