热门课件: 《方程的意义》教案壹篇
发表时间:2022-10-31每个老师为了上好课需要写教案课件,写好教案课件是每位教师必须具备的基本功。作好了教案课件的前期准备,才能很好地达成要求的教学目标设计。你是否在寻找合适的教案课件呢?为满足您的需求,小编特地编辑了“热门课件: 《方程的意义》教案壹篇”,希望对您的工作和生活有所帮助。

【教材分析】方程在小学乃至初中整个学习过程中,都具有非常重要的地位。《方程的意义》这一节内容是学习其他方程知识的基础。本课只要求学生初步理解方程的意义,知道什么是方程,能判别一个式子是不是方程。整个教学过程先通过天平演示引出等式和含有未知数的等式,然后对一些不同的式子通过观察.比较.分析对其进行分类,最后归纳.概括出方程的意义,培养了学生分析.比较.归纳.概括.创新等能力,为以后学习解方程和列方程解答应用题打下良好的基础
【教学目标】
1.理解和掌握等式与方程的意义,明确方程与等式的关系。
2.通过自主探究.合作交流激发学生的学习兴趣,养成合作意识。
3.感受方程与生活的密切联系,发展抽象思维能力和符号感。
【教学重点】理解和掌握方程的意义。
【教学难点】弄清方程和等式的异同。
【数学思想】符号化思想,转化的思想,数形结合的思想。
一.创设情境,引出问题
教师活动
学生活动及达成目标
1.同学们,谁还记得《曹冲称象》的故事?
2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?
3.同学们其实在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。
简单介绍《曹冲称象的故事》
能说出让大象和石头的重量相等,再称石头的重量。
达成目标:创设贴近学生实际不仅能集中学生注意力,调动学生的积极性,激发学习兴趣,也为下面出示天平做好铺垫。
二.共同探索,总结方法
教师活动
学生活动及达成目标
1.出示天平:让学生说一说对天平有哪些了解?
如果学生说得不全教师做补充:使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。
2.合作探究。
(1)在天平的右边放一个100g的砝码,怎样才能让天平平衡呢?
用算式怎样表示呢?
让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)
(2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。
教师质疑:如果我往杯子里倒些水,观察天平现在的情况。
师:一杯水的重量是多少,怎样表示?你有办法吗?
追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?
(3)再次让学生观察现在的天平(天平右边放100g砝码),发现了什么?哪边重一些呢?你们能用数学算式来表示吗?
(4)教师在右边依次加一个100g的砝码,加两个100g的砝码让学生观察,并说一说天平的情况,用数学算式怎样来表示吗?
教师让学生继续操作,怎样才能使天平平衡呢?
这说明了什么?
(一杯水的重量等于250g)
(5)你们能用数学算式来表示这天平的状况吗?
(师板书)
引导学生观察比较这三个算式有什么不同?
100+x >200
100+x
100+x =250
师总结:像这样两边相等的算式我们把它叫做等式。(板书:等式)
(6)让学生比较50+50=100与100+x=250两个等式,有什么不同?
教师小结:像100+x =250这样的含有未知数的等式,称为方程。(板书:方程)
(7)引导学生思考归纳小结:
是不是所有的等式都是方程?
是不是所有的方程都是等式?
那么,方程有哪些特点?
(8)让学生仿照课本情境图,自己试着写一些方程。
自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等;天平可以称量物体的质量,还可以判断两个物体的质量是否相等。
让学生自主思考.交流操作,得出:在天平的左边放2个50g的砝码就可以保持平衡。
用算式表示:50+50=100。
学生认真观察,然后会发现:现在天平平衡,说明空杯子重100g。
学生看出在空杯里加一杯水后天平不平衡了。
思考得出:一杯水的重量=水的重量十杯子的重量。
学生汇报:100+x
学生回答:天平两边不平衡,用数学算式来表示100+x >100
学生观察后分组讨论:
汇报时用式子表示:
100+x >200
100+x
这时学生很容易发现这杯水的重量大于200g,小于300g。
引导学生把右边的砝码换成250 g,使天平左右两边平衡。
学生自主思考,再全班交流汇报:100+x =250
生观察后会发现:前面两个算式两边不相等,后面一个算式两边是相等的。
达成目标:通过直观演示活动,在老师引导,学生积极参与讨论.交流的过程中得出上面的式子,为下面的分类讨论环节做准备,同时培养学生观察思考.发现问题和解决问题的能力。
学生自主思考,并交流得出:第一个等式没有未知数x,第二个等式含有未知数x。
不是
是
达成目标:这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。
三.运用方法,解决问题
教师活动
学生活动及达成目标
完成教材第63页“做一做”第1题。
完成教材第63页“做一做”第2题。
让学生说一说什么样的式子是方程,再自主判断,最后集体交流。
先说一说图意,再写方程表示数量关系。
达成目标:通过学生自主分类比较,
调动了学生的主动性和能动性,
让学生自己发现知识的形成过程,
层层递进,达到理解方程意义和掌握方程判断方法的目的,同时培养学生对比.概括能力和发散思维。
四.反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:66页练习十四第1.2.3题。
拓展练习:见
达成目标:孩子大部分应该能发现存在的等量关系,但可能会出现40-28=x这样的式子,应该规范孩子的写法。
五.课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?
达成目标:方程的特点:是一个等式,且含有未知数。
1.像100+x =250这样含有未知数的等式叫做方程。
2.方程有两个重要条件:一个是等式,一个是含有未知数。
3.方程一定是等式,等式不一定全都是方程。
JK251.com延伸阅读
方程的意义教学与反思优秀模板
师出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板)。
师:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?
教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b。
师:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?
学生回答后,老师一一演示验证。
师:想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
生:平衡
在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
应用,进一步验证。展示数学书p55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
师:通过刚才的实验,我们发现了什么,谁来总结一下
生:(1)天平两边同时增加或减少同样的物品,天平保持平衡;
(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
师:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
生:(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。
反思:本节课从看得见、摸得着的天平到抽象的方程,是学生认识上的一大飞越,要让学生达到由具体到抽象的真正理解,就要在教学过程中把传授知识变为渗透思想,教给学生学习知识的方法。本节课巧妙地把天平与方程中“相等”联系起来,让学生在不断调整天平平衡的过程中,对方程的意义有了较好的理解。数学学习需要学生有一个主动探索的心态,有一个敢干质疑的精神。在本环节中为学生创设了一个相互交流、相互学习、相互帮助解决的和谐的课堂学习环境,同时又让学生在相互交流中深化了新知,在交流中提高了准确表达能力,这样不仅使课堂有了活气,学生放得开,学得活,而且从思想上给了学生一个思维的台阶,使得教学难点得以分解.
小学数学方程的意义教学反思
小学数学《方程的意义》教学反思
《方程的意义》是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。而且数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。
《方程的意义》这节课与学生的生活有密切联系,通过本节课的学习,要使学生经历从实际问题中总结概括出数学概念的过程。让学生初步了解方程的意义,理解方程的概念,感受方程思想。使学生经历从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究,合作交流等数学活动,激发学生的兴趣,所以我在教学设计的过程中十分重视学生原有的知识基础,用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程,并尽可能让他们用语言表达描述出自己对学习过程中的理解,最后形成新的知识脉络。下面就结
合这节课,谈谈我在教学中的做法和看法。
一、复习导入,激趣揭题
该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。
二、实践操作,建立方程模型
本节课的探究交流主要体现在含有未知数的等式,称为方程的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平平衡现象不平衡到平衡不确定现象三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由式子等式方程的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1.用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、自主操作,提高能力,激发兴趣
在探究方程的意义时我特意给学生提供操作天平平衡的不同材料,让学生分组实践,通过操作、观察天平的状态得到许多不同的式子,由于材料不同,每个组所得的式子也不同,有的全是已知数的式子,有的是含有未知数的式子,多种多样的式子激起学生的探究欲望激发学生观察兴趣。
3、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
(2)要体会方程是一种数学模型。含有未知数的等式描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
4.在看说和写中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是方程,为什么不是方程,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方1
三、实际运用,升华提高
在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生自由创作方程这一练习题,既让学生应用了知识又培养了学生的创新思维。
本课时教学设计,改变了传统学习方式,利用课本的静态资源通过现代化教学手段,把数学情景动态化,大大激发了学生的学习兴趣,充分体现了以学生为主,让学生独立思考,不断归纳,把学生从被动地接受知识转为自己探究,为学生提供了自主探究,合作交流的空间。在学习中体会到了学习数学的乐趣,在获取知识的同时,情感态度,能力等方面都得到发展。当然这节课还存在一些问题,比如对等式与方程的关系突出得不够,读学生说的训练不够,应该给学生更多的表述的机会。
解方程的教案热门十五篇
贯穿全文的主题是“解方程的教案”值得深入研究,建议您将此页面加入收藏以备不时之需。一般给学生们上课之前,老师就早早地准备好了教案课件,因此就需要老师自己花点时间去写。教师需要不断更新教案来适应学生的学习进步。
解方程的教案【篇1】
一、创设情境,以情激趣
师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?
学生讨论纷纷。
师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?
二、运用教具,探究新知
(一)等式两边都加上一个数
1、课件出示天平
怎样看出天平平衡?如果天平平衡,则说明什么?
学生回答。
2、出示摆有砝码的天平
操作、演示、讨论、板书:
5=5 5+2=5+2
X=10 X+5=15
观察等式,发现什么规律?
3、探索规律
初次感知:等式两边都加上同一个数,等式仍然成立。
再次感知:举例验证。
(二)等式两边都减去同一个数
观察课件,你又发现了什么?
学生汇报师板书:
X+2=10
X+2-2=10-2
X =8
(三)运用规律,解方程
三、巩固练习
1、完成课本68页“练一练”第2题
先说出数量关系,再列式解答。
2、小组合作完成69页“练一练”第3题。
完成后汇报,集体订正。
四、课堂小结
这节课你学到了什么?学生交流总结。
板书设计: 解方程(一)
X+2=10
解: X+2-2=10-2 ( 方程两边都减去2)
X =8
解方程的教案【篇2】
《解方程》教学设计
龙江中心小学
杜华仁2014、12、3 教学内容:
五年级数学(人教版)上册第57、58页的内容。教学目标: 知识与技能:
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)能用等式的性质解简易方程,并掌握检验的方法。过程与方法:
结合生活中的实例和学生已有的知识,采用多媒体,通过学生探索、讨论、交流等活动,让学生初步理解解方程及方程的解的概念,并掌握解方程及检验的方法。情感态度与价值观:
感受简易方程与现实生活的密切联系;培养学生的数学语言表达能力,让学生养成良好的学习习惯。
教学重、难点:(1)“方程的解”和“解方程”的含义。(2)理解并掌握解方程的方法。教学准备: 多媒体课件 教学过程:
一、复习铺垫
1、同学们我们已经学了方程的意义,你还记得什么叫方程吗?
2、你能判断下面哪些是方程吗?说说你的判断理由。(1)x+24=73(2)4x<36+17(3)72=x-16(4)x+85
二、探究新知
(一)理解方程的解和解方程
1、看图写方程
(1)请同学们观察这幅图(课件出示天平图)从图中你知道了什么?(2)你能根据这幅图列出方程吗?
学生思考后回答:100+X=250(课件显示:100+X=250)
师:这个方程怎么解呢?就是我们今天要学习的内容--解方程。(板书课题:解方程)
2、求方程中的未知数
方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报教师随着学生的回答演示课件)
3、引出方程的解和解方程两个概念
(1)利用课件帮助学生理解。
(2)“方程的解”和“解方程”这两个概念相同吗?
教师小结:“解方程”是指求未知数的过程,它是一个计算过程。“方程的解”是指未知数的值,这个值必须使这个方程左右两边相等。
(3)练习:下面括号中,哪个是方程的解?(同桌讨论)X+8=15(x=2 x=7)
(二)教学例1
1、课件出示书本第58页的例1(1)图上画的是什么?你能列出方程吗?(X+3=9)
(2)X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解。
2、引导学生思考怎样解方程。
(1)我们解方程的目的是求X,怎样才能使天平左边只剩x呢?
(根据学生回答后,演示课件:天平左右两边同时拿走3个球,使天平左边只剩X,天平保持平衡。)
(2)为什么同时减3而不是减其它数呢?(3)这时X的值是多少?
3、检验方程的解.问:我们怎么验证X=6是这个方程的解呢?
(将X=6代入原方程,看方程的左边是否等于方程的右边。)引导学生对方程进行检验,教会学生检验的方法。
4、强调解方程的格式步骤
(1)先写“解”,等号要对齐。(2)做完后要注意检验。
三、实践应用
1、下面的方程你打算怎样算。①X+0.3=1.8 ②X+5=32
2、引导学生小结解方程的步骤。
四、课堂小结 拓展延伸
1、通过今天的学习,同学们都知道了哪些知识?
2、你会解下面的方程吗? x-2=15 作业:课本P63第4题,第5题第一横排。
解方程的教案【篇3】
五年级数学上《解方程
(一)》教案
教学目标: 知识与技能:
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)能用等式的性质解简易方程,并掌握检验的方法。过程与方法:
结合生活中的实例和学生已有的知识,采用多媒体,通过学生探索、讨论、交流等活动,让学生初步理解解方程及方程的解的概念,并掌握解方程及检验的方法。情感态度与价值观:
感受简易方程与现实生活的密切联系;培养学生的数学语言表达能力,让学生养成良好的学习习惯。教学重、难点:
(1)“方程的解”和“解方程”的含义。(2)理解并掌握解方程的方法。教学准备: 多媒体课件 教学过程:
一、复习铺垫
1.同学们我们已经学了方程的意义,你还记得什么叫方程吗?
2.你能判断下面哪些是方程吗?说说你的判断理由。
(1)x+24=73(2)4x<36+17
(3)72=x-16(4)x+85
(5)35+65=100(6)6(a+2)=42
二、探究新知
(一)理解方程的解和解方程
1.看图写方程
(1)同学们观察这幅图(课件出示天平图)从图中你知道了什么?
(2)你能根据这幅图列出方程吗?
学生思考后回答:100+X=250(课件显示:100+X=250)
师:方程怎么解呢?就是我们今天要学习的内容--解方程。(板书课题:解方程)
2.求方程中的未知数
方程中的x等于多少呢?说说你是怎么想的?(交流后汇报教师随着学生的回答演示课件)
3.引出方程的解和解方程两个概念
(1)利用课件帮助学生理解(展示学生的想法)。
同学们用不同的方法求出了未知数 X 的值,我们把X =150的值叫做方程100+X=250的解。什么叫方程的解呢?
生:……
(2)“方程的解”和“解方程”这两个概念相同吗?
教师小结:“解方程”是指求未知数的过程,它是一个计算过程。“方程的解”是指未知数的值,这个值必须使这个方程左右两边相等。
(二)探究利用等式的性质解方程
创设情境,生成问题
同学们,还记得上节课我们一起玩过的天平游戏吗?谁来说说你从中获得了什么知识?(引导学生回忆等式的性质即天平平衡原理)。同学们在游戏中的收获可真不少,还想不想玩游戏?(想)好,现在我们就一起玩个猜球游戏:
师出示一个不透明的乒乓球盒,让学生猜里面有几个球?(学生可以任意猜)
生:……
师引导学生可以用字母X来表示球的个数。师:要想准确知道有几个球,再给同学们一些信息。(图见课本58页)
设问:能用一个方程来表示吗?(板书X+3=9)
师:现在你知道X的值是多少吗?
2、探索交流,解决问题。
(一)探究利用等式的性质解方程
1.你能用天平平衡的原理解方程吗?小组内交流;你是怎样想的?
(这里给与学生一定的思考和交流的时间,重点让学生说说自己的思考过程)。
2.汇报交流结果,师操作验证
(根据学生回答后,演示课件:天平左右两边同时拿走3个球,使天平左边只剩X,天平保持平衡。)这时X的值是多少?指导解方程的书写格式。
3.讨论:为什么同时减3而不是减其它数呢? 检验方程的解.问:我们怎么验证X=6是这个方程的解呢?
(将X=6代入原方程,看方程的左边是否等于方程的右边。)引导学生对方程进行检验,教会学生检验的方法。4.强调解方程的格式步骤
你学会解方程了吗?和同学讨论一下,解方程需要注意什么?(1)先写“解”,等号要对齐。(2)做完后要注意检验。
三、实践应用
1.下面的方程你打算怎样算。
①X+0.3=1.8 ②X+5=32
2.引导学生小结解方程的步骤。
3.你会解下面的方程吗? x-2=15 4.解决问题
四、课堂小结 拓展延伸
1.通过今天的学习,同学们都知道了哪些知识?
五、作业:课本P63第4题,第5题第一横排。
六、板书设计:
解方程
(一)一、概念:
方程的解:是方程左右两边相等的未知数的值。----数值
解方程:求方程未知数值的过程。------过程
二、方法:利用天平平衡的原理解方程
X+3=9
解:
x+3-3=9-3
x=6 验算:方程的左边=X+3
=6+3 =9
=方程的右边
所以,X=6是方程的解。
解方程的教案【篇4】
一、填空:
(1)含有()的()叫方程。如:()
(2)使方程左右两边()的()的值,叫方程的解。
(3)求()的过程叫解方程。
(4)一个加数等于(),减数等于()除数等于(),一个因数等于()
二、下面哪些是方程,是方程的在括号里面画“√”。
4.3+2x=10.3()7.9+X
8.9+6X()8X=0.5()
19×2X()9.6+2.5X=17.15()
三、解方程。
8x=24x÷0.5=1.26x-4x=20.212(x+3.7)=1445x-3×11=42
四、列方程解决问题。
1.白猫上周钓了128条鱼,白猫钓的比花猫多14条。花猫在上一周钓了多少条鱼?
2.爷爷今年69岁,爷爷的年龄比小明年龄的5倍还大4岁。小明今年几岁?
3.北京和上海相距1320km。甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?
4.李爷爷家养羊284只,其中大羊的只数是小羊只数的3倍。大羊和小羊各有多少只?
解方程的教案【篇5】
解方程
【教学目标】
1.通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。
2.通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。
3.在观察、猜想、验证等数学活动中,发展学生的数学素养。
【教学重难点】
1.会用等式的性质解方程。
2.理解算理。
【教学过程】
一、创设情境,生成问题
同学们,还记得上节课我们一起玩过的天平游戏吗?谁来说说你从中获得了什么知识?(引导学生回忆等式的性质即天平平衡原理)。同学们在游戏中的收获可真不少,还想不想玩游戏?(想)好,现在我们就一起玩个猜球游戏:
师出示一个不透明的乒乓球盒,让学生猜里面有几个球?(学生可以任意猜)
师:盒子里面有几个球,1个?2个?„„你能准确说出盒子里有几个吗?
生:不能!
师引导学生可以用字母X来表示球的个数。
师:要想准确知道有几个球,再给同学们一些信息。(师课件出示天平左边一个不透明盒子和3个球,右边透明盒子里有9个球,天平平衡)
设问:能用一个方程来表示吗?(板书X+3=9)
师:现在你知道X的值是多少吗?
(设计意图:先通过回味上节课的天平游戏旨在对等式的性质即天平平衡原理作必要的知识回顾,同时自然而然的引出猜球游戏,并在游戏中生疑,层层设问,步步为营,为下面的学习创设良好的问题情境,使学生兴趣盎然的投入到学习活动中去。)
二、探索交流,解决问题。
1.独立思考:盒子里有几个球?也就是X所表示的数值是多少?(由于数据较小,学生/ 4
能够独立思考出结果)
2.小组内交流;你是怎样想的?
(这里给与学生一定的思考和交流的时间,重点让学生说说自己的思考过程)。
3.全班交流:X的值是多少?你是怎样想的?
学生可能有以下几种想法:
(1)利用加减法的关系:9-3=6.
(2)想6+3=9,所以X=6.
(3)把9分成6+3,想X+3=6+3,所以X=6.
(4)在方程两边同时减去一个3,就得到X=6
师:同学们的想法真不少。我们看前三个同学都是利用加减法的关系或数的分成想出了答案。第四个同学的想法有什么不同?他的想法对吗?我们可以来验证一下。
4.操作验证:师拿出课件演示中的天平实物(天平左边一个不透明盒子和3个球,右边透明盒子里有9个球,天平平衡。注意两个盒子的质量相等)
师问:现在谁来试一试?想想左右两边同时拿去三个乒乓球天平会怎么样?(学生拭目以待,跃跃欲试)
学生操作演示,天平平衡。
(设计意图:通过操作演示使学生进一步理解等式的性质,初步体会到可以用等式的性质解方程)
师:通过操作我们发现他的想法是对的!以后我们就用等式的性质来求方程中未知数的值。这个演算过程如何书写呢?
让学生先同桌交流发表自己的看法,然后师边示范边强调:首先在方程的第二行起写一个“解”字,利用等式的性质两边同时减去一个3,为了美观注意每步等号要对齐。
师板书如下:
X+3=9
解:x+3-3=9-3 x=6
重点问:左右两边同时减去的为什么是3,而不是其它数呢?
学生纷纷说出想法。
师结:方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
师:我们要想知道算的对不对,不能每次都用天平来验证吧,尤其是遇到较大的数。(学/ 4
生点头认同)
师:那怎麽办呢?
生:可以验算!师:怎么验算?
学生可以交流,根据学生的回答老师板书验算方法:
验算:方程的左边=X+3 =6+3 =9
=方程的右边
所以,X=6是方程的解。
师:像上面X=6这样使方程左右两边相等的未知数的值,叫方程的解。而求方程的解的过程叫做解方程。
同时课件出示两个概念,让学生说说两个概念有什么不同?
师明确:方程的解是一个具体的数值,而解方程是一个过程,解方程的目的就是求方程的解。
(设计意图:这里根据学生已有的知识衔接,将教材稍作处理先教学方程的解法,再揭示方程的解和解方程两个概念,使整个教学流程顺畅自然,水到渠成,更易于学生对知识的理解和掌握。)
师:同学们已掌握了解方程的方法,看这个方程你会解吗?
课件出示信息图,让学生看图列出方程3X=18,师抛出问题:这个方程如何解呢?要根据方程的哪个性质来解?
师:谁愿意来板演?(其他学生练习本上做)
教师针对学生做题情况,重点强调:根据“方程的两边同时除以一个不等于0的数,左右两边仍然相等”来解方程。
(设计意图:本环节老师抛出问题后就放手给学生做,给学生提供独立探索的机会,体验独立解方程的全过程,充分体现让学生自主学习这一教学理念。)
三、巩固应用,内化提高。
1.慧眼识珠
从后面括号中找哪个是x的值是方程的解?
(1)x+32=76
(x=44,x=108)(2)12-x=4
(x=16,x=8)2.看图列方程并解答(做一做)/ 4
3.我是解题小冠军
(设计意图:本环节我努力将原本枯燥的数学练习变的形式多样、新颖有趣,努力从评价语言评价方式等方面激发学生的学习兴趣,使学生始终处于兴趣浓、情绪高、思维活、反应快的最佳学习状态。)
四、回顾整理,反思提升。今天你有哪些收获?你学会了什么?
【板书设计】
解方程
例1
X+3=9
例2
3x=18 解:x+3-3=9-3
解:3x÷3=18÷3
x=6
x=6 验算:方程的左边=X+3
验算:方程的左边=3x =6+3
=3×6
=9
=18
=方程的右边
=方程的右边
所以,X=6是方程的解。
所以,X=18是方程的解。
【教学反思】
本节课是在认识用字母表示数的基础上进行教学的,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。/ 4
解方程的教案【篇6】
《用方程解题》教学反思
《用方程解题》教学反思
用方程解题也是小学非常重要的内容。谈到方程,教科书涉及一些用方程求解的简单应用问题。教学的时候,尤其是举例的时候,强调的是方程的方法,但是因为题目比较简单,所以题目中的等价关系也比较简单。学生可以很容易地用算术来解决问题,所以很多学生不愿意用方程来解决问题,因为用方程来解决问题,他们需要写出解决方案的假设。学生想省事,不喜欢用方程解决问题。
但是,在学习稍复杂的方程时,也是通过实际问题来介绍稍复杂的方程,进一步解释稍复杂的方程的解,一般用于求解稍复杂的方程。有很多方法可以将其中的一个视为一个整体。当然,相对而言,课后解题的类型一般都是用稍微复杂一些的方程来解决的。我记得当时教书的时候,孩子们被迫用方程式来解决问题。但是,我总觉得孩子用方程解题的能力比较弱。
比如有两个未知数的问题类型,用方程来解决这个问题是相当不错的。抽象,但方程的方法是前瞻性的,更容易理解。于是,前几天有同学来找我一道济宁外语的数学题,就是有两个未知数的类型,也就是先设一个未知数,用有这个未知数的公式表示另一个未知数,然后找到有两个未知数的类型。题目中的等价关系可以通过列出方程来求解。其实所谓的问题无非如此。
可见,用方程解决复杂的应用问题是很有必要的。
问题解决教学设计
问题解决教学设计
一年级问题解决教学设计
一年级问题解决教学设计
p>p>
解方程的教学设计
解方程的教案【篇7】
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程
(一)导入新课
故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=12 23+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x – 19 = 2
(2)x - 12.3 = 3.8
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
解方程的教案【篇8】
·研究课教案·
解 方 程
教学内容:教材第67、68页例
1、例2及相关练习。教学目标:
1、通过学习理解 “方程的解”和“解方程”的意义。
2、能够利用等式的性质解形如x±a=b、ax=b及x÷a=b的方程,并掌握解简易方程的书写格式和检验方法。
3、经历探究解方程的过程,渗透转化的数学思想,感受知识之间的密切联系,培养学生良好的书写习惯。
教学重点:
学会解形如x±a=b、ax=b及x÷a=b的方程。教学难点:
利用等式的性质解方程。教学准备:
课件、投影 教学过程:
一、复习引入。
1、复习方程的意义。
下列哪些式子是方程?是方程的打“√”。、3565100x1286 5x1580小结:含有未知数的等式叫做方程。
2、复习等式的性质。
在○和□里填上适当的符号和数。
(1)a=2b(2)3a=4b a+3=2b○□ 3a×7=4b○□ a○□=2b-5 3a○□=4b÷2 等式性质1:等式两边加上或减去同一个数,左右两边仍然相等。
等式性质2:等式两边乘同一个数,或除以一个不为0的数,左右两边仍然相等。刚才我们利用等式的性质完成了填空题,其实等式的性质还可以帮助我们解决很多的数学问题。今天这节课我们就一起来利用等式的性质来解方程。
二、探究新知。
(一)探索形如x+a=b的方程的解法。
1、出示例1图
4802x 1
(1)从图中你知道了哪些信息?根据这些信息你可以列出方程吗?
板书:x+3=9(2)学生自主探究解方程的方法。
问:你知道这个方程中x的值是多少呢?你是怎么想的?(3)借助天平的演示过程,帮助学生直观感受解方程的方法。
用我们刚刚学过的等式的性质能解决这个问题吗?我们请老朋友“天平”来帮忙!
重点解决2个问题:
1、同时拿走1个或2个小方块都能使天平保持平衡呀,你们怎么想到要拿走3个小方块呢?
(目的:天平的左边只剩下一个x)
2、天平左边拿走了3个小方块,右边呢?为什么?(有根据:等式的性质。)
两边要拿走相同的小方块,天平才能依然平衡。(4)教学解方程的书写过程。
刚才我们利用天平的演示,很清楚的求出了x的值,其实这个过程也可以用式子表示出来。
X+3=9 解:x+3-3=9-3 X=6(5)学习方程的检验方法。
师板书检验过程: 检验:方程左边=x+3
=6+3
=9
=方程右边 所以,x=6是原方程的解。
(6)学习“方程的解”和“解方程”的概念。
x=6能使方程左右两边相等,像这样能使这个方程左右两边相等的未知数的值,就叫做这个方程的解。这里我们刚刚做的求方程的解的过程叫做解方程。
练习出示:x+6=11 A、y=5
B、5
C、x=4
D、x=5
2、探索形如ax=b方程的解法。(1)出示练习
2 100+x=250 ○3 3x = 18 ○1 x + 12= 31
○a、学生在作业纸上完成。
b、对比第1题和第2题,说明100+x就是x+100,所以可以用减法求出x的值。c、解释3x表示3×x。
d、借用天平演示解方程的过程,感受解方程的方法。(2)变式练习。
○1 x-20=9
○2 x÷6=1.5 a、学生独立完成。
b、学生汇报,带着学生口头检验。
三、全课小结。
学到这里,说说本节课你有什么收获?
四、巩固练习。
1、哪个是方程的解?
(1)x+32=76 ①x=44 ②x=108(2)12-x=4 ①x=16 ②x=8(3)3x=1.5 ①x=3 ②x=2(4)3÷x=1.5 ①x=0.5 ②x=2
2、说出解下列各方程的方法。
x+0.3=1.8 x-1.5=4 5x=1.5 x÷1.1=3
五、课堂作业。
1、教材70页第2题,右边4题。
六、板书设计。
解方程
等式的性质 使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。x
+3=9 解:x+3-3=9-3 x=6 检验:方程左边=x+3 =6+3 =9 =方程右边 所以,x=6是原方程的解。
解方程的教案【篇9】
教学目标
1、会正确找出一元一次方程中存在的相等关系
2、通过列方程解应用题,提高学生分析问题与解决问题的能力
重点、难点、关键点
重点:找出应用题中存在的相等关系
难点:正确分析应用题中的条件
关键:理解题意,并能正确找出应用题中的量与量之间的关系
教 学 过 程
时间分配
1、列一元一次方程解应用题题的步骤
2、例题探究
师:列一元一次方程解应用题的步骤有哪些?
师:出示例题
已知某电视机厂生产 三种不同型号的电视 机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,应用题,初中数学教案《应用题》。某商场根据市场调查花9万元从该厂购进两种不同型号的。电视机50台。请你分析一下是哪两种型号的电视机?
(教师引导,由学生自己解题过程)
生:思考议论回答
找等量关系
设未知数
列一元一次方程
解方程
写出答案
生:讨论
该问题需要分类讨论,有三种可能的情况
可能购买的是甲、乙两种型号的电视机,也可 能是乙丙或甲丙。
8分
20分
A组:
16个蓝球队进行循环比赛,每个队赢一场得2分,输一场得1分,比赛弃权得0分。某队参加了循环赛中的15场比赛,共得26分。这个队赢几场?输几场?
B组:
一列火车长250米,速度为60千米/时,一越野车其车速为90千米/时,当火车行驶时,越野车与火车同向而行,由列国车车尾追至车头,需要多长时间 ?
教后札记
解方程的教案【篇10】
2.解简易方程
方程的意义
教学内容:
数学书P62-63内容及“做一做”,练习十四1-3题。教学目标:
1、初步理解方程的意义,会判断一个式子是否是方程。
2、会按要求用方程表示出数量关系。
3、培养学生观察、比较、分析概括的能力。教学重、难点:
会用方程的意义去判断一个式子是否是方程。教具准备:
班班通、天平、空水杯、水 课时计划:
一课时 教学过程:
一、复习导入
同学们,上节课我们学习了用含有字母的式子表示一些数量关系,现在老师要考考你们:已知我们学校有3077位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:3077+ x)今天我们要进一步来研究这些含有字母的式子所隐藏的数学奥秘,想知道吗?我们一起来探索吧!
二、新知学习
1、实物演示,引出方程。
介绍天平,天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平的指针就会在标尺中间,表示天平平衡,根据这个原理,从而称出物体的质量。现在在天平一边放上两个50克的砝码,一边放一个100克的砝码,问:现在天平是什么状态? 师:大家能不能用式子来表示这种情况?试试着。[板书:50+50=100] 50+50=100是个什么式子?(等式)
那么这次再来操作一次天平:
第一步,称出一只空杯子重100克,(板书:1只空杯子=100克);
第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。
第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x
师:比一比100+X=250和原来学习的50+50=100以及上面两个式子有什么不同?
师小结:与第一个式子比含有未知数,与另两个式子比它是等式。像100+X=250这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?(叫方程)请大家试着写出一个方程。
2、写方程,加深对方程的认识
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
3、看书第63页,看书上列出的一些方程,让学生读一读 教师小结:一个式子要是方程需要具备哪些条件?
两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
4、反馈练习
(1)完成做一做第一题,在是方程的式子后面打上“√”,对于不是方程的几个式子要说明其理由。
(2)完成做一做第二题,指名学生黑板上列示,其他学生独立完成,教师讲评。
5、巩固练习
1、完成练习十四第1题,让学生对不是方程的说出其理由。
2、独立完成第2、3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。教学小结:
这节课学习了什么?怎么判断一个式子是不是方程? 提问:方程是不是等式?等式一定是方程吗?
作业布置及设计:
家庭作业书课时作业
板书设计:
方程的意义
50+50=100
等式
1只空杯子=100克 100+X>200 100+X
含有未知数的等式称为方程
教学反思
等式的性质
教学内容:
数学书P64-65及练习十四的第4、5题。教学目标:
1、通过探索理解并掌握等式的性质。
2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3、培养学生观察与概括、比较与分析的能力。教学重点、难点:
理解并掌握等式的性质,能根据具体情境列出相应的方程。教具准备:
班班通 课时计划:
一课时 教学过程:
一、谈话导入
同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
(板书:等式的性质)
二、探索新知
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,展示数学书P55页第2幅图的场景,观察挂图,如果设一个花盆的质量为A,1个花瓶的质量为B,那么这幅图可以怎样表示?板书:A+B=4B 如果两边都拿掉1个花瓶,天平还平衡吗?上面的过程可以怎样表示?板书:A+B-B=4B-B。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
(二)探寻发现“天平保持平衡的规律2”。
第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不
同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2。
(三)小结天平保持平衡的变换规律,引出等式不变的规律。
1、通过刚才的实验,我们发现了什么,谁来总结一下?
2、得出天平保持平衡的变换规律:(1)天平两边同时增加或减少同样的物品,天平保持平衡;(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。交流,发现:等式保持不变的规律:
(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、巩固练习
1、完成教材练习十四第4题。
学生独立完成,并进行小组讨论。
2、完成教材练习十四第5题。
引导学生运用等式的性质填空,指名学生汇报,集体订正。
四、教学小结
通过刚才的实验,你们发现了上面?学生用自己的话来总结概括。作业布置及设计:
家庭作业书课时作业
板书设计:
等式的性质
当天平平衡时,天平两边同时增加(减少)同样重的物品,天平仍保持平衡。等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
等式的性质2:等式两边乘同一个数,或除同一个补位0的数,左右两边仍然相等。教学反思:
解方程
(一)教学内容:
数学书P67—68的例题和“做一做”中相关部分练习教学目标:
1、理解方程的解和解方程的含义,理解用等式的性质解方程的方法并进行验算。
2、掌握解方程的格式和写法。
3、进一步提高学生比较、分析的能力,在学习活动中,体验知识之间的密切联系,激发学习兴趣。教学重、难点:
理解解方程的方法,正确地列出方程并求解。教具学具准备:
班班通 课时计划:
一课时 教学过程:
一、复习导入
上一节课,我们学习了什么?
等式在哪些情况下变换仍然保持不变呢?
学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。(板书:解方程(1))
二、新知学习
1、教学P67的例1 出示例1,从图中可以获取哪些数学信息?图中表示了什么样的等量关系?能用一个 方程来表示这一等量关系吗?得到x+3=9 X是多少方程的左右两边才相等呢?也就是求盒子中一共有多少个皮球。学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)利用加减法的关系:9-3=6。
(2)想6+3=9,所以X=6。
(3)把9分成6+3,想X+3=6+3,所以X=6。
(4)利用等式的基本性质,从方程两边同时减去一个3,左右两边仍然相等。就能得出X=6。
对于这些不同的方法,分别予以肯定。说明第(4)种用到了等式的性质,是解方程的方法之一,所以要重点掌握。
谁再来回顾一下我们是怎样解方程的?
师板书:x+3-3=9-3 化简,即得:x=6 问:左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
2、认识、区别方程的解和解方程。
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=6就是方程X+3=9的解。
而求方程的解的过程叫做解方程。刚才,我们板书的过程就是求方程解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?(方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。)
3、教学P68的例2(1)教师出示:解方程3x=18。
教师:怎样才能求出1个x是多少呢?
组织学生同桌之间相互讨论、交流,然后指名说一说。学生可能会说:方程两边同时除以3,得到x=6。(2)教师:这样解方程行吗?
根据等式性质2,使学生明确:方程左右两边同时除以相同多的数(0除外),方程两边仍然相等。
教师板书:3x=18 解:3x÷3=18÷3
X=6(3)组织学生自己动手检验,教师进一步强调:方程两边同时加上或减去、同时乘或除以相同的数(0除外),方程两边仍然相等。利用这个规律可以帮助我们解方程。
4、教学P68的例3
(1)教师出示:解方程20-x=9。(2)指名学生板演,接触方程的解。
(3)交流归纳解方程的经验,教师小结:等式两边加上相同的式子,左右两边仍然相等。
三、巩固练习:
1、独立完成P67页做一做第2题。
教师:怎样判断x=2是不是方程的解呢?x=3呢? 组织学生将x=2和x=3分别代入方程中进行检验。
2、完成P68的做一做第一题。
四、小结:通过这节课学到了什么?还有什么问题?
通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。作业布置及设计:
家庭作业书课时左右
板书设计:
解方程(1)
x+3=9
3x=18 解:x+3-3=9-3 解:3x÷3=18÷3 x=6 当x=6是,方程左边=x+3 =6+3 =9 =方程右边 所以,x=6是方程的解。
是方程左右两边相等的未知数的值,叫方程的解。求方程的解的过程叫解方程。
x=6
教学反思
解方程(2)
教学内容:
数学书P69例4、5。教学目标:
1、初步具有用整体思想和运算定律解方程的能力,会解稍复杂的方程。
2、初步学会如何利用方程来解决实际问题,进一步提高分析数量关系的能力。
3、培养学生认真书写、仔细检验的良好习惯。教学重、难点:
1、会解形如ax=b或x÷a=b方程的解。
2、初步学会解形如a-x=b及a÷x=b方程的解。教具、学具准备:
班班通 课时计划:
一课时 教学过程:
一、回顾导入
解方程,并进行验算(指名板演,集体核对)X+1.9=10
X—1.9=10
二、新知学习
1、教学例4(1)引导学生读题,分析题意,找等量关系。(2)教师提问:
(一)观察图画你们都知道了什么?
(二)3盒零4支和多少相等?
(三)怎样列方程?(学生思考)
(3)列方程并解答。
(一)指名学生回答,教师板书:3x+4=40。
(二)教师提问:这个方程要如何解呢? 学生独立思考,小组交流,教师指名汇报。教师板书: 3x+4=40 解: 3x+4-4=40-4 ←先把3x看成一个整体。
3x=36 3x÷3=36÷3
x=12(4)小结:解这样的方程,关键是要把3x看作是一个整体,先求出3x,在求出x是多少。
2、教学例5:解方程2(x-16)=8。
(1)如何求出该方程的解?(2)学生汇报可能如下:
解:2(x-16)÷2=8÷2 解:2x-32=8 x-16=4 2x-32+32=8+32 x=4 2x=40 2x÷2=40÷2 X=20(3)分析两种解题方法有什么不同。
第一种解法运用了整体的思想,第二种解法运用了乘法的运算定律。
3、思考。
(1)例4与例5有什么相同点和不同点?(2)应该先算什么,在算什么,最后算什么?
学生小组交流讨论,并派代表汇报。
三、巩固练习
(1)教材P69做一做第1题
学生独立完成,在小组中交流检查
(2)教材P69做一做第2题
四、教学小结
通过这节课的学习,你们又学到了什么新的本领? 作业布置及设计:
家庭作业书课时左右
板书设计:
解方程(2)
3x+4=40 解: 3x+4-4=40-4 ←先把3x看成一个整体。
3x=36 3x÷3=36÷3
x=12 教学反思:
解方程(练习课)
教学内容:
教材P70-72练习十五的习题 教学目标:
1、巩固解方程的方法,规范解方程的格式和写法,进一步提高学生分析、迁移的能力。
2、经历解方程的过程,熟练掌握解方程的方法。
3、在学习中,激发学生的学习兴趣,体验学习的成功和快乐。教学重、难点:
掌握解方程的方法和书写格式 教具、学具准备:
班班通 课时计划:
一课时
教学过程:
一、复习导入
教师:我们已经学过这么多关于解方程的知识,今天我们就通过练习来巩固一下。课件出示:
1、判断下面各式哪些是方程。
a+24=73 4x=36+17 23÷a﹥43 x+8 3x+4y=8 48÷a=9
2、后面括号中哪个x的值是方程的解?
(1)x+42=98(x=57,x=135)(2)5.2-x=0.7(x=4.5,x=8.8)(3)4x-7=21(x=7,x=8)(4)5(x-1)=25(x=4,x=6)
二、指导练习
1、教材P70练习十五第3题
(1)教师提问:你们能从题目中得到什么信息?
(2)学生总结题目中所给的信息,然后独立列出算式,在进行小组讨论,将自己的答案与小组中其他的成员核对,改正错误答案。
2、教材P72练习十五第11题
(1)教师分析:由题可知,第一个图是一个长方形,已经宽和周长,求长是多少。这个题就要借助我们之前学习的长方形的周长公式进行计算。
(2)指名学生列式并求解:2(5+x)=36,解得x=13。(3)从第二个图中你能得到哪些信息?
第二个图中所给出的信息是儿童的人数是成人人数的3倍,而儿童和成人的总人数是80人。
(3)学生独立思考,集体订正。
三、巩固练习
1、完成教材P70练习十五第4、5题。
组织学生独立完成,全部集体订正
2、完成教材P71练习十五第10题。
指名学生板演,其余学生独立完成,集体订正。
3、完成教材P72练习十五第12题
学生独立完成,在通过小组交流检查答案是否正确。
四、教学小结
学生讨论,通过练习课,还对解方程有什么疑问? 作业布置及设计:
家庭作业书课时左右
板书设计:
解方程(练习课)
1、判断下面各式哪些是方程。
a+24=73 4x=36+17 23÷a﹥43 x+8 3x+4y=8 48÷a=9
2、后面括号中哪个x的值是方程的解?(1)x+42=98(x=57,x=135)(3)4x-7=21(x=7,x=8)(4)5(x-1)=25(x=4,x=6)
(2)5.2-x=0.7(x=4.5,x=8.8)
解方程的教案【篇11】
人教课标版五年级上册“简易方程”,根据《课标》要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。
本节课延伸引入了方程时的例子100+X=250通过让学生尝试找出X的值,引入方程的解与解方程两个概念。例1以X+3=9为例,讨论了形如X±a=b的方程的解法。为了便于给出解方程全过程的直观图示,例题中的数据比较小,主要是提高学生掌握新的思考方法的积极性,这种方法将延伸到解更多复杂的方程。
1、在理解方程意义的基础上学习方程的解和解方程的的概念,初步掌握用等式性质来解简易方程的方法。
2、初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。
3、能应用所学知识解决生活中的简单问题,从中获得价值体验。
重点:方程的解和解方程的概念,初步掌握用等式性质来解简易方程的方法。
情感、态度与价值观:
1、学生能积极参与数学学习活动,对数学有好奇心和求知欲。
2、体验数学与日常生活密切相关,并感悟到数学美。
教法:新课标指出,教师是学习的组织者、引导者、合作者,根据这一理念,在教学中充分发挥学生的主体性,让学生通过课堂讨论、猜想、相互合作等方式,自主探索、自主学习。有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
学法:①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;②让学生学会自主发现问题,分析问题,解决问题的方法。
1、同学们和老师一起做个游戏,好吗?用手指尖顶住直尺使直尺一直保持平衡,能做到吗?说说你是怎样使直尺保持平衡的。在生活中你还见过哪些平衡现象?
2、课件出示天平:上节课我们借助天平平衡,学习了方程的意义,今天我们继续研究与方程有关的新知识。此环节结合学生平时的生活创设情境。通过寻找直尺上的平衡点,观察天平平衡等实践活动,拓展学生进行实践的机会,也为全课的教学活动创造氛围。
课件演示:通过动态直观的演示,将学生带入生活情境中,激发学生的学习兴趣。学生在思考如何让天平保持平衡的学习过程中拓宽了思路,领悟到两边同时增加相同的重量,天平保持平衡,既天平的左边=右边。得出方程式100+X=250。演示操作结束后,教师抛出问题:如何求出X等于多少呢?学生分组讨论猜想在此过程中,教师给学生充分的独立思考、合作交流的时间,让学生自主探索,从中发现,天平两边同时减少相同的重量,天平仍然保持平衡。让学生感悟到可以借助天平求未知数的值,有效地避免了解方程时的机械模仿和死记硬背,降低了学生的思维难度。使学生轻松地感悟出像这样使方程的左右两边相等的未知数的值,叫方程的解。
课件出示例1图。合作探究,通过感性经验的积累和实践的结果,讨论:怎样才能使天平左右两边只剩“X”,而保持天平平衡呢?学生汇报,课件演示。
整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到抽象,从感性到理性循序渐进,学会用等式的性质解方程,突破了重点,解决了关键,培养了学生的能力。
对于新知需要及时组织学生巩固运用,才能得到理解和内化。我本着“重基础、验能力、拓思维”的原则,设计了三个层次的练习题。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引学生的注意力,使学生面对挑战充满信心,激发了学生兴趣,引发了思考,发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决课题的能力。
(1)本节课主要的收获是什么?
(2)方程的解和解方程的区别是什么?怎样解方程?
(3)这节课你觉得自己表现怎么样?哪个小组或哪些同学的哪些地方值得你学习?
这样既对全课进行了总结,又能使每个同学对自己和对其他同学有个客观了评价。通过评价,有利于学生学会学习,学会反思,提高学习能力,养成良好的学习习惯。
板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。
使方程左右两边相等的未知数和值,叫做方程的解。
求方程的解的过程,叫做解方程。
所以,X=6是方程的解。
这样板书,布局合理,简明扼要,把本节课所学的知识重点,鲜明的展现在学生面前。
解方程的教案【篇12】
学习目标:
1、让学生初步认识“方程的解”、“解方程”的意义。
2、结合课文图例,根据等式的基本性质,解方程。
3、掌握解方程的格式和写法。
4、进一步提高学生分析、迁移的努力。学习重难点:掌握解方程的方法 教学过程: 重申目标 学情调查
1.把等式的基本性质补充完整。
等式两边同时
(或)
的数,两边仍然
。等式两边同时
(或)
的数,两边仍然。
2、判断下列那些式子是方程?(是的在后面打“∨”)
35+65=100
X–14﹥5.8
y+24
6(a+2)=42
c=1.8 问题汇总
1、什么是“方程的解”、“解方程”?
2、“方程的解”、“解方程”有啥区别和联系?
3、解方程的格式是怎样的?
4、方程的解怎么验算?
精讲点拨
一、请同学们学习课本第57页内容。
1、以小组为单位,根据教材57页内容合作学习,并回答问题。
100+X=250。X的值是()?
2、小组讨论,认识探索X的值。
(1)各小组展示自己推算的方法及依据。
(2)学生自己验证X的值是否正确。
3、像这样能使方程左右两边相等的未知数的值,人们给它起了一个名称叫(程解的过程叫()。()是一个数,()是计算过程。
教师板书:
+
X
=
250
第一个加数
第二个加数
和
第二个加数
=
和
所以 :X=150
方程的解
+ X
= 250 100 + X
= 100 + 150
X
= 150
(数的组成)
4、完成57页“做一做”.二、根据教材58页主题图,认识解方程。
(1)从图中可以获取哪些信息?图中表示了什么样的等量关系?
盒子中的皮球与外面的3个皮球加起来共有()个,列方程:((2)要求盒子中一共有多少个皮球,也就是求x等于什么?
我们看看教材是怎么利用等式的基本性质来求出方程的解呢?,求方)。1)
方程两边同时减去了(),左右两边仍然相等,化简后x=(),这就是方程的解。
(3)左右两边同时减去的为什么是3,而不是其它数呢?
因为,两边减去3以后,左边刚好剩下一个(),这样,右边就刚好是()。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。(4)教师强调说明:
x=6带不带单位呢,x在这里只代表一个(数),因此不带单位。(5)检验x=6是不是正确的答案,还需要验算。
方程左边 = x +3 = 6 +3 = 9 =方程()边
所以,x=6是方程的()。
(6)教师板书解方程的过程,强调写“解:”,等号对齐。课堂检测:
1.把下面的话补充完整。
方程两边同时
(或)
的数,两边仍然
。方程两边同时
(或)
的数,两边仍然
。2.填空:
X+1.6=3.2
X–0.47=1.25 X+1.6–()=3.2–()
X–0.47+()=1.25+()X=()
X=()X+12=45
X–2.6=5.4 X+12–()=45–()
X–2.6+()=5.4+()
X=()
X=()2.解方程:
X+2.3=8.6
X–12.4=5.8
小结:
通过这节课的学习,我们知道了在方程左右两边同时减去或加上一个相同的数,左右两边仍然相等。需要注意的是,在书写的过程中写的都是等式,而不是梯等式。为了保证解题的正确,我们还要学会验算。作业:
1、后面括号里哪个X值是方程的解?
(1)X+32=67
(X=44,X=108)(2)12-X=4
((X=16),(X=8))
2、解方程。
X+3.2=4.6
X–1.8=4
X-2=15
X+0.3=1.8
3+ X=5.4
X–6=7.6
3、课后探讨如何解下面的方程。
7-X=1.2 下一课时导学案:
1、填空:
4X=6.4
X÷0.5=1.25 4X÷()=6.4÷()
X÷0.5×()=1.25×()X=()
X=()
5X=0.75
X÷6=13
5X÷()=0.75÷()
X÷6×()=13×()
X=()
X=()
2、根据题意,在横线上把下列各题的数量关系补充完整,并分别列方程解答。
1.王老师买了1本单价是2.8元的笔记本和2本相同单价的童话书,共用去22.6元。童话书每本多少元?
+
=总金额(22.6元)解:设。
列方程:
答:。
还可以这样想:。
解:设。
列方程:
答:。
2.妈妈买了甲、乙两箱不同牌子的饮料。每箱饮料中的盒数相同,每盒重量分别是0.23㎏和0.19㎏,甲箱比乙箱要重0.64㎏。每箱中有多少盒饮料?
-
=甲箱比乙箱重的千克数 解:设。
列方程:
答:。
还可以这样想:
=甲箱比乙箱重的千克数。解:设。
列方程:
答:。
解方程的教案【篇13】
解方程
襄州四中 肖玉六
教学内容:
新课标人教版小学数学五年级上册第57-59页内容
教学目标:
1.使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
2.初步理解等式的基本性质,能用等式的性质解简易方程。
3.关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
重点、难点:
理解并掌握解方程的方法
教学准备:
投影仪
一、导入:揭示课题,复习铺垫
1、谈话提问:
(1)、举例说明什么是方程。(2)、想一想等式有哪些性质。(3)、判断哪些式子是方程
2、师用天平演示再现前面出现过的用天平秤一杯水的情境,引导学生写出方程(100+X=250)
师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)
二、互动:探究新知,理解归纳
1.师生互动:概念教学:认识“方程的解”和“解方程”的两个概念 师:那你猜一猜这个方程x的值是多少?并说出理由。学生可能会说出以下几种理由。(1)因为250-100=150,所以X=150。(2)因为100+150=250,所以X=150。
(3)假如方程的两边同时减去100,就能得出X=150。
引导学生将x的值代入方程看看左边是否等于250来验证x=150是正确的。
根据学生的猜测和验证认识新概念“方程的解”和“解方程”。
师: “X=150是这个方程的解。
师: “而求方程的解的过程,叫解方程。
师:在解方程的开头写上“解:”,表示解方程的全过程。师:同时还要注意“=”对齐。师:你们怎么理解这两个概念的?(学生独立思考,再在小组内交流。)
(“方程的解”,它是一个数值,“解方程”,它是一个演变过程。)2.教学例1。
(1).生生互动:解方程过程
a.小组讨论方程左右两边为什么同时减3? b.可以利用天平保持平衡的道理帮助解方程 c.验算过程
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。(2).互动展示:教学例2 3X=18 学生尝试后出示:3X÷3=18÷3 交流想法:方程的左右两边同时除以一个相同的数(0除外),左右两边仍然相等。小结:方程的左右两边可以同时除以相同的数(0除外),左右两边仍然相等。
三、达标检测
1.解方程 x一2=15 x÷7=14 师:这是两个分别含有减法除法的方程,你能尝试完成吗?(指名学生板演,其他同学在练习本上完成)
2.集体交流、评价、明确方法。
总结:如果方程两边同时加上、减去、乘或除以同一个数,方程左右两边仍旧相等
3.达标延伸(见课件)
四、全课小结,评价深化
1、通过今天的学习,同学们有哪些收获?
2、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。
五、板书设计
解 方 程
X + 3= 9 验算:方程的左边=X+3 解:X+3-3=9-3 =6+3 X=6 =9
=方程的右边
所以,X=6是方程的解。
解方程的教案【篇14】
列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。
一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。
设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。
解方程的教案【篇15】
今天我说课的内容是五年级数学上册第四单元《解简易方程》。下面我从教材分析、教学方法、学法指导、过程分析等四个方面进行说课。
一、教材分析
1、教材的地位与作用
本节课是解简易方程的第三课时鈥溄夥匠?一)鈥潱窃谘胺匠痰囊庖搴偷仁降男灾实幕∩辖薪萄А6裉煅暗哪谌萦治竺嫜傲蟹匠探庥τ锰庾鲎急浮=窈笱岸啾咝蔚拿婊⒅彩魑侍獾饶谌菔倍家苯釉擞谩K员窘诳纹鹱乓桓龀猩掀粝碌淖饔茫墙滩闹斜夭豢缮俚淖槌刹糠郑且桓龇浅V匾幕≈叮运质潜菊碌闹氐隳谌葜弧?/p>
2、教学目标的确定
根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的目标:
(1)知道解方程的意义和基本思路。
(2)会运用数量关系式或等式的基本性质对解方程的过程进行语言表述。
(3)会对具体方程的解法提出自己解答的方案,并能与同学交流。
(4)会独立地解答一、二步方程。
(5)能够验算方程的解的正确性。
3、教学重点、难点、关键点
根据教材内容和教学目标,我认为本节课的重难点是理解解方程的方法及检验,解决重难点的关键是引导学生确立解方程的一般思路。
二、说教法
1.演示操作法
借助多媒体,激发学生的学习兴趣
2.观察法
为了体现学生的主体性,培养学生的合作意识,通过同桌合作、交流,自主探寻发现通过等式的性质来解方程。初步理解方程的解和解方程的含义。
这些教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,
三、说学法
1、合作学习法
采用小组合作学习的形式,让学生经历一个观察、比较、交流、分析等过程,鼓励学生把发现的规律都说出来,有利于学生口语交际和解决问题能力的发展,这样既培养学生的合作意识,又能使学生在发现规律的同时获得成功的体验。
2、自主学习法
以学生自主学习为主,注重探索过程的教学,充分发挥学生的主观能动性,变被动听为自主学,学生积极动脑去思考、动口去表达。通过交流、猜测、验证、总结归纳,体验探索规律的过程,突破难点,提高效率。
四、过程分析
本节课我准备按以下几个环节进行教学:
(一)基础训练,激趣导入。
上节课的学习中,我们探究了哪些规律?
巩固方程及等式的性质,为下面的学习做好铺垫。
(二)认准目标,指导自学。
1、那我们学习解方程就要充分利用等式的两个基本性质。
板书课题:解方程(一)
2、学生自学教材67~68页例1、例2、例3内容,让学生初步掌握用等式的性质解方程的原理,学完后记录疑问。
(三)合作学习,引导发现。
1、出示课件例1,你了解了哪些信息?怎样列方程?
x+3=9
2、如何解这个方程呢?课件出示利用等式的性质分析的图示。
学生观察图画,同桌交流自己的观察结论,并通过讨论明确解方程的方法。
x+3=9
解:x+3-3=9-3
x=6
3、点名学生汇报,其他同学可以补充。
老师归纳:解方程实质就是把方程转化成x=a的形式,要注意解方程步骤的规范书写。
4、认识、区分方程的解和解方程并学会验算方程的解。
5、学生独立完成例2、例3的内容,并相互检验对方的结果。
老师再次强调要注意解方程和验证步骤的规范书写。
(四)变式训练,反馈调节。
课本67~68做一做。
强化重点,巩固新知,培养学生良好的学习习惯。
(五)分层测试,效果回授。
随堂练习册36页《解方程(一)》第一、二、四、五大题
(六)课堂小结
梳理知识形成完整知识体系
(七)布置作业
1、课本练习十五第1题。
2、课本练习十五第4题。
【热门课件】 《福楼拜家的星期天》教案壹篇
现在,很多教师需要用到教案,多写教案能够提升我们的策划能力,通过教案可以帮助自己分析教学的重点,教案要写哪些内容呢?《【热门课件】 《福楼拜家的星期天》教案壹篇》是小编为大家精心挑选的范文,希望你喜欢。
【教学目标】
1.了解课文内容,掌握生字、重点词语。
2.理清文章脉络,把握文章内容。正确、流利、有感情地朗读课文。
3.学习本文抓住特征运用语言、行动、外貌描写刻画人物性格的写法,以把握人物性格特点。
4.了解在叙述、描写中插入抒情、议论的写法。叙述详略得当。
5.从人物性格中体会到高尚的人格。感受当时欧洲著名的大文豪身上渊博的知识、宽广的胸怀、谦逊的品质和出色的谈话智慧,努力塑造自己成为一个高素质的人。
【重点难点】
1.引导学生学会对群体人物的分析,抓住外貌、性格特征写人的描写方法。
2.比较不同人物不同的描写方法,抓住人物思想性格特征进行描写。
【教学设想】
1.指导思想:要体现新课标的理论,让学生在合作与探究中思考问题。
2.教法设计:自学引导法
3.教学时数:1课时
【教学设计】
一、新课导入
1.有人说过:“世界上没有两片完全相同的叶子。”同样的,世界上也没有两个完全相同的人。我们在刻画人物形象的时候,要表现出他们的不同之处,就必须抓住他们的特点。不少作家善于抓住人物的特点描写人物,使人物形象活灵活现。今天,我们一起来学习法国作家莫泊桑刻画人物的一篇文章:《福楼拜家的星期天》。
2.莫泊桑(1850—1893),法国作家。他的舅父和母亲的好友、著名作家福楼拜做他的文学导师。1880年,莫泊桑以其《羊脂球》闻名于世有中短篇小说约300篇,长篇小说6部,游记3部,以及许多关于文学和时政的评论文章。
莫泊桑的文学成就以短篇小说最为突出,有“短篇小说巨匠”的美称。他的短篇小说侧重摹写人情世态,充分显示出他的社会风俗画家的才能。构思布局别具匠心,细节描写、人物语言和故事结尾都有独到之处。文字简洁、质朴。
3.有一次福楼拜让莫泊桑写一百篇有关牛的散文。莫泊桑觉得很为难,福楼拜启发他——拉着重物上坡的牛、拉着空车下坡的牛、吃饱的牛、挨饿的牛、被阳光暴晒的牛、被鞭打的牛、休息的牛……都有着不同的神态、动作,你如果仔细观察到了这些内容,把它们记录下来,那么写一百篇文章应当是不成问题的。实际上,福楼拜是让莫泊桑去观察,而不仅仅停留在看上。“看”和“观察”是不同的。正是在福楼拜的指导下,莫泊桑努力去观察生活,终于成为了一位著名小说家。
二、整体把握课文内容
1.字词练习
魁梧kuí魅力mèi一拍即合jí白皙xī轮廓kuò义愤填膺yīng滑稽jī
脚踝huái荒谬miù围绕rào固执zhí捋着luō迸bìng发
空前绝后博学多识寻欢作乐忘乎所以不约而同
2.全文好像是一出舞台剧。
时间:星期天。地点:福楼拜家,六层楼的一个单身宿舍。
人物:以福楼拜为核心人物,屠格涅夫、都德、左拉逐个登场。
主要内容:每个人物的肖像、语言、行动,人物之间的交流。
全文结构好像是舞台剧的结构。
3.时间顺序
“第一个来到的往往是伊万·屠格涅夫”,先写屠格涅夫。“过了一会儿,都德也来了”,再写都德。“接着来的是左拉”,再写左拉。“渐渐地,人越来越多”,下边重点写福楼拜。
“第一个”“过了一会儿”“接着”“渐渐地”,都是语言标志,阅读中要格外注意。
福楼拜(1821—1880),法国作家。《包法利夫人》、《情感教育》。
肖像:古高卢斗士式的大胡子,蓝色的大眼睛。
语言:他的声音特别洪亮,仿佛吹响一把军号。有时雄辩过人。他可以用一句很明了很深刻的话结束一场辩论。他的思想一下子飞跃过几个世纪,并从中找出两个类同的事实或两段类似的格言,再加以比较。于是迸发出启蒙的火花。
行动:门铃一响,立刻把红纱毯盖在办公桌上。亲自去开门。像亲兄弟一样拥抱屠格涅夫。从这个人面前走到那个人面前。把客人一个个地送到前厅,谈话、握手、拍肩
性格:热情奔放,容易激动,和蔼可亲,博学睿智。
屠格涅夫(1818—1883),俄国作家。《猎人日记》《罗亭》《前夜》《父与子》
肖像:白皙的脸。
语言:用一种轻轻的并有点犹豫的声调慢慢地讲。讲无论什么事都带上非凡的魅力和极大的趣味。谈话很少涉及琐事,总是围绕着文学史方面的事件。非常流利地翻译一些歌德和普希金的诗句。
行动:仰坐在一个沙发上。
性格:怀有狂热的理想,醉心文学事业,博学多识。
都德:法国作家。短篇《最后一课》《柏林之围》,长篇《小东西》
肖像:他的头很小却很漂亮,乌木色的浓密卷发从头上一直披到肩上,和卷曲的胡须连成一片。他的眼睛像切开的长缝,眯缝着,却从中射出一道墨一样的黑光。也许是由于过度近视,他的眼光有时很模糊。
语言:一来就谈巴黎的事情,讲叙着这个贪图享受、寻欢作乐并十分活跃和愉快的巴黎。只用几句话,就勾画出某人滑稽的轮廓。他用他那独特的、具有南方风味和吸引人的讽刺口吻谈论着一切事物和一切人。
行动:他习惯用手捋着自己的胡子尖。他举止活跃,手势生动,具有一切南方人的特征。
性格:生性活跃,健谈,厌恶腐朽的生活方式。
左拉(1840—1902),法国作家。创作了由20部长篇小说组成的《卢贡·马卡尔家族》,其中重要的有《小酒店》《娜娜》《萌芽》等。
肖像:中等身材,微微发胖。有一副朴实但很固执的面庞。他的头颅不漂亮,但表现出聪慧和坚强的性格。他那很发达的脑门上竖立着很短的头发,直挺挺的鼻子像是被人很突然地在那长满浓密胡子的嘴上一刀切断了。这张肥胖但很坚毅的脸的下半部都覆盖着修得很短的胡须,黑色的眼睛虽然近视,但透着十分尖锐的探求的目光。他的微笑总使人感到带点嘲讽,他那很特别的唇沟使上唇高高地翘起,又显得十分滑稽和戏谑。
语言:很少讲话。发出几声:“可是……可是……”当福楼拜的激情冲动过去之后,他就又不慌不忙地开始讨论,声音总是很平静,句子也很温和。
行动:爬六层楼,累得呼呼直喘。一进来就歪在一个沙发上。开始从大家的脸上寻找谈话的气氛和观察每人的精神状态。总是歪坐着,压着一条腿,用手抓着自己的脚踝,很细心地听大家讲。
性格:温和,寡言,坚毅,聪慧。
4.作者在叙述和描写中间,插入一些抒情和议论的作用:
有助于揭示人物的性格特征,使读者更深刻地认识这四位作家。例如,对屠格涅夫与福楼拜的会面,作者议论说:“……两人常常是一拍即合,一见面,两人都不约而同地感到一种与其说是相互理解的愉快,倒不如说是心灵内在的欢乐。”这里的议论告诉读者,由于屠格涅夫同福楼拜有相同的思想、哲学观点,共同的趣味、生活和梦想,相同的文学主张、狂热的理想,共同的鉴赏能力与博学多识,因此早就超出了“相互理解的愉快”,而是“心灵内在的欢乐”,使读者对两位大作家之间的关系有更深刻的认识。
5.描写的准确而生动的词语或句子。
“就像两块同样的石头碰到一起一样,一束启蒙的火花从他的话语里迸发出来。”应该说,“迸发”一词用得准确而生动。两块石头撞击在一起,发出了火花,用“迸发”最好。
“他只用几句话,就勾画出某人滑稽的轮廓”。“勾画”与“轮廓”,搭配得好。“只用几句话”与“勾画”也前后一致。
三、课堂小结
1.本文作者抓住了四位大作家的性格特征来进行描写,今后我们在作文中,一定要学习本文的写法来刻画人物。另外,平时我们还要注意留心观察人物的一言一行、一举一动。抓住那些最能反映人物特征的表现,各有侧重地来进行描写。这样,你笔下的人物肯定会栩栩如生,活灵活现。
2.拓展延伸:
(1)出示莫泊桑头像,学生试用在记叙、描写中插入议论、抒情的写法对莫泊桑作一下肖像描写。
(2)学习本文写法,写出三位同学(或好友)的不同个性特点。
要求:①从外貌(肖像)、语言、行动三方面来写。②不少于400字。
(3)课外阅读这几位作家的作品。
【课后反思】
比例的意义教案课件11篇
老师每一堂课都需要一份完整教学课件,现在着手准备教案课件也不迟。要知道一份优秀的教案课件应当与时俱进,还需包含各个知识点。写好教案课件,你目前遇到的问题是什么呢?下面是小编精心整理的"比例的意义教案课件11篇",请收藏并分享给你的朋友们吧!
比例的意义教案课件(篇1)
教学内容
京版小学数学六年级下册第二单元第52-53页的内容
教学目标
1.理解正比例的意义.并根据正比例的意义判断两种量是不是成正比例.
2.培养学生的抽象概括能力和分析判断能力.
教学重难点
教学重点:
使学生理解正比例的意义.
教学难点:
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.
教学准备
课件
教学过程
一、创设情境,导入新课
1.课件出示:课件演示成语《水涨船高》的动画,请同学们猜猜这是一则什么成语。
提问:(1)你是怎么想到的呢?(船的高度随着水的高度而上升)
师:也就是说船的高度随着水面高度的变化而变化,在数学上,我们就把这样的两种量叫做两种相关联的量。(板书)
过渡:我们发现生活中存在着许多相关联的量,那这两种相关联的量之间有什么变化规律呢?这节课我们就来重点研究一下这个问题。
二、自主学习,小组探究
活动一:在情境中感受两种相关联的量之间的变化规律。
1.情境一:
(1)观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
(2)填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?
说说从数据中发现了什么?
(3)小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4.正方形的面积与边长的比是边长,是一个不确定的值。
说说你发现的规律。
2.情境二:(出示课件)
买同一型号的钢笔,数量和总价的关系如下图。
(1)观察图,把数据填在表中
(2)通过观察上图和填表,你发现了什么?
小结:有总价和数量,总价随着数量的变化而变化,总价和相对应数量的比值(就是单价)一定,
3.思考这个题和上面正方形的哪种情况是类似的,有什么共同的特点。
5.正比例关系:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,那么这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
6.观察思考成正比例的量有什么特征?
两种相关联的量,一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
三、基础练习,加深理解
1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2.一些人买一种苹果,购买苹果的质量和应付的钱数如下。
3.小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011爸爸的年龄/岁3233(1)把表填写完整。(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26.虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报
在老师的小结中感受并总结正比例关系的特征。
四、巩固应用,拓展提高
1.判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
2.根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是否成正比例,并说明理由。
平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)
3.买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由
应付的钱数随购买的枚数的变化而变化,而且比值不便。所以应付的钱数与买邮票的枚数成正比例。
4.找一找生活中成正比例的例子。
5.先自己独立完成,然后集体订正,说理由。
板书设计:
正比例的意义
总价支数=单价总价/支数=单价(一定)1、相关联的量或路程/时间=速度(一定)2、比值一定
y/x=k(一定)
比例的意义教案课件(篇2)
教材分析:正比例的意义是九年义务教育六年制小学浙教版第十二册第3单元的内容。这部分知识是在学生学习了除法、分数和比的知识等的基础上教学的,是本套教材教学内容的最后一个单元。教材通过实例说明两种相关联的量,一种量随着另一种量的变化而变化。一种量扩大,另一种量随着扩大;一种量缩小,另一种量也随着缩小。并且从具体的数据中看出:这两种相关联的量扩大、缩小的变化规律是它们相对应的两个数的比值(商)总是一定的,写成关系式就是:xy=k(一定)
从而给出正比例的意义。通过正比例意义的教学,向学生渗透初步的函数思想。
1、使学生掌握正比例的意义及字母表达式,会正确判断两个量是不是成正比例关系的两个量。
2、通过对比、观察、归纳、培养学生良好的数学学习习惯。
3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。正确理解正比例的意义,并能准确判断成正比例的量。为了使学生掌握好反比例的意义这部分知识,达到以上的教学目的,突破以上教学重难点,教师采用迁移法、对比法、引导法、讲解法、联系法、自主探索法来进行教学。通过本课教学,使学生学会利用旧知构建新知的方法、合作探究的方法、分析小结的方法等等。
第一部分:复习三量关系,为本节内容引路。
第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。
第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。
总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。这节课通过具体实例,借助事物表象,引导学生逐步了解数量之间的内在联系,从而发现两种相关联量的变化规律。在教学过程中,面向全体学生,创设情境,激发学习兴趣,调动学生主动探索规律的积极性,重视初步逻辑思维能力的培养。练习设计,具有坡度,深化拓宽了所学知识,有利于提高学生的思维品质。
比例的意义教案课件(篇3)
教学目标
1、结合具体情境,通过计算,能说出比例的意义,能应用比例的意义判断两个比能否构成比例。
2、通过观察、比较、小组讨论说出比和比例的区别。
3、探索国旗中蕴含的数学知识,渗透爱国主义教育。
教学过程:
一、复习旧知
1、回顾什么叫做比?什么叫做比值?怎样求比值?(指名口答)
2、出示求比值的练习,学生独立完成,并发现其中两个比的比值相等。
二、情景导入
1、师:同学们,你们已经在胜利小学度过了六年的美好时光,在即将毕业之际,老师想放大一张咱们同台表演的照片作为纪念,却出现了这三种情况(课件出示三张师生同台表演的照片,其中两张照片变形了,另一张照片按比例放大)说说你的看法。
2、师:这张没有变形的照片是老师按比例放大的,(板书“比例”两个字),这就是我们今天要学习的知识。许多新的概念都和以前学过的知识相联系,同学们猜猜,比例和什么知识有关联?(指名口答)究竟比要满足什么条件才能成为比例呢?
三、探究新知
1、出示按比例放大的两张照片的长和宽的数据,说出长和宽的比,明确按比例缩放的照片场合宽的比相等。
2、多媒体出示三面国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
师:这些形状相同,大小各异的国旗,是不是隐含着什么共同点呢?你能写出它们长和宽的比并求出比值吗?(指名板演)
3、通过计算你发现了什么?(指名口答)
4、既然比值相等,那我们就可以把这几个比用等号连接起来,(板书)同学们这就是比例,用你自己的话说说什么是比例?
5、打开书找到比例的意义,并多几遍。
6、在这三面国旗的长和宽的数据中,还有哪些数据能组成比例,自己试着写一写。(生写比例,师巡视)。指名汇报写出的比例。
四、课堂练习
1、判断哪些是比例?
指名判断,并说明理由,明确比和比例的区别与联系。
2、教材40页做一做的第一题。
先独立完成再集体订正,明确如何判断两个比是否能组成比例就是计算它们的比值,看看是否相等。
3、教材40页做一做第二题。
以小组为单位汇报写出的比例。
4、教材43页练习八第一题。
明确什么是相对应的两个量,并写出能组成的比例。
5、写出比值是4的两个比并组成比例,写出比值是0、25的两个比并组成比例。
小组比赛哪个小组写得多。
五、课外拓展
介绍黄金比例
六、作业
练习八第二题、第三题。
七、课堂小结
总结本节课的收获。
比例的意义教案课件(篇4)
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识
三、说教学过程:
课堂学习是学生学习数学知识,发展能力的重要途经,因此我进行了如下设计:复习了什么叫做比?什么叫做比值?求下面各比的比值.目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。
在新授这个环节里我设计了四个部分:第一部分是教学比例的意义,运用比例的意义进行的练习;第二部分是学习比例的基本性质,运用比例的基本性质进行的练习;第三部分运用比例的意义和基本性质进行的练习;第四部分给出四个数让学生写出比例、和给一个乘法等式写出比例。
在第一部分里,我先让学生把相等的比写成等式的形式,为揭示比例的意义做铺垫。随着学生的汇报,教师有意识的将比值相等的比写在一行上,引导学生观察每两个比之间的关系,告诉学生像这样的式子叫做比例,给学生直观的印象。让学生抽象概括出比例的意义,培养学生的思维能力。教学比例的意义后,及时组织练习。判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,培养了学生从多中角度解决问题的能力,达到了熟练运用比例的意义解决问题的能力
第二部分:六年级的学生有了一定的自学探究的能力,教师给了学生一个自学提示,使学生在自学过程中,有顺序,有目的。在汇报比例的各部分名称和基本性质时都让学生举例说明,达到全体学生都能理解的目的。比例和比的区别是小组内研究讨论的一个重要问题,学生能从意义、性质、名称上去区分,从而使学生正确的区分比和比例。
第三部分:根据比例的意义和基本性质,判断下面哪组中的两个比可以组成比例.这样的题最能提高学生运用知识的灵活性。
第四部分:用四个数组比例,学生在组的过程中没有方法和顺序,那么,在交流过程中教师去引导学生发现方法,总结规律,使学生不仅要把题做对,而且要善于总结方法,指导自己更好的去做题。有了这道题,在下一题中,让学生通过一个乘法算式改写成比例式,就稍微容易些了,让小组内交流方法,培养学生善于总结的能力。
在课堂小结中让学生说出本节课印象最深的是什么,目的是让学生对本节课的重点有一个回顾过程,加深学生的印象。
课后练习中出了一个比灵活的开放题,目的是提高他们的综合用能力。让学有余力的学生有思维的空间。
比例的意义教案课件(篇5)
教学目标:
1、 使学生理解并掌握比例的意义,认识比例的各部分名称,探究比例的基本性质,学会应用比例的意义和基本性质判断两个比是否能组成比例,并能正确的组成比例。
2、 培养学生的观察能力、判断能力。
教学重点:
比例的意义和基本性质
学 法:
自主、合作、探究
教学准备:
课件
教学过程:
一:创设情境,导入新课
1、 谈话,播放课件,引出主题图
师:这节课我们上一节数学课,这节数学课有很多有趣的知识等待着同学们去探索和发现呢!同学们你们有信心接受挑战吗?
(播放视频,生观察,并说看到的内容)
师:看到这些画面你的心情怎么样?(激动、兴奋、骄傲、自豪……)
师:是啊,老师和你们一样,每当听到雄壮的国歌声,看见鲜艳的五星红旗,老师的心情也十分激动,国旗是我们伟大祖国的象征,是神圣的。
问:画面上这几面国旗有什么不同?(大小不一样)
师:虽然这几面国旗大小不一样,但是长和宽的比值都是一样的,这节课我们就来研究有关比例的知识。(板书:比例)
(课件出示主题图,让学生说出长和宽各是多少)
问:你能根据这些国旗的长和宽的尺寸,写出长与宽的比,并求出比值吗?请同学们先写出学校内两面国旗长与宽的比,并求出比值。(生动手写比、求比值)
二、引导探究,学习新知
1、比例的意义
(生汇报求比值的过程)
师:请同学们观察你求出的学校内两面国旗的比值,你有什么发现?(这两个比的比值相等)
师:这两个比的比值相等,我用“=”把这两个比连起来,可以吗?(可以)
师:从图上四面国旗才尺寸中你还能找出哪些比求出比值,也写成这样的等式呢?请同学们自己动笔试一试(生动手写比,求比值,写等式,并汇报)
师:指学生汇报的等式小结,像这样由比值相等的两个比组成的等式就是比例,谁能概括出比例的意义?(板书课题,生汇报,是板书意义)
问:判断两个比是否能组成比例,关键看什么?(关键看它们的比值是否相等)
(小练习,课件出示)
2探究比例的基本性质
(1)自学比例的名称
师:小结通过刚才的学习,我们理解了比例的意义,那么在比例中各部分名称是怎样的,各部分名称与各项在比例中的位置又有什么关系呢?打开书34页,自学34也上半部分,比例各部分的名称。(生自学名称,汇报,师板书名称)
(2)合作探究比例的基本性质
师:同学们,你们知道吗?在比例的内项和外项之间还存在着一个有趣的特性呢!你们想去发现这个特性吗?接下来就请同学们以小组为单位合作探究比例的基本性质。(板书:比例的基本性质) 课件出示小组合作学习提示,指名读,各小组派一名代表汇报合作学习发现的规律。
师:是不是所有的比例都具有这样的特性呢?分组验证课前写出的比例式。
师:问想一想,判断两个比能不能组成比例除了根据比例的意义去判断外还可以根据什么去判断?(生回答:根据比例的基本性质)
师:如果把比例改写成分数形式是什么样的?生回答。根据比例的基本性质,等号两边的分子和分母之间又有什么关系呢?生回答,师板书
三、巩固练习(见课件)
四、汇报学习收获
比例的意义教案课件(篇6)
教学内容:
课本第1~2页例1、例2,练习一第1、2、3题,比例的意义和基本性质。
教学目的:
1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。
2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。
教学重点:理解比例的意义和基本性质。
教学难点:应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
教学关键:
观察众多的实例,概括出比例意义的过程;找出在比例里两个内项的积与两个外项的积相等的规律。
教具:投影片、小黑板
教学过程:
一、谈话导入,创设情境
(一)教师出示投影,结合画面谈话引入。
师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆960万平方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
教师板书课题:比例的意义和基本性质。
(二)让学生完成教材第1页复习题,根据学生回答教师板书:10:6=4.5:2.7。
二、自主探究,学习新知
(一)教学比例的意义
1.合作互动,探求共性。
先让学生在小组活动中完成“活动内容1”。
活动内容1:
(1)根据表中给出的数量写有意义的比。
(2)观察写出的比,哪些比能用等号连接,为什么?
(3)根据比与分数的关系,这样的式子还可以怎样写?
然后让学生汇报活动情况,小学数学教案《比例的意义和基本性质》。结合学生回答,教师任意板书几个比例式。(如80:2=200:5, = ,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。
2.抽象概括,及时巩固。
(l)教师指导学生观察以上比例式,概括出共性。
(2)让学生用自己的语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。
(3)完成第2页“做一做”,并说明理由。
(4)让学生自己举出两个比例,并说明理由。
(二)教学比例的基本性质。
1.认识比例各部分名称。
(l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。
(2)让学生观察自己刚才举的比例,找出它的内项、外项。
(3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:
2.引导学生发现比例的基本性质。
(1)让学生小组活动完成以下活动内容2:
活动内容2:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②如果把比例写成分数形式,是否也有如上面发现的规律?
③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
④通过以上研究,你发现了什么?
(2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。
(3)指导学生概括出比例的基本性质,并完成板书。
三、分层练习,辨析理解
1.完成练习一第1题区别比与比例。
2.先让学生解答第2页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。
3.完成练习一第2题。
4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。
2、3、4和6
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
练习一第3题。
比例的意义教案课件(篇7)
【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第32-33页例1及“做一做”。
【教学目标】
1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。能根据不同要求,正确的列出比例式。
2、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。
【教学重点】比例的意义。
【教学难点】求比值判断两个比能否组成比例,并能正确地组成比例。
【教学准备】多媒体课
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做比例?
表示两个比相等的式子叫做比例。
2、今天是星期天,小瑜和小丽一起到文具店去买东西。
(1)小瑜用12元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?
(2)反馈:
①谁买的本子便宜些?说说你的理由。
②还有别的方法吗?
③这两个比能组成比例吗?为什么?
二、关键点拨
1、比例的意义。
出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)25
路程(千米)80200
根据表中的数量你能写出几个比例?你是怎么想的?他们的比值分别表示什么?
2、小结:判断两个比能否组成比例,最关键是看什么?
3、比和比例有什么区别?
生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
三、巩固练习
1、下面哪组中的两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。
2、独立完成“做一做”第2题后反馈交流。
3、5:8和1:5这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?
反馈:
(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。
(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?
四、分享收获畅谈感想
这节课,你有什么收获?听课随想
比例的意义教案课件(篇8)
教学内容:教科书第1921页正比例的意义,练习六的13题。
教学目的:
1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。
2.初步培养学生用事物相互联系和发展变化的观点来分析问题。
3.初步渗透函数思想。
教具准备:投影仪、投影片、小黑板。
教学过程:
一、复习
用,投影片逐一出示下面的题目,让学生回答。
1.已知路程和时间,怎样求速度板书:=速度
2.已知总价和数量,怎样求单价板书:=单价
3.己知工作总量和工作时间,怎样求工作效率板书:
=工作效率
4,已知总产量和公顷数,怎样求公顷产量板书:=公顷产量
二、导人新课
教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)
三、新课
1.教学例1。
用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:
提问:
谁来讲讲例1的意思(火车1小时行驶60千米,2小时行驶120千米)
表中有哪几种量
当时间是1小时,路程是多少当时间是2小时,路程又是多少
这说明时间这种量变化了,路程这种量怎么样了(也变化了。)
教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢
教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢
让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来:=60.=60,=60让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。
然后教师指着=60,=60=60问:比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗板书:=速度(定)
教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量(两种相关联的量。)路程和时间这两种量的变化规律是什么呢(路程和时间的比的比值(速度)总是一定的。)
2.教学例2。
出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
让学生观察上表,并回答下面的问题:
(1)表中有哪两种量
(2)米数扩大,总价怎样米数缩小,总价怎样
(3)相对应的总价和米数的比各是多少比值是多少
当学生回答完第二个问题后,教师板书:=3.1,=3.1,=3.1
然后进一步问:
这个比值实际上是什么你能用一个关系式表.示它们的关系吗板书:=单价(一定)
教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。
3.抽象概括正比例的意义。
教师:请同学们比较一下刚才这两个例题,回答下面的问题;
(1)都有几种量
(2)这两种量有没有关系
(3)这两种量的比值都是怎样的
教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第20页的倒数第二段。)
接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量为什么
最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?
学生回答后,教师板书:=K(一定)
4,教学例3。
出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例
教师引导:
面粉的总重量和袋数是不是相关联的量
面粉的总重量和袋数有什么关系它们的比的比值是什么这个比值是否定(板书:=每袋面粉的重量(一定))
已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。
5.巩固练习。
让学生试做第21页做一做中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。
四、课堂练习
完成练习六的第13题。
第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)
第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。
比例的意义教案课件(篇9)
一、教学简介:
分析路程和时间是两种相关联的量,并且是相互关联的变量。用数量关系式揭示其规律,使学生逐步认识成正比例量的特点,初步理解正比例的意义。
二、教学目标:
1.用实例认识成正比例的量的过程,理解正比例的意义
2.学会根据正比例的意义判断两种相关联的量是否成正比例。
3.体会数量之间相依互变的关系
4.探索生活现象中的数学知识,增强发现数学规律的意识。
三、教学重点:
1.理解两种量是否相关联
2.正比例的意义。
四、教学难点:
判断两种相关联的量是否成正比例。
五、教学过程:
1、向学生提出以下问题。
(1)甲地到乙地的路程是80千米
(2)苹果每千克6.5元
(3)妈妈买6千克苹果
(4)小张骑摩托车从甲地到乙地需要2小时
(5)小红每分钟打字120个
2、提问学生解决时用了什么样的数量关系式?
这些数量之间有什么联系?
为什么第五个条件不能与上面的条件发生联系?
3、组织学生自主学习或小组讨论。
4、全班对小组讨论内容进行交流。
结论总结:路程和时间是两种相关联的量,时间变化,路程也随着变化。
当速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
5、拓展延伸
把已知的正方形按怎样的比放大?放大后正方形的边长各是几厘米?再让学生在图上画一画。组织学生讨论,明确:随着正方形面积的变化,正方形的边长也在变化,这里的边长不是一个确定的值,也就是正方形面积与边长的比不是一个确定的值,所以正方形面积与边长不成正比例。只有当两种相关联的量的比值一定时,也就是正方形的周长与边长的比是4一定时,它们才能成正比例。
你能根据下面各组相关联的量,分别组成两个正比例关系式吗?
(1)单价、数量和总价。
(2)筑路总米数、筑路天数和每天筑路米数。
六、教学结束:
要求学生每人回去搜寻一道正比例的试题,下节课进行个人讲解。
比例的意义教案课件(篇10)
教学目标:
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:
成正比例的量的特征及其判断方法。
教学难点:
理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.
教 法:
启发引导法
学 法:
自主探究法
教 具:
课件
教学过程:
一、定向导学(5分)
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
4、导入课题
今天我们来学习成正比例的量。
5、出示学习目标
1、理解正比例的意义。
2、能根据正比例的意义判断两种量是不是成正比例。
二、自主学习(8分)
自学内容:书上45页例1
自学时间:8分钟
自学方法:读书法、自学法
自学思考:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
2、正比例关系式是什么?
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。
(2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的量,二是一种量变化另一种量也随着变化,三是比值(商)一定
(3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
y/x=k(一定)
(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。
2、归类提升
引导学生小结成正比例的量的意义和关系式。
三、合作交流(5分)
第46页正比例图像
1、正比例图像是什么样子的?
2、完成46页做一做
3、各组的b1同学上台讲解
四、质疑探究(5分)
1、第49页第1题
2、第49页第2题
3、你还有什么问题?
五、小结检测(8分)
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测
1、49页第3题。
六、堂清作业(9分)
练习九页第4、5题。
板书设计:
成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
关系式:
y/x=k
(一定)
今日课件: 小数的意义教案(篇三)
大家对教案都很熟悉了吧,教案也是老师教学活动的依据,用心编写教案才能促进我们的教学进一步发展,教案要写哪些内容呢?下面是小编为大家整理的“今日课件: 小数的意义教案(篇三)”相关内容,仅供参考,欢迎大家阅读。
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重难点:理解小数的意义和小数的计数单位。
教具准备:米尺、课件。
教学过程:
一、回顾导入
1.读一读信息(课件出示)想一想,这样写符合实际吗?
(1)老师的体重是565千克。
(2)小明的身高是145米。
(3)笑笑的数学测验成绩是935分。
2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?
3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。
二、探索新知识
1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?
指名测量,其他同学观看。
2.汇报测量结果。
3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。
4.出示米尺图。
上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?
5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?
十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?
6.出示米尺。
指着板书:有什么新发现?学生汇报。
7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?
让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。
学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。
8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。
小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……
进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。
三、巩固练习
第一层练习:分数小数互化。
第二层练习。
1.填空
(1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。
(2)1里面有( )个0.1和( )个0.01。
(3)0.52是由( )个0.1和( )个0.01组成的。
2.判断:
(1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )
(2)1毫米写成小数是0.01米。 ( )
第三层练习: 猜数游戏。
小明和小红的数各是多少?
四、总结
师生共同回顾本节课内容。
反思:
“小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。
小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。
在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。
引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。
最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。
反思这节课,也有一些地方预设的不够充分:
1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。
2.练习量较大,没有考虑学生实际。
“课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!

手机端
收藏


