高中教案简单的线性规划(二)(小编推荐)
发表时间:2022-01-17线性规划教学设计方案(二)
教学目标
巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.
重点难点
理解二元一次不等式表示平面区域是教学重点.
如何扰实际问题转化为线性规划问题,并给出解答是教学难点.
教学步骤
【新课引入】
我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.
【线性规划】
先讨论下面的问题
设,式中变量x、y满足下列条件
①
求z的最大值和最小值.
我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.
作一组和平等的直线
可知,当l在的右上方时,直线l上的点满足.
即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点的直线,所对应的t最小,所以
在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.
是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的最大值和最小值问题.
线性约束条件除了用一次不等式表示外,有时也有一次方程表示.
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
【应用举例】
例1解下列线性规划问题:求的最大值和最小值,使式中的x、y满足约束条件
解:先作出可行域,见图中表示的区域,且求得.
作出直线,再将直线平移,当的平行线过B点时,可使达到最小值,当的平行线过C点时,可使达到最大值.
通过这个例子讲清楚线性规划的步骤,即:
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找出最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值.
例2解线性规划问题:求的最大值,使式中的x、y满足约束条件.
解:作出可行域,见图,五边形OABCD表示的平面区域.
作出直线将它平移至点B,显然,点B的坐标是可行域中的最优解,它使达到最大值,解方程组得点B的坐标为(9,2).
∴
这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数所确定的直线的斜率有关.就这个例子而言,当的斜率为负数时,即时,若(直线的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当时,点C处使z取得最大值(比如:时),若,可请同学思考.
随堂练习
1.求的最小值,使式中的满足约束条件
2.求的最大值,使式中满足约束条件
答案:1.时,.
2.时,.
总结提炼
1.线性规划的概念.
2.线性规划的问题解法.
布置作业
1.求的最大值,使式中的满足条件
2.求的最小值,使满足下列条件
答案:1.
2.在可行域内整点中,点(5,2)使z最小,
探究活动
利润的线性规划[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?
[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.
建立平面直角坐标系,设1997年的利润为5万元对应的点为(0,5),1998年的利润为7万元及1999年的利润为8万元分别对应点(1,7)和(2,8),那么
①若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为13万元.
②若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为11万元.
③若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为10万元.
④若将过及线段的中点的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.
⑤若将过及的重心(注:为3年的年平均利润)的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.
⑥若将过及的重心的直线作为预测直线,其方程为:,这样预测2001年的利润为10.667万元.
⑦若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为9万元.
⑧若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为11.5万元.
⑨若将过点且以线段的斜率为斜率的直线,作为预测直线,则预测直线的方程为;,这样预测2001年的利润为12万元.
⑩若将过且以线段的斜率与线段的斜率的平均数为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为12万元.
如此这样,还有其他方案,在此不—一列举.
[思考](1)第⑤种方案与第④种方案的结果完全一致,这是为什么?
(2)第⑦种方案中,的现实意义是什么?
(3)根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过的重心,找出以为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.
(4)根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?
Jk251.com相关文章推荐
简单的线性规划(二)
线性规划教学设计方案(二)
教学目标
巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.
重点难点
理解二元一次不等式表示平面区域是教学重点.
如何扰实际问题转化为线性规划问题,并给出解答是教学难点.
教学步骤
【新课引入】
我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.
【线性规划】
先讨论下面的问题
设,式中变量x、y满足下列条件
①
求z的最大值和最小值.
我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.
作一组和平等的直线
可知,当l在的右上方时,直线l上的点满足.
即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点的直线,所对应的t最小,所以
在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.
是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的最大值和最小值问题.
线性约束条件除了用一次不等式表示外,有时也有一次方程表示.
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
【应用举例】
例1解下列线性规划问题:求的最大值和最小值,使式中的x、y满足约束条件
解:先作出可行域,见图中表示的区域,且求得.
作出直线,再将直线平移,当的平行线过B点时,可使达到最小值,当的平行线过C点时,可使达到最大值.
通过这个例子讲清楚线性规划的步骤,即:
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找出最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值.
例2解线性规划问题:求的最大值,使式中的x、y满足约束条件.
解:作出可行域,见图,五边形OABCD表示的平面区域.
作出直线将它平移至点B,显然,点B的坐标是可行域中的最优解,它使达到最大值,解方程组得点B的坐标为(9,2).
∴
这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数所确定的直线的斜率有关.就这个例子而言,当的斜率为负数时,即时,若(直线的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当时,点C处使z取得最大值(比如:时),若,可请同学思考.
随堂练习
1.求的最小值,使式中的满足约束条件
2.求的最大值,使式中满足约束条件
答案:1.时,.
2.时,.
总结提炼
1.线性规划的概念.
2.线性规划的问题解法.
布置作业
1.求的最大值,使式中的满足条件
2.求的最小值,使满足下列条件
答案:1.
2.在可行域内整点中,点(5,2)使z最小,
探究活动
利润的线性规划[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?
[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.
建立平面直角坐标系,设1997年的利润为5万元对应的点为(0,5),1998年的利润为7万元及1999年的利润为8万元分别对应点(1,7)和(2,8),那么
①若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为13万元.
②若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为11万元.
③若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为10万元.
④若将过及线段的中点的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.
⑤若将过及的重心(注:为3年的年平均利润)的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.
⑥若将过及的重心的直线作为预测直线,其方程为:,这样预测2001年的利润为10.667万元.
⑦若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为9万元.
⑧若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为11.5万元.
⑨若将过点且以线段的斜率为斜率的直线,作为预测直线,则预测直线的方程为;,这样预测2001年的利润为12万元.
⑩若将过且以线段的斜率与线段的斜率的平均数为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为12万元.
如此这样,还有其他方案,在此不—一列举.
[思考](1)第⑤种方案与第④种方案的结果完全一致,这是为什么?
(2)第⑦种方案中,的现实意义是什么?
(3)根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过的重心,找出以为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.
(4)根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?
简单的线性规划(一)【推荐】
教学目标
(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;
(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;
(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;
(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
教学建议
一、知识结构
教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.
二、重点、难点分析
本小节的重点是二元一次不等式(组)表示平面的区域.
对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:
(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.
(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.
难点是把实际问题转化为线性规划问题,并给出解答.
对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.
对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.
三、教法建议
(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念
(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.
(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.
(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.
(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.
(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.
如果可行域中的整点数目很少,采用逐个试验法也可.
(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.
线性规划教学设计方案(一)
教学目标
使学生了解并会作二元一次不等式和不等式组表示的区域.
重点难点
了解二元一次不等式表示平面区域.
教学过程
【引入新课】
我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?
【二元一次不等式表示的平面区域】
1.先分析一个具体的例子
我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?
在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.
由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.
在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴
于是
所以
因为点,是L上的任意点,所以,对于直线右上方的任意点,
都成立
同理,对于直线左下方的任意点,
都成立
所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.
是直线右上方的平面区域(如图)
类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.
2.二元一次不等式和表示平面域.
(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.
把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.
(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.
【应用举例】
例1画出不等式表示的平面区域
解;先画直线(画线虚线)取原点(0,0),代入,
∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.
例2画出不等式组
表示的平面区域
分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.
解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.
课堂练习
作出下列二元一次不等式或不等式组表示的平面区域.
(1)(2)(3)
(4)(5)
总结提炼
1.二元一次不等式表示的平面区域.
2.二元一次不等式表示哪个平面区域的判断方法.
3.二元一次不等式组表示的平面区域.
布置作业
1.不等式表示的区域在的().
A.右上方B.右下方C.左上方D.左下方
2.不等式表示的平面区域是().
3.不等式组表示的平面区域是().
4.直线右上方的平面区域可用不等式表示.
5.不等式组表示的平面区域内的整点坐标是.
6.画出表示的区域.
答案:
1.B2.D3.B4.5.(-1,-1)
6.
简单的线性规划(二)【荐】
线性规划教学设计方案(二)
教学目标
巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.
重点难点
理解二元一次不等式表示平面区域是教学重点.
如何扰实际问题转化为线性规划问题,并给出解答是教学难点.
教学步骤
【新课引入】
我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.
【线性规划】
先讨论下面的问题
设,式中变量x、y满足下列条件
①
求z的最大值和最小值.
我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.
作一组和平等的直线
可知,当l在的右上方时,直线l上的点满足.
即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点的直线,所对应的t最小,所以
在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.
是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的最大值和最小值问题.
线性约束条件除了用一次不等式表示外,有时也有一次方程表示.
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
【应用举例】
例1解下列线性规划问题:求的最大值和最小值,使式中的x、y满足约束条件
解:先作出可行域,见图中表示的区域,且求得.
作出直线,再将直线平移,当的平行线过B点时,可使达到最小值,当的平行线过C点时,可使达到最大值.
通过这个例子讲清楚线性规划的步骤,即:
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找出最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值.
例2解线性规划问题:求的最大值,使式中的x、y满足约束条件.
解:作出可行域,见图,五边形OABCD表示的平面区域.
作出直线将它平移至点B,显然,点B的坐标是可行域中的最优解,它使达到最大值,解方程组得点B的坐标为(9,2).
∴
这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数所确定的直线的斜率有关.就这个例子而言,当的斜率为负数时,即时,若(直线的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当时,点C处使z取得最大值(比如:时),若,可请同学思考.
随堂练习
1.求的最小值,使式中的满足约束条件
2.求的最大值,使式中满足约束条件
答案:1.时,.
2.时,.
总结提炼
1.线性规划的概念.
2.线性规划的问题解法.
布置作业
1.求的最大值,使式中的满足条件
2.求的最小值,使满足下列条件
答案:1.
2.在可行域内整点中,点(5,2)使z最小,
探究活动
利润的线性规划[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?
[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.
建立平面直角坐标系,设1997年的利润为5万元对应的点为(0,5),1998年的利润为7万元及1999年的利润为8万元分别对应点(1,7)和(2,8),那么
①若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为13万元.
②若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为11万元.
③若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为10万元.
④若将过及线段的中点的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.
⑤若将过及的重心(注:为3年的年平均利润)的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.
⑥若将过及的重心的直线作为预测直线,其方程为:,这样预测2001年的利润为10.667万元.
⑦若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为9万元.
⑧若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为11.5万元.
⑨若将过点且以线段的斜率为斜率的直线,作为预测直线,则预测直线的方程为;,这样预测2001年的利润为12万元.
⑩若将过且以线段的斜率与线段的斜率的平均数为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为12万元.
如此这样,还有其他方案,在此不—一列举.
[思考](1)第⑤种方案与第④种方案的结果完全一致,这是为什么?
(2)第⑦种方案中,的现实意义是什么?
(3)根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过的重心,找出以为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.
(4)根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?
关于简单的线性规划(一)的高中教案推荐
教学目标
(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;
(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;
(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;
(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
教学建议
一、知识结构
教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.
二、重点、难点分析
本小节的重点是二元一次不等式(组)表示平面的区域.
对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:
(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.
(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.
难点是把实际问题转化为线性规划问题,并给出解答.
对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.
对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.
三、教法建议
(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念
(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.
(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.
(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.
(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.
(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.
如果可行域中的整点数目很少,采用逐个试验法也可.
(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.
线性规划教学设计方案(一)
教学目标
使学生了解并会作二元一次不等式和不等式组表示的区域.
重点难点
了解二元一次不等式表示平面区域.
教学过程
【引入新课】
我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?
【二元一次不等式表示的平面区域】
1.先分析一个具体的例子
我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?
在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.
由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.
在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴
于是
所以
因为点,是L上的任意点,所以,对于直线右上方的任意点,
都成立
同理,对于直线左下方的任意点,
都成立
所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.
是直线右上方的平面区域(如图)
类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.
2.二元一次不等式和表示平面域.
(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.
把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.
(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.
【应用举例】
例1画出不等式表示的平面区域
解;先画直线(画线虚线)取原点(0,0),代入,
∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.
例2画出不等式组
表示的平面区域
分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.
解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.
课堂练习
作出下列二元一次不等式或不等式组表示的平面区域.
(1)(2)(3)
(4)(5)
总结提炼
1.二元一次不等式表示的平面区域.
2.二元一次不等式表示哪个平面区域的判断方法.
3.二元一次不等式组表示的平面区域.
布置作业
1.不等式表示的区域在的().
A.右上方B.右下方C.左上方D.左下方
2.不等式表示的平面区域是().
3.不等式组表示的平面区域是().
4.直线右上方的平面区域可用不等式表示.
5.不等式组表示的平面区域内的整点坐标是.
6.画出表示的区域.
答案:
1.B2.D3.B4.5.(-1,-1)
6.
简单的线性规划(一)
教学目标
(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;
(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;
(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;
(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
教学建议
一、知识结构
教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.
二、重点、难点分析
本小节的重点是二元一次不等式(组)表示平面的区域.
对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:
(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.
(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.
难点是把实际问题转化为线性规划问题,并给出解答.
对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.
对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.
三、教法建议
(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念
(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.
(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.
(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.
(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.
(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.
如果可行域中的整点数目很少,采用逐个试验法也可.
(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.
线性规划教学设计方案(一)
教学目标
使学生了解并会作二元一次不等式和不等式组表示的区域.
重点难点
了解二元一次不等式表示平面区域.
教学过程
【引入新课】
我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?
【二元一次不等式表示的平面区域】
1.先分析一个具体的例子
我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?
在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.
由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.
在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴
于是
所以
因为点,是L上的任意点,所以,对于直线右上方的任意点,
都成立
同理,对于直线左下方的任意点,
都成立
所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.
是直线右上方的平面区域(如图)
类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.
2.二元一次不等式和表示平面域.
(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.
把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.
(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.
【应用举例】
例1画出不等式表示的平面区域
解;先画直线(画线虚线)取原点(0,0),代入,
∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.
例2画出不等式组
表示的平面区域
分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.
解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.
课堂练习
作出下列二元一次不等式或不等式组表示的平面区域.
(1)(2)(3)
(4)(5)
总结提炼
1.二元一次不等式表示的平面区域.
2.二元一次不等式表示哪个平面区域的判断方法.
3.二元一次不等式组表示的平面区域.
布置作业
1.不等式表示的区域在的().
A.右上方B.右下方C.左上方D.左下方
2.不等式表示的平面区域是().
3.不等式组表示的平面区域是().
4.直线右上方的平面区域可用不等式表示.
5.不等式组表示的平面区域内的整点坐标是.
6.画出表示的区域.
答案:
1.B2.D3.B4.5.(-1,-1)
6.
简单的线性规划(一)【精】
教学目标
(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;
(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;
(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;
(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
教学建议
一、知识结构
教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.
二、重点、难点分析
本小节的重点是二元一次不等式(组)表示平面的区域.
对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:
(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.
(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.
难点是把实际问题转化为线性规划问题,并给出解答.
对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.
对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.
三、教法建议
(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念
(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.
(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.
(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.
(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.
(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.
如果可行域中的整点数目很少,采用逐个试验法也可.
(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.
线性规划教学设计方案(一)
教学目标
使学生了解并会作二元一次不等式和不等式组表示的区域.
重点难点
了解二元一次不等式表示平面区域.
教学过程
【引入新课】
我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?
【二元一次不等式表示的平面区域】
1.先分析一个具体的例子
我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?
在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.
由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.
在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴
于是
所以
因为点,是L上的任意点,所以,对于直线右上方的任意点,
都成立
同理,对于直线左下方的任意点,
都成立
所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.
是直线右上方的平面区域(如图)
类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.
2.二元一次不等式和表示平面域.
(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.
把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.
(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.
【应用举例】
例1画出不等式表示的平面区域
解;先画直线(画线虚线)取原点(0,0),代入,
∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.
例2画出不等式组
表示的平面区域
分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.
解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.
课堂练习
作出下列二元一次不等式或不等式组表示的平面区域.
(1)(2)(3)
(4)(5)
总结提炼
1.二元一次不等式表示的平面区域.
2.二元一次不等式表示哪个平面区域的判断方法.
3.二元一次不等式组表示的平面区域.
布置作业
1.不等式表示的区域在的().
A.右上方B.右下方C.左上方D.左下方
2.不等式表示的平面区域是().
3.不等式组表示的平面区域是().
4.直线右上方的平面区域可用不等式表示.
5.不等式组表示的平面区域内的整点坐标是.
6.画出表示的区域.
答案:
1.B2.D3.B4.5.(-1,-1)
6.
数学教案-简单的线性规划(一)__万能通用篇
教学目标
(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;
(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;
(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;
(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
教学建议
一、知识结构
教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.
二、重点、难点分析
本小节的重点是二元一次不等式(组)表示平面的区域.
对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:
(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.
(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.
难点是把实际问题转化为线性规划问题,并给出解答.
对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.
对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.
三、教法建议
(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念
(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.
(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.
(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.
(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.
(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.
如果可行域中的整点数目很少,采用逐个试验法也可.
(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.
线性规划教学设计方案(一)
教学目标
使学生了解并会作二元一次不等式和不等式组表示的区域.
重点难点
了解二元一次不等式表示平面区域.
教学过程
【引入新课】
我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?
【二元一次不等式表示的平面区域】
高中教案(小编推荐)
9.6
一、素质教育目标
(一)知识教学点
1.使学生能对型数量关系有初步认识.
2.使学生能在解决实际问题时导出型关系式,并对型数量关系有感性认识,从而归纳出其运算规律
(二)能力训练点
使学生对变蜕有初步的认识,培养探究规律的能力.
(三)德育渗透点
通过本节的学习,从定量到变示的探究,渗透从特殊到一般的辩证唯物主义思想。
(四)美育渗透点
型数量关系体现了筒单的数学美
二、学法引导
1.教师教法启发式、讨论式
2.学生学法讨沦、探究、归纳
三、重点•难点•疑点及解决办法
1.教学重点探究型数量关系及运算规律
2.教学难点由学生自己探索出型数量关系及规律
四、课时安排
1课时
五、教具学具准备
投影片
六、师生互动活动设计
1.设置问题,由学生讨论得出结论,老师再加深提问
2.设置问题,由表中数据及面积公式得出型的数量关系所存在的规律
七、教学步骤
(一)明确目樟
通过实例如学生熟悉的矩形面积问题.当宽一定时,面积随着长的变化而变化即与之成正比关系,引入研究型数量关系的必要性,从而将学生的注意力集中起来,激发学生探究知识的兴趣与好奇心
(二)整体感知
从具体实例确定电线总长度的值、矩形面积问题、推拉窗的通风面积问题等让学生观察变化规律从而总结出型数量关系的变化规律,培养学生观察、分析、应用知识的能力,提高学生的数学逻辑思维能力
(三)教学过程
[问题引入]
问题设置:有一大捆粗细均匀的电线,现要确定其总长度的值.怎样做比较简捷?(使用的工具不限,可以从中先取一小段作为检骏样品)
提示:由于电线的粗细是均匀分布的,所以每段同样长度的电线的质量相同.
1.由学生讨论,得出结论.
2.教师再加深一步提问:在我们讨论的问题涉及的量中,如果电线的总质量为,总长度为,单位长度的质量为c,、、c之间有什么关系?
由学生归纳出:.对于解决问题:可先取1米长的电线,称出它的质量,再称出其余电线的总质量,则(米)是其余电线的长度,所以这捆电线的总长度为米
引出课题:
深入研究型数量关系
1.、c之一为定值时.
读课本P96—P97并填表1和表2,并分组讨论探究在表1和表2中发现型数量关系有什么规律和特点?
(1)分析表l
表1中,,、c增大(或减小)A相应的增大(或减小)如矩形1和矩形2相比较:宽,长由2变为4.
面积也由2增大到4;矩形3、4类似,再看矩形1和矩形3:长都为,宽由1增大到2,面积也变为原来的2倍,矩形2、4类似.
得出结论,在中,当、c之—为定值(定量)时,A随另一量的变化而变化,与之成正比例.
(2)分析表2
①表2从理论上证明了对表1的分析的结果
②矩形推拉窗的活动扇的通风面积A和拉开长度成正比(高为定值)
③从实际中猜想,或由经验得出的结论,再由理论上去验证,再应用于实际,这是我们数学解决问题的常用方法之一.是由实际到抽象再由抽象到实际的辩证唯物主义思想
2.为定值时
读书P98—P99,填空P99空,自己试着分析数据,看能得到什么结论.
分析:这组数据的前提:面积A—定,、c之间的关系是反比关系.
(四)总结、扩展
由学生自己归纳总结型数量关系有关问题。可按P99—P100的4个问题进行归纳总结
八、布置作业
继续究讨型数量关系有关问题,在生活中寻找实例
九、板书设计
高中教案推荐:高中教案(小编推荐)
第14课西汉的兴盛
天津市河西区教研室高级教师隋清钧
(一)教学目的
1.掌握下列基础知识:
①西汉初休养生息政策,高祖至文景之治的政策措施。②汉武帝的大一统:经济措施;政治上“王国问题”的解决;罢黜百家,独尊儒术。
2.思想教育要求:
①通过讲述西汉初休养生息政策和汉的兴盛,进行人民群众是推动历史发展动力的教育。②认识汉武帝的大一统是西汉的鼎盛时期;经济的恢复发展是大一统的物质基础;国家统一,社会安定是强盛的重要原因。
3.培养学生能力:
①引导学生通过对“秦亡汉兴”的比较,培养运用基本观点分析问题的能力。②通过对汉武帝大一统的各项措施的学习,培养学生综合分析问题的能力。
教学重点:汉初休养生息政策及效果。
汉武帝的大一统及评价。
讲课提纲、板书设计可参照《教师教学用书》。
(二)教学过程
1.复习提问
秦始皇统一六国后,曾经赫赫一时的秦朝,不仅取得兼并战争的历史性胜利,而且建立了我国历史上第一个封建专制主义中央集权的统一帝国,不可谓不强大。但是,这个国家二世而亡,在中国历史上应该说是一个严重的历史教训。(问)秦朝迅速灭亡的原因是什么?(生:秦的暴政统治。赋税沉重、徭役频繁、刑法残酷。被秦末农民起义推翻。)对。秦亡的原因不是它的中央集权制度不好,问题在于秦朝的残暴统治。怎能不受到历史规律的惩罚呢?
2.导入新课
本来秦承战国长期战乱之后,实现统一,给经济的恢复和发展提供了良好机会和充分条件,理应与民休息。但在其短暂的统治时期内,并没有采取恢复生产以安定民生的任何积极措施,却相反,急政暴虐有增无已,民不聊生、生产荒芜、内外骚动,终于被秦末农民大起义所推翻。前202年,在大破坏之后的废墟上,建立了西汉王朝。今天学习第14课西汉的兴盛。(板书课题)
3.讲授新课
秦的“二世而亡”,成了西汉君臣们谋求长治久安的殷鉴。如何避免新王朝走秦朝短命的复辙,决定了汉初统治阶级采取的统治政策。(板书)
一、汉初休养生息政策(列提纲讲述)
(1)原因:什么是“休养生息”?西汉初统治者为什么要采取这种政策呢?(读注释、议论、教师归纳)①西汉初,所面临的严峻局面是经济萧条,国家贫困。课文中小字,就是描绘西汉刚建立时社会凋敝的历史画面。从天子到百姓,都被残破的社会经济困扰着,“天子不能具钧驷”,将相只能乘牛车,“民失作业而大饥馑,凡米石五千,人相食,死者过半”,到处是一片荒凉景象。汉初君臣只有采取除秦苛法,与民休息,才能使社会的经济得到恢复,才能保证剥削来源和长治久安。否则社会不会安定。②汉初统治者吸取秦亡的教训。让同学读一下汉高祖与大臣陆贾一段很有趣的对话的那段小字。(略)汉高祖虽文化修养不高,但能够明达地采纳臣下的建议,实行宽刑薄赋,文武并用的统治政策。他还命陆贾总结秦何以失天下,汉何以得天下及古代得失成败的历史经验,实在是个英明的决定。汉初统治集团,以皇帝为首,这样重视总结历史经验,接受历史上兴衰的教训,推行顺乎民心的轻徭薄赋政策,这对汉初制定和贯彻休养生息的基本国策,产生了重大影响。
(2)汉高祖时措施面对汉初大量人口死亡流散,土地荒芜的社会景象,汉高祖接连下令,制定休养生息政策。(可让学生逐句理解课文)①遣散士兵回家。让士兵复员生产,免除若干年徭役;②凡战时逃亡民众,回乡后恢复原有的爵位田宅。(这里既包括流亡农民,也有地主);③因饥荒自卖为奴婢者,释放为平民;④减轻田租,十五而税一。这些政策的实施,一则有利于恢复封建统治秩序;二则有利于农民得到一部分土地和时间,安定地从事农业生产。由于汉高祖采取上述积极措施,其后又经惠帝、吕后两朝,经济开始缓慢地恢复。到文景之世,社会经济全面回升,出现了文景之治。
(3)文景之治汉文帝刘恒是汉初一位有政治才能和治国方略,很有作为的皇帝。即位时23岁,高祖之子,他在位23年间,继续推行休养生息政策。主要措施有:①进一步减轻赋税和徭役。曾连续12年全免田租,又把每年服徭役改为三年一次。②减轻刑罚,废除肉刑。什么是肉刑?(可读注释)如墨劓等刑罚都是从奴隶制时代沿袭下来的刑法,有些酷刑往往造成人体的残废。文帝废除肉刑还有一段“缇萦救父”的故事。文帝12年时,齐太仓令、名医淳于意有罪当刑,其少女缇萦上书汉文帝,指出肉刑太残酷,“刑者不可复属”,虽想改过自新也不可能了,“愿没入官婢、以赎父罪”。文帝很受感动,下诏废除肉刑。③提倡节险。文帝治国有句名言“治人事天莫若啬”,指爱惜人力物力。他在位期间“宫室、苑囿、车骑、服御无所增益”;还因惜“百金,中人十家之产”而罢露台之作;还令后宫“衣不得曳地,帏帐不得文绣。”他终生谨慎从政,为历代学者称赞。文帝死后,景帝刘启即位,他继续执行与民休息的政策。他在位十几年间,突出的是:①颁布重农诏书:“农业是天下的根本”。(读课引文)表明政府非常重视农业这个根本,其意是“食者民之本,民者国之本”。衣食之物不是取之于“渔猎山伐”,而是完全来自于农业生产和经营。“务劝农桑,益种树,可得衣食物”,增加粮食产量,才能安定民生,经济好转才有保障。把田租再减轻为三十税一,鼓励农业生产。②重治贪赃枉法。文帝时一方面减轻笞刑、断狱从轻,狱事简省。另一方面加强吏治,严惩贪官污吏,规定贪污受贿和为官经商都要从严惩处。所以,汉初官场比较廉明。
什么是“文景之治”?看课文83页的一段评述,可概括为:轻徭薄赋,重视农桑,法纪较为严明,社会较为安定,经济出现繁荣局面。
为什么汉初几十年里能出现“文景之治”这样的社会局面呢?(学生议论)由于汉初统治者面对社会经济残破的局面,接受秦暴政而亡的教训,把休养生息作为立国兴邦的基本国策。从高祖到文景之治的实践是成功的,说明:一方面在于政策的制定是正确的;一方面还在于它能得到认真的贯彻,尤其在于这种贯彻的连续性。尽管汉初统治阶级内部纷争相当复杂,外有匈奴之扰的威胁,但是作为与民休息的基本国策,连续几代沿袭不变,这对于汉初经济的恢复无疑是十分重要的。
汉初的政治体制基本沿袭秦制,但在中央集权制度下,又恢复了秦代已废除的分封制,采用郡县与封国并行的体制。早在楚汉战争时期,刘邦为了网罗各股军事力量,与楚军争夺王位,曾分封了一批异姓王,他们在汉军大旗之下,使刘邦终成帝业。其后,他认为异姓王终不可信,而仅能利用。因此他成帝以后,先后以种种借口除掉异姓王,同时又分封刘氏子侄为同姓王,并与群臣刑白马之盟,立下“非刘氏不王”的誓约,作为巩固西汉中央政权的辅助手段。分封在汉初曾发挥过一定的积极作用,但是后来由于封国特权很大,势力膨胀,中央集权与王国分权的矛盾日趋尖锐。终于酿成了西汉统治阶级内部的叛乱。(板书七国之乱)
二、七国之乱
(1)王国势力的膨胀(背景)(问)封国势力为什么发展成为与中央集权对抗的独立王国呢?(生:略)①封地十分之大。②政治权力极大。③自主财经营利。王国可收取口赋田租,山川园池市肆租税之入,经营冶铁铸钱之利。④拥兵自重,组织和发展自己的独立武装,对抗朝廷。王国势力的膨胀,构成了对西汉中央政府的严重威胁,统治阶级内部的一场叛乱与平叛的斗争已不可避免。
(2)晁错的建议棗削藩面对诸侯坐大,威胁西汉中央,最先发出警告的是文帝时的政治家贾谊,他建议文帝“众建诸侯而少其力”,但文帝并没有解决这棘手的问题,景帝即位后,御史大夫晁错又提出整肃关东同姓王国的问题。当时吴王刘濞和楚王刘戊势力最强,又都是景帝长辈,早就蓄谋叛乱。晁错看出诸侯反已露,危在旦夕,向景帝提出著名的“削藩策”,主张逐步“削其枝郡”,归中央直接统辖。景帝采纳了他的建议,下诏削藩。先后削夺赵、楚等王国的一些郡县,引起王国震恐。前154年,又下令削吴王刘濞两郡时,爆发了吴楚七国联合的起兵叛乱。史称“七国之乱”。(七国也看注释,但不作要求”
(3)“七国之乱”及平定叛乱前154年,吴王刘濞串通其他诸侯王,以“诛晁错,清君侧”为名,七国起兵叛乱。吴楚七国号称50万大军,气势很凶。20多万人西征长安。
如何对待吴楚之乱,朝廷内部展开了激烈斗争。晁错力主武力镇压,建议景帝亲征,并积极筹划军需供应。景帝起初采纳晁错削藩之策,为的是巩固刘氏江山。但是,一旦发生吴楚七国之乱,又下不了台,不肯担当政治责任,竟听信谗言,想以牺牲忠良,换取和平,仓猝将身着朝服的心腹、他的老师晁错绑至东市腰斩,以为七国之乱即可平息。殊不知吴楚反而更加凶恶地向中央进攻。景帝这才决心讨代叛乱,派周亚夫任大将率军迎击。一面断吴军粮道,一面向吴军发动总攻,三个月内消灭了吴楚等国的叛军。由于吴楚七国叛乱,破坏了社会安定局面,不利于社会经济的发展,因而很不得人心,所以很快就失败。景帝抓住平叛胜利的有利时机,着手解决王国问题。颁布法令,剥夺诸侯王的治民权,令其“不与政事”,任免官吏须由朝廷;财政上取消“诸侯皆赋”,“唯得衣食租税”。从此,诸侯王的政治经济实力被大大削弱,对于西汉巩固国家统一,加强中央集权,意义十分重大。到武帝时,王国问题从根本上解决。
三、汉武帝的大一统(板书)
西汉从高祖创建,历经几代人共60多年的努力,到一代雄主汉武帝时,他继承文景之治带来的富强国势和安定政局,使西汉进入鼎盛时期。武帝即位时,西汉已相当富庶,史书上描述“非遇水旱,则民人给家足,都鄙廪庾尽满,而库府余财。京师之钱累百钜万,贯朽而不可校;太仓之粟陈陈相因,充溢露积于外,腐败不可食。众庶街巷有马,阡陌之间成群。”(引导学生读84页一段同样内容的小字)这与西汉初所描绘的那幅一片凄凉景象的历史画面相比,是多么鲜明的对照啊!人口已有3000多万,到西汉末年已近6000万,达到我国封建社会前期人口的最高峰。
汉武帝刘彻是历史上一位具有雄才大略的皇帝。(看84页画像)在位53年(前140年椙—87年),他的文冶武功促使西汉在经济、政治、思想文化方面出现大一统的局面,封建中央集权统治大大加强。他是采取哪些措施促进和巩固了大一统局面的呢?(板书标题,逐项讲述)
(1)财政经济的新措施①统一铸“五铢钱”。汉初的币制极为混乱,对国家的财政管理很不便,为解决这个问题,景帝时曾禁止私人铸钱。汉武帝时,宣布禁止民间及各郡国铸钱,把铸币权收归中央,由国家统一铸造新币“五铢钱”(重3.33克,看84页图)作为法定货币通行,将各种旧币全部销毁。从此钱币归于统一,克服了混乱现象,有利于商品交换和稳定经济,也大大加强了皇权。②盐铁官营。盐和铁都是人民日常生活和生产中所必需的。汉代煮盐和冶铁业是工商业中资金最大,利润最高的重要部门。而富商把持盐铁业,投机倒把,大发横材,而且往往招募流亡,聚集成百上千人,对社会治安也很有妨害。因此,汉武帝下令把盐铁业收归国家专营,由国家在各地设盐官、铁官管理,垄断经营生产和销售,增加了封建国家的财政收入,从根本上消弭了地方封国的财经实力,维护了中央集权制度。但这种抑商政策,在中国的商品经济发展史上是一件大事,对后世商品经济的正常发展,产生的消极作用很大。
(2)“王国问题”的解决汉景帝平定七国之乱后,王国势力普遍削弱,其政治地位下降,经济实力削弱。但是诸侯王国分权势力和中央集权的矛盾并未解决,大的封国“连城数十,地方千里”,仍是中央集权国家的隐患。
汉武帝时,为实现“一统乎天子”,进一步“强干弱枝”,解决王国问题,主要实行了:(板书)①推恩削藩。武帝采纳了主父偃的建议,颁布“推恩令”,规定诸侯王除嫡长子继承王位外,其他子第可在王国中封侯。天子使诸侯得“推恩”,于是诸王国封地亦初分割,“大国不过十余城,小侯不过数十里”,王国的实力更削弱了。②酹金夺候。武帝又以祭宗庙时王侯贡献的酹金少或成色不佳为理由,多次削夺爵位,废除了大批王国和侯国,领地大都归中央政府管辖。从而解决了中央集权与地方分权的矛盾,使西汉的封建中央集权统治大大加强。
(3)改革仕进,选拔人才汉武帝的文治武功,在我国历史上之所以占有重要地位,与他重视人才,破格录用人才很有关系。秦末汉初,经过战争洗礼培养出一大批优秀人才,多布衣将相,武力功臣。汉高祖晚年时,已认识到在政府官员中增加“贤者智能”的必要,下诏求贤。到汉武帝时,汉初的功臣已基本退出历史舞台,选用新人接班更具有紧迫感。为适应专制主义中央集权封建国家统治的需要,逐步建立和发展了新的选拔人才的仕进制度。武帝时,采用推荐和自荐人才的制度。所谓“察举”,就是察廉举荐之意。每年一次岁举,地方要向中央举存人才;有人数的限定,选官比较严格。凡推举之人不当者,地方官要承担责任。在这种制度刺激下,读书人竞相讲求孝行、廉洁,社会上逐步形成一种注重名节的风气。汉代确实出现了一批名臣武将、贤良能直言者。为武帝献推恩令的主父偃,就是被推荐的人才。他出身贫寒,长期怀才不遇,“游学四十余年,身不得遂,亲不以为子,昆弟不收,宾客弃我。”后来到长安,向武帝献策,受到朝奏暮召入见的殊遇。“所言九事,八事为律令,一事谏伐匈奴”,都是争时务之言,其才识得到武帝的赏识,先拜郎中,后他又数上疏言事,“岁中四迁”,由皇帝侍从官,到官居要职中大夫,主掌议论。又如出身低微的朱买臣、公主家奴卫青等都曾受到武帝提拔重用,成为西汉名臣武将。显然,武帝时重视选拔重用人才,对加强封建集权的统治起了积极作用。人才辈出,不仅大大促进了当时政治、经济的发展,而且也促进了思想、学术、文化的发展。
(4)罢黜百家,独尊儒术汉初承秦之敝,百废待举,决定了统治者推行休养生息政策。“平定四海,亦末皇庠序之事也。”当时还没有顾得上兴办文化教育。随着西汉经济的发展繁荣,中央集权的加强,大一统局面的形成,适应封建统治现实的需要,加强政治思想统一和对文化教育的专制统治,更为重要。
汉武帝采纳了汉代名儒董仲舒的建议,“罢黜百家,独尊儒术”(看85页画像),主要采取了以下两方面的措施:①确定以封建统治所需要的政治学说,把儒家思想作为整个思想学术界的指导思想,其他学派的思想都受到排斥。“诸不在六艺之科、孔子之术者,皆绝道,勿使并进。”这种唯儒独尊的政治思想统治格局,在封建社会中一直延续下来。②大力推行儒家教育。用设立学校,推行教化,来扩大儒家思想的影响,董仲舒认为:“凡以教化不立,而民不正也。……治天下,莫不以教化为大务。立太学以教于国,设庠序以化于邑。”在长安兴办太学(看86页插图)。郡国乡邑也要办各级地方的学校,把儒家《五经》列为教学内容。设五经博士为教官,招收博士弟子入学,这样就扩大了儒学的社会基础。这标志着把教书育人与选拔人才相结合,使儒家政治思想的原则得到基本的贯彻,对后世产生了极深远的影响。
怎样对“罢黜百家,独尊儒术”做出历史的评价呢?(学生议论:略)从秦始皇的“焚书坑儒”到汉武帝的“独尊儒术”,从这两个历史事件中,可以观察到秦汉时期社会政治的重大变化和独尊儒术的历史的必然性。秦始皇对待思想文化采取简单粗暴的政策,结果并未能巩固统治,反而加速了秦朝的灭亡。汉武帝从秦亡和汉初七国之乱的历史教训中,认识到从意识形态方面巩固中央集权,实现大一统,必须罢黜百家,独尊儒术,完全是出于现实的需要,对加强中央集权和巩固国家的统一,在历史上是起了进步作用的。但是儒家思想独尊的局面,禁锢了人们的思想。
汉武帝时,就是采取了上述措施,在经济、政治和思想文化几方面出现了大一统局面。中央集权统治的加强、西汉的强盛又为武帝的“武功”,开拓疆域,巩固发展强大的帝国奠定了坚实的基础。
4.巩固小结
“西汉的强盛”,我们主要学习了两个重点。一是西汉初年为什么要实行休养生息的政策?从汉高祖到文景之治,政策的连续贯彻,说明汉初六七十年间为经济的恢复和发展,提供了良好的条件。二是汉武帝时采取了哪些措施促进和巩固了大一统局面?采取了适合当时国情的有效措施,取得成效,使西汉进入鼎盛时期。历史的学习,可使我们从中受到许多有益的启示。
5.作业
①回答82页、86页课本上的问答题。
②完成课后练习题。
(三)教法建议
“七国之乱”一目全为小字,各地学校可根据自身灵活处理,教案仅供参考。