你的位置:
  • 范文大全
  • >教案
  • >初中教案
  • >导航
  • >经典初中教案数学教案-相交线对顶角
  • 经典初中教案数学教案-相交线对顶角

    发表时间:2022-01-22

    教学建议

    1.知识结构

    2.重点和难点分析

    (1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.

    (2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.

    3.教法建议

    (1)因为本节是由相交线的模型——用钉子固定的两根木条来引入的.所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.

    (2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.

    (3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.

    教学设计示例

    一、素质教育目标

    (一)知识教学点

    1.理解对顶角和邻补角的概念,能在图形中辨认.

    2.掌握对顶角相等的性质和它的推证过程.

    3.会用对顶角的性质进行有关的推理和计算.

    (二)能力训练点

    1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

    2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.

    (三)德育渗透点

    从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.

    (四)美育渗透点

    通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.

    二、学法引导

    1.教师教法:教具直观演示法启发引导、尝试研讨.

    2.学生学法:动手动脑、积极参与、认真研讨、学会概括.

    三、重点、难点及解决办法

    (一)重点

    (二)难点

    在较复杂的图形中准确辨认对顶角和邻补角.

    (三)疑点

    对顶角、邻补角的图形识别.

    (四)解决办法

    强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.

    六、师生互动活动设计

    1.通过实例创设情境,引导学生进入课题.

    2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.

    3.通过学生研讨、练习巩固完成性质的讲解.

    4.通过学生总结完成课堂小结.

    5.通过随堂练习,检测学生学习情况.

    七、教学步骤

    (一)明确目标

    能在图形中正确辨认对顶角和邻补角,理解其概念,掌握其性质,并运用其进行推理计算.

    (二)整体感知

    通过对较复杂图形的认识和学习,逐步加深几何知识,培养学生逻辑思维能力和逻辑推理、表达能力.

    (三)教学过程

    创设情境,引入课题

    投影打出本章的章前图(投影片1),然后引导学生观察,并回答问题.

    学生活动:口答哪些道路是交错的,哪些道路是平行的.

    教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题:

    【板书】第二章相交线、平行线

    【教法说明】以立交桥为实例引出本章内容,目的是①通过实例,让学生了解相交线、平行线是我们日常生活中经常见到的;②通过画面,培养学生的空间想像能力;③通过画面,启发学生广泛地联想,让学生知道,相交线、平行线的概念是从实物中抽象出来的;④通过学生熟悉的事物,激发学生的学习兴趣.

    学生活动:请学生举出现实空间里相交线、平行线的一些实例.

    教师导入:相交线、平行线在日常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,从而引入本节课题.

    【板制】2.1相交线、对顶角

    探究新知,讲授新课

    教师演示:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.固定水条a,绕钉子转动b,可以看到,b的位置变化了,a、b所成的角a也随着变化.这说明两条直线相交的不同位置情况,与它们的交角大小有关.可以用它们所成的角来说明相对位置的各种情况.所以研究两条直线相交问题首先来研究两条直线相交得到的有公共顶点的四个角.这四个角都有一个公共顶点,其中有些有公共边,有些没有公共边,故我们把这些角分成两类:对顶角和邻补角.

    【教法说明】演示相交线的模型,目的是使学生领会研究相交线为什么要研究它们相交所成的角.

    1.对顶角和邻补角的概念

    学生活动:观察右图,同桌讨论if与Z3有什么特点,然后,举手回答,教师统一学生观点并板书.

    【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

    学生活动:让学生找一找右图中还有没有对顶角,如果有,是哪两个角?

    学生口答:∠2和∠4再也是对顶角.

    紧扣对顶角定义强调以下两点:

    (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

    (2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.

    反馈练习:投影显示(投影片2)

    下列各图中,∠l和∠2是对顶角吗?为什么?(射线OA是活动的)

    【教法说明】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象,最后一个图形为下面讲部补角做铺垫。

    学生活动:观察图2-l,∠1和∠2与对顶角相比,有什么相同点和不同点,从而得出邻补角的定义.

    【板书】∠l和∠2也是直线AB、CD相交得到的,它们不仅有一个公共顶点O,还有一条公共边OA,像这样的两个角叫做邻补角.

    学生活动:让学生找一找图2-1中还有没有其他邻补角,如果有,是哪些角.

    学生口答:∠1和∠4,∠2和∠3,∠3和∠4都是邻补角.

    【教法说明】把邻补角的概念与对顶角概念对比着讲解,便于掌握概念之间的联系与区别,加深对概念的理解.

    提出问题:如右图,∠1和∠2还是邻补角吗?为什么?【fANwEN.hAO86.cOm 好工具范文网】

    师:邻补角也可以看成是一条直线与端点在这条直线上的一条射线组成的两个角,由此可知,邻补角是有特殊位置关系的两个互补的角.右图这样的邻补角在图形中也是常见的.在这种情况下,只存在一对邻补角,而不存在对顶角,与两条直线相交所得的角不同.

    教师演示:图中射线OC固定在一个位置不动,把∠1和∠2拉开,并且保持角的大小不变,如右图(投影片3).

    提出问题:∠l和∠2的和是多少度?∠l和∠2还是邻补角吗?为什么?

    学生活动:观察图形的变换,回答教师提出的问题,同桌可相互讨论.

    【教法说明】此问题意在区别互为补角和互为邻补角的概念,演示活动投影片,有助于学生抓住概念的本质,比教师单纯地强调效果更好.

    2.对顶角的性质

    提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?

    学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.

    【教法说明】学生说出对顶角∠l=∠3后,启发学生再说出∠2=∠4,然后得出对顶角相等的性质.在学生理解推理思路的基础上,板书为几何符号推理的格式.对顶角的性质不难得出,放手让学生展开讨论,充分发挥学生的主动性,在活跃课堂气氛的同时,培养学生的创造思维能力

    【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

    ∴∠l=∠3(同角的补角相等).

    注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

    或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),

    ∴∠1=∠3(等量代换).

    【教法说明】推得“对顶角相等”这个结论的过程,是课本中初次出现的一步推理,使学生了解推理可以写成“∵……∴……”的形式,并且每一步都要有根据,也就是括号里填的理由.这种推理的格式以后还要逐步渗透和训练,现在不要求自己会写推理过程,只要求学生能看明白就可以了,为以后证明打好基础。

    尝试反馈,巩固练习

    投影显示(投影片4)

    【教法说明】本级统习是巩固对顶角和邻补角概念的,同时培养学生的识图能力.第1题是课本第59页练习第2题的变式,第2题是课本第59页练习第3题和“想一想”的综合.解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:

    为此,对顶角有2×3=6个,邻补角的对数为4×3=12个.第3、4题是有关的概念的综合训练,其中第4题意在区别互为补角和互为邻补角的概念.

    投影显示(投影片5)

    【教法说明】第1题是直接利用对顶角相等的性质得出,第2、3题是结合图形利用对顶角相等的性质,第4题是课本59负练习第4题,是两条直线相交的一种特殊情况,为下节课讲两直线互相垂直埋下伏笔.

    变式训练,培养能力

    投影显示(投影片6)

    学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

    解:∠3=∠1=40°(对顶角相等).

    ∠2=180°-40°=140°(邻补角定义).

    ∠4=∠2=140°(对顶角相等).

    【教法说明】例题一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象更深刻.

    学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.

    变式1:把∠l=40°变为∠2-∠1=40°

    变式2:把∠1=40°变为∠2是∠l的3倍

    变式3:把∠1=40°变为∠1:∠2=2:9

    变式4:把∠1=40°变为∠1=平角

    【教法说明】学生自编开放性的题目,一是活跃课堂气氛;二是培养学生的开放思维能力和逆向思维能力.变式1、2、3均可建立方程或方程组求解,几何中计算角度和线段长度等问题常借助代数方程来解决.

    (四)总结、扩展

    角的名称

    特征

    性质

    相同点

    不同点

    对顶角

    ①两条直线相交面成的角

    ②有一个公共顶点

    ③没有公共边

    对顶角相等

    都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

    对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。

    邻补角

    ①两条直线相交面成的角

    ②有一个公共顶点

    ③有一条公共边

    邻补角互补

    学生活动:表格中的结论均由学生自己口答填出.

    【教法说明】课堂小结以提问形式,由学生自己讨论,系统归纳总结,以便培养学生的概括表达能力.

    八、布置作业

    (一)必做题

    课本第69页习题2.1A组第2题.

    (二)思考题

    课本第70页习题2.1A组第4题

    【教法说明】作业紧紧围绕着对顶角、邻补角的概念及对顶角性质.思考题是对顶角性质的一个应用实例,结合图形可以看出,活动指针的读数,就是两直线相交成一个角的度数,培养学生应用数学的意识.

    (三)作业答案

    2.解:(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF.

    (2)∠AOC的邻补角是∠AOD和∠BOC,∠EOB的邻补角是∠AOE和∠BOF.

    (3)∠BOD=∠AOC=50°(对顶角相等),∠BOC=180°-50=130°(邻补角定义).

    4.应用对顶角相等的性质测量角.

    九、板书设计

    jK251.COm精选阅读

    数学教案-比例线初中教案精选


    教学建议

    知识结构

    重难点分析

    本节的重点是线段的比和比例线段的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

    本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

    教法建议

    1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

    2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

    3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

    4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

    5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

    教学设计示例1

    (第1课时)

    一、教学目标

    1.理解线段的比的概念.

    2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

    3.通过线段的比的有关计算,培养学习的计算能力.

    4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

    二、教学设计

    先学后做,启发引导

    三、重点及难点

    1.教学重点两条线段比的概念.

    2.教学难点正确理解两条线段的比及应用.

    四、课时安排

    1课时

    五、教具学具准备

    股影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    找学生回答小学学过的比、比的前项和后项的概念.

    (两个数相除又叫做两数的比,记作或a:b,其中a叫比的前项,b叫比的后项)

    【讲解新课】

    把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

    等.

    可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

    一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是,或写成,和数的比一样,a叫比的前项,b叫比的后项.

    关于两条线段比的概念,教学中要揭示它的实质,即表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

    就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

    (l)两条线段的比就是它们的长度的比.

    (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

    (3)两条线段的比值总是正数.(并不都是正数)

    (4)除了a=b之外,.与互为倒数.

    例1见教材P202.

    讲解完例1后:

    (l)提问学生AB是的多少倍,是AB的多少倍,以加深学生对线段比的逾义的理解.

    (2)给出:比例尺=,就例1的图上,若图距是8cm的两地,实际距离是多少?

    另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

    例2见教材P202.

    讲解完例2后:

    (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

    (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为.

    常识2:等腰直角三角形三边(从小到大)的比为1:1:.

    学生掌握了这些常识可有两点好处:

    ①知道例2中“”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

    【小结】

    1.两条线段比的概念以及应注意的问题.

    2.会求两条线段的比.

    七、布置作业

    教材P210中2、3.

    八、板书设计

    数学教案-比例线


    一、教学目标

    1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

    2.掌握比例基本性质和合分比性质.

    3.通过通过的应用,培养学习的计算能力.

    4.通过比例性质的教学,渗透转化思想.

    5.通过比例性质的教学,激发学生学习兴趣.

    二、教学设计

    先学后做,启发引导

    三、重点及难点

    1.教学重点比例性质及应用.

    2.教学难点正确理解成比例线段及应用.

    四、课时安排

    1课时

    五、教具学具准备

    股影仪、胶片、常用画图工具

    六、教学步骤

    【复习提问】

    1.什么是线段的比?

    2.已知这两条线段的比是吗,为什么?

    【讲解新课】

    1.比例线段:见教材P203页。

    如:见教材P203页图5-2。

    又如:

    即a、b、c、d是成比例线段。

    注:①已知问这四条线段成比例吗?

    (答:成比例。,这里与顺序无关)。

    ②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

    板书教材P203页比例线段的一些附属概念。

    2.比例的性质:

    (1)比例的基本性质:如果,那么。

    它的逆命题也成立,即:如果,那么。

    推论:如果,那么。

    反之亦然:如果,那么。

    ①基本性质证明了“比例式”和“等积式”是可以互化的。

    ②由,除可得到外,还可得到其它七个比例式。即由一个等积式,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。。再由等式的对称性写出另外四个比例式:。注意区别与联系。

    ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

    ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

    (2)合比性质:如果,那么

    证明:∵,∴即:

    同理可证:(找学生板演)

    (3)等比性质:如果

    那么

    证明:设;则

    等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

    例1(要求了解即可)

    (1)已知:,求证:。

    证明:∵,∴

    “通法”:∵,∴即

    (2)已知:,求证:。

    方法一:

    方法二:

    (1)÷(2)得:

    【小结】

    (1)比例线段的概念及附属概念。

    (2)比例的基本性质及其应用。

    八、布置作业

    (1)求

    ①②③

    (2)求下列各式中的x

    ①②③④

    九、板书设计

    比例线段(二)

    1.比例线段:

    教师板书定义

    ………

    比例线段的附属概念

    ………

    2.比例的性质

    (1)比例基本性质

    …………

    注意:(1)

    3.课堂练习

    数学教案-圆的比例线初中教案精选


    教学建议

    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

    难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

    2、教学建议

    本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

    (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

    (2)在教学中,引导学生“观察——猜想——证明——应用”等学习,教师组织下,以学生为主体开展教学活动.

    第1课时:相交弦定理

    教学目标:

    1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

    2.学会作两条已知线段的比例中项;

    3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

    4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

    教学重点:

    正确理解相交弦定理及其推论.

    教学难点:

    在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

    教学活动设计

    (一)设置学习情境

    1、图形变换:(利用电脑使AB与CD弦变动)

    ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

    ②进一步得出:△APC∽△DPB.

    ③如果将图形做些变换,去掉AC和BD,图中线段PA,PB,PC,PO之间的关系会发生变化吗?为什么?

    组织学生观察,并回答.

    2、证明:

    已知:弦AB和CD交于⊙O内一点P.

    求证:PAPB=PCPD.

    (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

    (证明略)

    (二)定理及推论

    1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.

    结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PAPB=PCPD.

    2、从一般到特殊,发现结论.

    对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互相垂直如图,AB是直径,并且AB⊥CD于P.

    提问:根据相交弦定理,能得到什么结论?

    指出:PC2=PAPB.

    请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

    推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

    3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PAPB.

    若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

    PC2=PAPB;AC2=APAB;CB2=BPAB

    (三)应用、反思

    例1已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

    引导学生根据题意列出方程并求出相应的解.

    例2已知:线段a,b.

    求作:线段c,使c2=ab.

    分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

    作法:口述作法.

    反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

    练习1如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

    变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是多少?

    将条件隐化,增加难度,提高学生学习兴趣

    练习2如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

    练习3如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC交⊙O于C.求证:PC2=PAPB

    引导学生分析:由APPB,联想到相交弦定理,于是想到延长CP交⊙O于D,于是有PCPD=PAPB.又根据条件OP⊥PC.易证得PC=PD问题得证.

    (四)小结

    知识:相交弦定理及其推论;

    能力:作图能力、发现问题的能力和解决问题的能力;

    思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

    (五)作业

    教材P132中9,10;P134中B组4(1).

    第2课时切割线定理

    教学目标:

    1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

    2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

    3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

    教学重点:

    理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

    教学难点:

    定理的灵活运用以及定理与推论问的内在联系是难点.

    教学活动设计

    (一)提出问题

    1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

    当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

    2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PAPB.

    3、证明:

    让学生根据图2写出已知、求证,并进行分析、证明猜想.

    分析:要证PT2=PAPB,可以证明,为此可证以PAPT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

    4、引导学生用语言表达上述结论.

    切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

    (二)切割线定理的推论

    1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

    观察图4,提出猜想:PAPB=PCPD.

    2、组织学生用多种方法证明:

    方法一:要证PAPB=PCPD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB.(如图4)

    方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P.因此△PAD∽△PCB.(如图5)

    方法三:引导学生再次观察图2,立即会发现.PT2=PAPB,同时PT2=PCPD,于是可以得出PAPB=PCPD.PAPB=PCPD

    推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

    (三)初步应用

    例1已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米,PO=10.9厘米,求⊙O的半径.

    分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

    (解略)教师示范解题.

    例2已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

    求证:AE=BF.

    分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC.因此它们的积相等,问题得证.

    学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=ACCD和BF2=BDDC等.

    巩固练习:P128练习1、2题

    (四)小结

    知识:切割线定理及推论;

    能力:结合具体图形时,应能写出正确的等积式;

    方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

    (五)作业教材P132中,11、12题.

    探究活动

    最佳射门位置

    国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

    分析与解如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

    故,又,

    OB=30.34+7.32=37.66.

    OP=(米).

    注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

    数学教案-平行线的性质初中教案精选


    一、教学目标

    1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.

    2.会用平行线的性质进行推理和计算.

    3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.

    4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.

    二、学法引导

    1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.

    2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.

    三、重点难点解决办法

    (一)重点

    平行线的性质公理及平行线性质定理的推导.

    (二)难点

    平行线性质与判定的区别及推导过程.

    (三)解决办法

    1.通过教师创设情境,学生积极思维,解决重点.

    2.通过学生自己推理及教师指导,解决难点.

    3.通过学生讨论,归纳小结.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、三角板、自制投影片.

    六、师生互动活动设计

    1.通过引例创设情境,引入课题.

    2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.

    3.通过学生讨论,完成课堂小结.

    七、教学步骤

    (一)明确目标

    掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.

    (二)整体感知

    以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.

    (三)教学过程

    创设情境,复习导入

    师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).

    1.如图1,

    (1)∵(已知),∴().

    (2)∵(已知),∴().

    (3)∵(已知),∴().

    2.如图2,(1)已知,则与有什么关系?为什么?

    (2)已知,则与有什么关系?为什么?

    图2图3

    3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?

    学生活动:学生口答第1、2题.

    师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:

    [板书]2.6平行线的性质

    【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.

    探究新知,讲授新课

    师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?

    学生活动:学生在练习本上画图并思考.

    学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.

    【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.

    学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.

    提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?

    学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.

    根据学生的回答,教师肯定结论.

    师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.

    [板书]两条平行线被第三条直线所截,同位角相等.

    简单说成:两直线平行,同位角相等.

    【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.

    提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?

    学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.

    师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.

    学生活动:学生们思考,并相互讨论后,有的同学举手回答.

    【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.

    教师根据学生回答,给予肯定或指正的同时板书.

    [板书]∵(已知),∴(两条直线平行,同位角相等).

    ∵(对项角相等),∴(等量代换).

    师:由此我们又得到了平行线有怎样的性质呢?

    学生活动:同学们积极举手回答问题.

    教师根据学生叙述,板书:

    [板书]两条平行经被第三条直线所截,内错角相等.

    简单说成:西直线平行,内错角相等.

    师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.

    师生共同订正推导过程和第三条性质,形成正确板书.

    [板书]∵(已知),∴(两直线平行,同位角相等).

    ∵(邻补角定义),

    ∴(等量代换).

    即:两条平行线被第三条直线所截,同旁内角互补.

    简单说成,两直线平行,同旁内角互补.

    师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)

    尝试反馈,巩固练习

    师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?

    学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):

    如图7,已知平行线、被直线所截:

    (1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?

    【教法说明】练习目的是巩固平行线的三条性质.

    变式训练,培养能力

    完成练习(出示投影片3).

    如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?

    学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.

    【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.

    [板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.

    变式练习(出示投影片4)

    1.如图9,已知直线经过点,,,.

    (1)等于多少度?为什么?

    (2)等于多少度?为什么?

    (3)、各等于多少度?

    2.如图10,、、、在一条直线上,.

    (1)时,、各等于多少度?为什么?

    (2)时,、各等于多少度?为什么?

    学生活动:学生独立完成,把理由写成推理格式.

    【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.

    (四)总结、扩展

    (出示投影片1第1题和投影片5)完成并比较.

    如图11,

    (1)∵(已知),

    ∴().

    (2)∵(已知),

    ∴().

    (3)∵(已知),

    ∴().

    学生活动:学生回答上述题目的同时,进行观察比较.

    师:它们有什么不同,同学们可以相互讨论一下.

    (出示投影6)

    学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.

    【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.

    巩固练习(出示投影片7)

    1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗?为什么?

    (2)是多少度?为什么?

    学生活动:学生思考、口答.

    【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.

    八、布置作业

    (一)必做题

    课本第99~100页A组第11、12题.

    (二)选做题

    课本第101页B组第2、3题.

    作业答案

    A组11.(1)两直线平行,内错角相等.

    (2)同位角相等,两直线平行.两直线平行,同旁内角互补.

    (3)两直线平行,同位角相等.对顶角相等.

    12.(1)∵(已知),∴(内错角相等,两直线平行).

    (2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).

    B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).

    ∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.

    3.平行线的判定与平行线的性质,它们的题设和结论正好相反.

    经典初中教案数学教案-圆


    1、教材分析

    (1)知识结构

    (2)重点、难点分析

    重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.

    难点:①圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.

    2、教法建议

    本节内容需要4课时

    第一课时:圆的定义和点和圆的位置关系

    (1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));

    (2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.

    第二课时:圆的有关概念

    (1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;

    (2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.

    第三、四课时:点的轨迹

    条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.

    第一课时:圆(一)

    教学目标:

    1、理解圆的描述性定义,了解用集合的观点对圆的定义;

    2、理解点和圆的位置关系和确定圆的条件;

    3、培养学生通过动手实践发现问题的能力;

    4、渗透“观察→分析→归纳→概括”的数学思想方法.

    教学重点:点和圆的关系

    教学难点:以点的集合定义圆所具备的两个条件教学方法:自主探讨式教学过程设计(总框架):

    一、创设情境,开展学习活动

    1、让学生画圆、描述、交流,得出圆的第一定义:

    定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.

    2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.

    从旧知识中发现新问题

    观察:

    共性:这些点到O点的距离相等

    想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?

    (1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);

    (2)到定点距离等于定长的点都在圆上.

    定义2:圆是到定点距离等于定长的点的集合.

    3、点和圆的位置关系

    问题三:点和圆的位置关系怎样?(学生自主完成得出结论)

    如果圆的半径为r,点到圆心的距离为d,则:

    点在圆上d=r;

    点在圆内d

    点在圆外d>r.

    “数”“形”

    二、例题分析,变式练习

    练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.

    例1求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.

    已知(略)

    求证(略)

    分析:四边形ABCD是矩形

    A=OC,OB=OD;AC=BDOA=OC=OB=OD要证A、B、C、D4个点在以O为圆心的圆上证明:∵四边形ABCD是矩形∴OA=OC,OB=OD;AC=BD∴OA=OC=OB=OD∴A、B、C、D4个点在以O为圆心,OA为半径的圆上.符号的应用(要求学生了解)证明:四边形ABCD是矩形OA=OC=OB=ODA、B、C、D4个点在以O为圆心,OA为半径的圆上.小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)练习1求证:菱形各边的中点在同一个圆上.(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)练习2设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点A的距离等于2cm的点的集合;(2)和点B的距离等于2cm的点的集合;(3)和点A,B的距离都等于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)三、课堂小结问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;(3)注重对数学能力的培养四、作业82页2、3、4.第二课时:圆(二)教学目标1、使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判断真假命题。2、逐步培养学生阅读教材、亲自动手实践,总结出新概念的能力;进一步指导学生观察、比较、分析、概括知识的能力。3、通过动手、动脑的全过程,调动学生主动学习的积极性,使学生从积极主动获得知识。教学重点、难点和疑点1、重点:理解圆的有关概念.2、难点:对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解.3、疑点:学生容易把长度相等的两条弧看成是等弧。让学生阅读教材、理解、交流和与教师对话交流中排除疑难。教学过程设计:(一)阅读、理解重点概念:1、弦:连结圆上任意两点的线段叫做弦.2、直径:经过圆心的弦是直径.3、圆弧:圆上任意两点间的部分叫做圆弧.简称弧.半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;优弧:大于半圆的弧叫优弧;劣弧:小于半圆的弧叫做劣弧.4、弓形:由弦及其所对的弧组成的图形叫做弓形.5、同心圆:即圆心相同,半径不相等的两个圆叫做同心圆.6、等圆:能够重合的两个圆叫做等圆.7、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(二)小组交流、师生对话问题:1、一个圆有多少条弦?最长的弦是什么?2、弧分为哪几种?怎样表示?3、弓形与弦有什么区别?在一个圆中一条弦能得到几个弓形?4、在等圆、等弧中,“互相重合”是什么含义?(通过问题,使学生与学生,学生与老师进行交流、学习,加深对概念的理解,排除疑难)(三)概念辨析:判断题目:(1)直径是弦()(2)弦是直径()(3)半圆是弧()(4)弧是半圆()(5)长度相等的两段弧是等弧()(6)等弧的长度相等()(7)两个劣弧之和等于半圆()(8)半径相等的两个半圆是等弧()(主要理解以下概念:(1)弦与直径;(2)弧与半圆;(3)同心圆、等圆指两个图形;(4)等圆、等弧是互相重合得到,等弧的条件作用.)(四)应用、练习例1、已知:如图,AB、CB为⊙O的两条弦,试写出图中的所有弧.解:一共有6条弧.、、、、、.(目的:让学生会表示弧,并加深理解优弧和劣弧的概念)例2、已知:如图,在⊙O中,AB、CD为直径.求证:AD∥BC.(由学生分析,学生写出证明过程,学生纠正存在问题.锻炼学生动口、动脑、动手实践能力,调动学生主动学习的积极性,使学生从积极主动获得知识.)巩固练习:教材P66练习中2题(学生自己完成).(五)小结教师引导学生自己做出总结:1、本节所学似的知识点;2、概念理解:①弦与直径;②弧与半圆;③同心圆、等圆指两个图形;④等圆和等弧.3、弧的表示方法.(六)作业教材P66练习中3题,P82习题l(3)、(4).第三、四课时圆(三)——点的轨迹教学目标1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;2、培养学生从形象思维向抽象思维的过渡;3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。重点、难点1、重点:对圆点的轨迹的认识。2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。教学活动设计(在老师与学生的交流对话中完成教学目标)(一)创设学习情境1、对“圆”的形成观察——理解——引出轨迹的概念(使学生在老师的引导下从感性知识到理性知识)观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)理解:圆上的点具有两个性质:(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);(2)到定点距离等于定长的的点都在圆上;(结合下图)引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合.因此“到定点距离等于定长的点的轨迹”是圆.轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆”。(研究圆是轨迹概念的切入口、基础和关键)(二)类比、研究1(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;(三)巩固概念练习:画图说明满足下列条件的点的轨迹:(1)到定点A的距离等于3cm的点的轨迹;(2)到∠AOC的两边距离相等的点的轨迹;(3)经过已知点A、B的圆O,圆心O的轨迹.(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)(四)类比、研究2(这是第二次“类比”,目的:使学生的知识和能力螺旋上升.这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.(五)巩固训练练习题1:画图说明满足下面条件的点的轨迹:1.到直线l的距离等于2cm的点的轨迹;2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)练习题2:判断题1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.()2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的圆.()3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线.()4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.()(这组练习题的目的,训练学生思维的准确性和语言表达的正确性.题目由学生自主完成、交流、反思)(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)(六)理解、小结(1)轨迹的定义两层意思;(2)常见的五种轨迹。(七)作业教材P82习题2、6.探究活动爱尔特希问题在平面上有四个点,任意三点都可以构成等腰三角形,你能找到这样的四点吗?分析与解:开始自然是尝试、探索,主要应以如何构造出这样的点来考虑.最容易想到的是,使一个点到另三个点等距离,换句话说,以一个点为圆心,作一个圆,其他三个点在此圆上寻找,只要使这圆上的三点构成等腰三角形即可,于是得到如图中的上面两种形式.其次,取边长都相等的四边形,即为菱形的四个顶点(见图中第3个图).最后,取梯形ABCD,其中AB=BC=CD,且AD=BD=AC,但是这样苛刻条件的梯形存在吗?实际上,只要将任一圆周5等分,取其中任意四点即可(见图中的第4个图).综上所述,符合题意的四点有且仅有三种构形:①任意等腰三角形的三个顶点及其外接圆圆心(即外心);②任意菱形的4个顶点;③任意正五边形的其中4个顶点.上述问题是大数学家爱尔特希(P.Erdos)提出的:“在平面内有n个点,其中任意三点都能构成等腰三角形”中n=4的情形.当n=3、4、5、6时,爱尔特希问题都有解.已经证明,时,问题无解.

    数学教案-平行线及平行公理初中教案精选


    教学建议

    1、教材分析

    (1)知识结构

    本节从实例中概括出平行线的概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论.

    (2)重点、难点分析

    本节的重点是:平行公理及其推论.承认“经过直线外一点有且只有一条直线与这条直线平行”的几何是欧氏几何,否则是非欧几何.由此可见,平行公理在几何中的地位十分重要.在教学时,学生可以从用直尺和三角板画平行线的画图过程中,理解平行公理.特别是真正地体会到公理中的“有且只有”的意义.

    本节难点是:理解平行线的概念以及由平行公理导出其推论的过程定义中的“在同一平面内”的这个前提,是为了区别立体几何中异面直线的情况.教学时只要学生能意识到,空间的直线还存在另一种不相交的情形的,即异面直线.

    另外,从平行公理推导出其推论的过程,渗透了反证法的思想.初中学生难于理解,教材对反证法既不作要求,也不必提出反证法这个词,只要把道理说明白即可.

    2、教法建议

    (1)概念的引入:学生从教师创设的情景中,可以直观地认识平行线.从实例中,体会平行线在现实中是存在的,并且有它固有的属性,因此很有必要认真地研究它.当然,我们首先要能深刻地理解它的定义.

    (2)分析概念:教师可以举一组图形,帮助学生理解定义中强调的“在同一平面内”这个前提条件.初步形成

    (3)掌握平行线的画法:学生刚开始接触几何,为降低难度,适应学生的发展,提高学生的学习兴趣,作图时不要求学生写出已知,求做,证明等步骤,只要保留作图痕迹.通过作图的教学使学生能准确而迅速地画出几何图形,为今后的几何学习打下良好的基础.

    (4)平行公理及其推论

    在学生画图的过程中,教师可以提出问题,过直线外一点有几条直线可以与已知直线平行呢?学生在动手操作后,可以体验到公理的客观存在性.并且可以让有数学素养的同学,尝试说明平行公理推论的正确性,通过说理,体会数学的严谨性与逻辑性.

    教学设计示例

    一、教学目标

    1.了解平行线的概念,理解学过的描述图形形状和位置关系的语句.

    2.掌握平行公理及推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;会用学过的几何语句描述简单的图形和根据语句画图.

    3.通过画平行线和按几何语句画图的题目练习,培养学生画图能力.

    4.通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力.

    二、学法引导

    1.教师教法:尝试法、引导法、发现法.

    2.学生学法:在教师的引导下,尝试发现新知,造就成就感.

    三、重点、难点及解决办法

    (-)重点

    平行公理及推论.

    (二)难点

    平行线概念的理解.

    (三)解决办法

    通过引导学生尝试发现新知、练习巩固的方法来解决.

    四、教具学具准备

    投影仪、三角板、自制胶片.

    五、师生互动活动设计

    1.通过投影片和适当问题创设情境,引入新课.

    2.通过教师引导,学生积极思维,进行反馈练习,完成新授.

    3.学生自己完成本课小结.

    六、教学步骤

    (-)明确目标

    掌握平行公理及其推论的应用,能画出平行线,会用几何语句描述图形的画法,培养学生的逻辑推理能力.

    (二)整体感知

    以情境引出课题,以生活知识和已有的知识为基础,引导学生学习平行公理及其推论,并以变式训练强化和巩固新知.

    (三)教学过程

    创设情境,引出课题

    师:前面我们学习了两条直线相交的情形,下面清同学们看投影片.观察投影片中的铁路桥梁以及立在路边的三根电线杆,再请同学们观察黑板相对的两条边和横格本中两条横线,若把它们向两方延长,看成直线,它们还是相交直线吗?

    学生齐声答:不是.

    师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容.(板书课题)

    [板书]24.平行线及平行公理

    【教法说明】通过具体的实物和实物的图形,使学生建立起不相交的感性认识,同时在头脑中初步形成平行线的图形.

    探究新知,讲授新课

    师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

    学生:窗户相对的棱,桌面的对边,书的对边……

    师:我们把它们向两方无限延伸,得到的直线总也不会相交.我们把这样的直线叫做平行线.

    [板书]在同一平面内,不相交的两条直线叫做平行线.

    【教法说明】初中几何必须重视几何概念的直观性,所以让学生多观察实物形状,在形成了感性认识的基础上,认识数学名称,让学生从中感受到数学的实在性,减少抽象性.

    教师出示投影片(课本第74页图2–17).

    师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

    学生:不会相交.

    师:那么它们是平行线吗?

    学生:不是.

    师:也就是说平行线的定义必须有怎样的前提条件?

    学生:在同一平面内.

    师:谁能说为什么要有这个前提条件?

    学生:因为空间里,不相交的直线不一定平行.

    【教法说明】通过教师的引导,学生观察分析,自己得出结论,从而使学生切实体会到平行线的“在同一平面内”这个前提条件的重要性.

    教师在黑板上给出课本第73页图2–16.

    讲解:平行用符号“”表示,如图直线与是平行线记作“”(或)读作“平行于”(或平行于)也就是说平行是相互的.

    【教法说明】这里教师不必赘述,让学生清楚平行线符号表示、读法和记法就可以了,对于平行线的图形经常会使用变式图形,不要总是横平竖直的,以防形成思维定式.

    师:请同学们思考,在同一平面内任意画两条不同的直线,它们的位置关系只能有几种情况,试画一画,同桌的可以讨论.

    学生:两种.相交和平行.

    由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种.

    尝试反馈,巩固练习(出示投影)

    1.判断正误

    (1)两条不相交的直线叫做平行线.()

    (2)有且只有一个公共点的两直线是相交直线.()

    (3)在同一平面内,不相交的两条直线一定平行.()

    (4)一个平面内的两条直线,必把这个平面分为四部分.()

    2.下列说法中正确的是()

    A.在同一平面内,两条直线的位置关系有相交、垂直、平行三种.

    B.在同一平面内,不垂直的两直线必平行.

    C.在同一平面内,不平行的两直线必垂直.

    D.在同一平面内,不相交的两直线一定不垂直.

    学生活动:学生回答,并简要说明理由.

    【教法说明】这组练习旨在巩固学生掌握平行线定义及平面内两直线的位置关系,通过判断(1)、(3)题让学生进一步体会平行线的“在同一平面内”的前提条件,通过判断(2)、(4)题和选择题使学生对两直线位置关系,尤其是对垂直是相交的一种特殊情况有更深层的理解.

    师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示).

    已知直线和外一点,过点画直线,使.

    师:请根据语句,自己画出已知图形.

    学生活动:学生在练习本上画出图形.

    师:下面请你们按要求画出直线.

    学生活动:学生能够很快完成,然后请一个学生在黑板上板演,其他学生观察他的画图过程是否正确,然后师生一起订正.

    注意:(1)在推动三角尺时,直尺不要动;

    (2)画平行线必须用直尺三角板,不能徒手画.

    【教法说明】画平行线是几何画图的基本技能之一,在以后的画图中常常会遇到,要求学生使用工具,不仅能养成良好的学习习惯,也能培养学生严谨的学习态度.

    尝试反馈,巩固练习(出示投影).

    1.画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到).

    2.读下列语句,并画图形

    (1)点是直线外的一点,直线经过点,且与直线平行.

    (2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于.

    (3)过点画,交的延长线于.

    学生活动:学生在练习本上按要求画图,并由两个学生在黑板上画第2题的(2)、(3)题,学生画完后教师给出第1题的图形(提前做好的投影片),请学生回答测量的结果,然后共同订正第2题的(2)、(3)题.

    【教法说明】这组练习重点巩固平行线的画法及理解描述图形形状和位置关系的语句,能够根据语句画出正确图形,注意要求学生用准确的几何语言反映图形,同时真正理解几何语言才能画好图形.

    师:我们练习了过直线外一点画已知直线的平行线,请同学们回忆,过直线外一点能不能画直线的垂线,能画几条?

    学生活动:学生思考并回答,能画,而且只能画一条.

    师:下面请你试一试,前面我们完成的过直线外一点与已知直线平行的直线可以画几条,想一想,你能得到什么结论?

    学生活动:学生动手操作,思考后总结出结论:经过直线外一点,有且只有一条直线与已知直线平行.

    师:我们把这个结论叫平行公理,教师板书.

    【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行.

    【教法说明】学生对垂线的惟一性比较熟悉,通过对惟一性的回顾,学生能够用类比的思想,把自己动手得到的实验结论采用准确的几何语言描述出来,这样不仅培养了学生善于类比的思想,同时也训练了学生语言的规范性.

    师:过直线外一点,能画这条直线的惟一平行线,若没有条件“过直线外一点”,问你能画已知直线的平行线吗?能画多少条?

    学生:思考后,立即回答,能画无数条.

    师:请同学们在练习本上完成.

    (出示投影)

    已知直线,分别画直线、,使,.

    学生活动:学生在练习本上完成.

    师:请同学们观察,直线、能不能相交?

    学生活动:观察,回答:不相交,也就是说.

    师:为什么呢?同桌可以讨论.

    学生活动:学生积极讨论,各抒己见.

    【教法说明】几何的学习不仅要求学生有较强的识图能力,而且要求学生有过硬的分析能力,也就是说理能力.初一几何课是几何课的起始课,从开始就让学生养成自己动手、动脑、思考、分析问题的习惯,即加强几何思维不惯的培养,这是个很重要的内容.

    学生活动:教师让学生积极发表意见,然后给出正确的引导.

    师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论.

    学生活动:学生在教师的启发引导下思考、讨论,得出结论.

    师:同学们想得很好,因为,,于是过点就有两条直线、都与平行,根据平行公理,这是不可能的,这就是说,与不能相交,只能平行,由此我们得到平行公理的推论.

    [板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

    师:在同一平面内,不相交的两条直线是平行的,那么不相交的两条射线(或线段)也是平行的,对吗?为什么?

    学生活动:学生思考,回答:不对,给出反例图形,

    例如:如图1所示,射线与就不相交,也不平行.

    师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

    生:它们所在的直线平行.

    尝试反馈,巩固练习(投影)

    填空:∵,(已知),

    ∴_______________().

    学生活动:口答.

    【教法说明】巩固平行公理推论的掌握,同时让学生清楚平行公理推论的符号语言,为今后进行推理论证打好基础.

    变式训练,培养能力(出示投影)

    选择题

    下列图形都不相交,哪一个平行()

    【教法说明】进一步加深学生对平行线的理解,尤其是平行的变式图形.

    (四)总结、扩展

    师:今天我们学习了平行线,知道了同一平面内两条直线位置关系只有相交、平行两种,完成下表:(出示投影)

    学生活动:表格中的内容均由学生口答出来.

    【教法说明】通过学生完成表格,不仅回顾本节所学知识,同时培养学生的归纳总结能力,使学生所学知识形成体系,从而更好地掌握知识.

    八、布置作业

    (一)必做题

    课本第96页习题2.2A组第3题(1)、(2)题.

    (二)思考题

    1.能直接利用定义判断两条直线是否平行吗?

    2.怎样才能判断两条直线是否平行呢?

    3.阅读课本第76页,“读一读”的观察与实验,课下同学之间相互演示.

    作业答案

    3.

    (1)(2)

    九、板书设计

    经典初中教案数学教案-一数学活动


    活动目标:

    1、利用几何画板的形象性,通过量的变化,验证并进一步研究函数图象的性质。

    2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几何规律。

    3、学会作简单函数的图象,并对图象作初步了解。

    4、通过本节课的教学,把几何画板作为学生认知的工具,从而激发学生学习和探索数学的兴趣。

    活动的重点难点及设施

    活动重点:图形的性质和规律的探索

    活动难点:几何画板的操作(作函数的图象)

    活动设施:微机室(有液晶投影仪和大屏幕);

    windows操作平台

    几何画板

    office2000等

    教师准备好的五个画板文件:

    hstx1.gsp

    hstx2.gsp

    hstx3.gsp

    ymdl1.gsp

    ymdl2.gsp。

    操作一

    按下列步骤进行操作,并回答相应的问题。

    1、单击右上角“请看动画”,再打开d:\jhhb\hstx1.gsp画板文件;

    2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。

    ①当k>0时,图象经过哪几个象限?

    ②当k

    3、双击显示按钮后,在k>0和k

    4、先在坐标系内作出直线(或直接打开文件:c:\sketch\hstx2.gsp)

    操作二

    1、同操作一,打开d:\jhhb\hstx2.gsp

    2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关?

    3、上下移动c改变c的大小,看抛物线怎样变化?

    4、分别改变a、b的大小,看抛物线的对称轴是否发生变化?由3和4可知,抛物线的对称轴与什么有关?与什么无关?

    5、c保持不变,改变a、b时,抛抛线总是经过哪一点?

    6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系?

    7、双击显示按钮,再双击动画按钮,观察y随x怎样变化?

    8、当a=0时,函数的图象是什么?

    操作三

    打开文件:d:\jhhb\ymdl1.gsp

    圆的两弦AB、CD相交于圆内一点P,我们得到,如果把点P拖到圆外,上述结论是否成立?如果点在圆上呢?

    操作四

    作函数y=x2-2的图象

    作图步骤:

    1、击“文件”菜单中“新绘图”命令,建立新的绘图板;

    2、点击“图表”菜单中的“建立坐标轴”;

    3、在横坐标轴上任找一点,用“文本工具”,加上标签“C”,选中C点,单击“度量”菜单中的“坐标”命令,得度量值,C:(-2.80,0.00),再用“选择工具”选择它。(度量值变黑)

    4、点击“度量”菜单中的“计算”命令,出现计算器;

    5、点击“数值”下拉式菜单中的“点C”的“x”值,按“确定”按纽,得Xc=-2.80再用“选择工具”选择它。(度量值变黑)

    6、点击“度量”菜单中的“计算”命令,出现计算器,再点击“数值”下拉式菜单中的“x[c]”,分别按计算器上的“∧”、“2”、“-”、“2”、“确定”按纽。得到代数式的值:xc2-2=14.45.

    7、用“选择工具”,分别选中Xc=-2.80xc2-2=14.45.(选取第二个对象要按键盘上的“shift”键的同时再选);

    8、点击“图表”菜单中的“绘出(x,y)”,得到点“E”。(如果看不到点E,说明它不在当前的视窗内,此时可调整C点,使该点出现在窗口内);

    9、分别选中点E和点C,点击“作图”菜单中的“轨迹”,得二次函数的图象。

    数学教案-平行线分线成比例定理初中教案精选


    (第二课时)

    一、教学目标

    1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

    2.使学生掌握三角形一边平行线的判定定理.

    3.已知线的成已知比的作图问题.

    4.通过应用,培养识图能力和推理论证能力.

    5.通过定理的教学,进一步培养学生类比的数学思想.

    二、教学设计

    观察、猜想、归纳、讲解

    三、重点、难点

    l.教学重点:是平行线分线段成比例定理和推论及其应用.

    2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.

    四、课时安排

    1课时

    五、教具学具准备

    投影仪、胶片、常用画图工具.

    六、教学步骤

    【复习提问】

    叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).

    【讲解新课】

    在黑板上画出图,观察其特点:与的交点A在直线上,根据平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:

    平行于的边BC的直线DE截AB、AC,所得对应线段成比例.

    在黑板上画出左图,观察其特点:与的交点A在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:

    平行于的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.

    综上所述,可以得到:

    推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.

    如图,(六个比例式).

    此推论是判定三角形相似的基础.

    注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知,DE是截线,这个推论包含了下图的各种情况.

    这个推论不包含下图的情况.

    后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)

    例3已知:如图,,求:AE.

    教材上采用了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即:.

    让学生思考,是否可直接未出AE(找学生板演).

    【小结】

    1.知道推论的探索方法.

    2.重点是推论的正确运用

    七、布置作业

    (1)教材P215中2.

    (2)选作教材P222中B组1.

    八、板书设计

    经典初中教案数学教案-正方形


    课题:§4.6正方形(一)

    教学目的:使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”

    教学重点:正方形的定义.

    教学难点:正方形与矩形、菱形间的关系.

    教学方法:双边合作如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考:

    (1)对角线相等的菱形是正方形吗?为什么?

    (2)对角线互相垂直的矩形是正方形吗?为什么?

    (3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?

    (4)能说“四条边都相等的四边形是正方形”吗?为什么?

    (5)说“四个角相等的四边形是正方形”,对吗?

    教学过程:

    让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.

    问:所得的图形是矩形吗?它与一般的矩形有什么不同?

    所得的图形是菱形吗?它与一般的菱形有什么不同?

    所得的图形在小学里学习时称它为什么图形?它有什么特点?

    由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

    (一)新课

    由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质.

    请同学们推断出正方形具有哪些性质?

    性质1、(1)正方形的四个角都是直角。

    (2)正方形的四条边相等。

    性质2、(1)正方形的两条对角线相等。

    (2)正方形的两条对角线互相垂直平分。

    (3)正方形的每条对角线平分一组对角。

    例1求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.

    已知:四边形ABCD是正方形,对角线AC、BD相交于点O.

    本文网址://www.jk251.com/jiaoan/6603.html

    【经典初中教案数学教案-相交线对顶角】相关推荐
    动物在自然界中的作用初中教案精选

    一、教学目标1、能举例说明动物在维持生态平衡、促进生态系统的物质循环和帮助植物传粉、传播种子等方面的作用。2、认同动物是生物圈中重要成员的观点,培养学生爱护动物、保护动物的情感。3、学会用辩证的观点来...

    第 生物的进化教案

    第2节生物的进化一.教学目标:1.列举古生物学化石方面的证据说明生物是进化的;2.简述达尔文的自然选择学说的主要内容;3.形成生物进化的基本观点。二.教学重难点:4.生物化石的形成过程和化石记录的生物...