排列3__万能通用篇
发表时间:2022-01-1410.2排列第三课时教学目标:能把一些简单问题中的具体的计算“个数”问题转化为排列,以及排列数的计算,从而解决一些简单的排列问题.教学过程:【设置增境】问题1什么叫做排列?问题2什么叫做排列数?排列数的公式是怎样的?(由一名学生回答,教师纠正,引入新课.)我们已经从分析具体的例子出发,得到了排列的概念,推导了排列数的公式,具备了一定的计算能力,就是说掌握了有关排列的一些基础知识.那么,如何运用这些知识来解关于排列的简单应用题呢?【探索研究】例1某年全国足球甲级(a组)联赛共有14个队参加,每队都要与其余各队在主、客场分别比赛一次,共进行多少场比赛?分析:很明显,这个问题可以归结为排列问题来解,任何2队间进行一次立场比赛和一次客场比赛,对应于从14个元素中任取2个元素的一个排列,因此总共进行的比赛场次数等于排列数.解:(场)答:共进行了182场比赛.教师归纳.(投影出示)在解排列应用题时,先要认真审题,看这个问题能不能归结为排列问题来解,如果能够的话,再考虑在这个问题里:(1)n个不同元素是指什么?(2)m个元素是指什么?(3)从n个不同元素中取出m个元素的每一种排列,对应着什么事情?要充分利用“位置”或框图进行分析,这样比较直观,容易理解.例2(l)有5本不同的书,从中选3本送给3名同学,每人1本,共有多少种不同送法?(2)有5种不同的书,要买3本送给3名同学,每人1本,共有多少种不同的送法?解:(l)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同的送法种数是
(2)由于有5种不同的书,送给每个同学的书都有5种不同的方法,因此送给3名同学每人1本书的不同方法的种数是Jk251.com
答:略.(教师点评这两道题的区别.)例3某信号共用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示,每次可以任挂l面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?解:如果把3面旗看成3个元素,则从3个元素中每次取出1个、2个或3个元素的一个排列对应一种信号.于是,用1面旗表示的信号有种,用2面旗表示的信号有种,用3面旗表示的信号有种.根据分类计数原理,所求信号的种数是
++=15.教师点评:解排列应用题时,要注意分类计数原理与分步计数原理的运用.【演练反馈】1.4辆公交车,有4位司机,4位售票员,每辆车上配一位司机和一位售票员,问有多少种不同的搭配方案?2.由数字1,2,3,4,5,6可以组成多少个没有重复数字的正整数?3.20位同学互通一封信,那么通信的次数是多少?【参考答案】1.提示:种2.提示:个3.提示:次【总结提炼】排列问题与元素的位置有关,解排列应用题时可从元素或位置出发去分析,结合框图去排列,同时注意分类计数原理与分步计数原理的运用.布置作业:1.课本p95练习5,6.2.从4种蔬菜品种中选出3种分别种在不同土质的3块土地上进行试验,共有多少种不同的种植方法?
jk251.cOm扩展阅读
万能通用篇
第一章集合与简易逻辑
第一教时
教材:集合的概念
目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。
过程:
一、引言:(实例)用到过的“正数的集合”、“负数的集合”
如:2x-1>3x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合0,1,2,3,……
如:高一(5)全体同学组成的集合。
结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示:{…}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N*或N+
整数集Z
有理数集Q
实数集R
集合的三要素:1。元素的确定性;2。元素的互异性;3。元素的无序性
(例子略)
三、关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作aÎA,相反,a不属于集A记作aÏA(或aÎA)
例:见P4—5中例
四、练习P5略
五、集合的表示方法:列举法与描述法
列举法:把集合中的元素一一列举出来。
例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}
例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}
描述法:用确定的条件表示某些对象是否属于这个集合的方法。
1语言描述法:例{不2是直角三角形的三角形}再见P6例
3数学式子描述法:例不4等式x-3>2的解集是{xÎR|x-3>2}或{x|x-3>2}或{x:x-3>2}再见P6例
六、集合的分类
1.有限集含有有限个元素的集合
2.无限集含有无限个元素的集合例题略
3.空集不含任何元素的集合F
七、用图形表示集合P6略
八、练习P6
小结:概念、符号、分类、表示法
九、作业P7习题1.1
能源 万能通用篇
单元练习C组
一、填空题
1.电子的发现把人们带入了原子内部的世界,________的发现把人们带入了原子核内部的世界。
2.利用放射线的________能力,可以用来检查金属内部是否存在裂缝。
3.α粒子就是________原子的原子核,它是由________个质子和________个中子组成的。
4.重的原子核分裂成几个质量较小的原子核的变化,叫做________,几个轻的原子核聚合成一个质量稍大的原子核的变化,叫做________。
5.太阳灶是将太阳能直接转化成________能,硅光电池是将太阳能直接转化成________能,绿色植物的光合作用是将太阳能转化成________能。
6.太阳内部进行着大规模的________变,释放出的核能以________形式从太阳辐射出来。
二、选择题
7.下面各组能源中都属于常规能源的是[]
A.煤、石油和潮汐能。
B.天然气、水能及地热能。
C.核能、太阳能及水能。
D.煤、石油及天然气。
8.原子弹和核电站的根本区别是[]
A.原子弹利用核裂变,核电站利用核聚变。
B.原子弹利用核聚变,核电站利用核裂变。
C.原子弹对裂变的链式反应不加控制,核电站控制裂变的链式反应速度。
D.原子弹对聚变的链式反应不加控制,核电站控制聚变的链式反应速度。
9.十分巨大的新能源是[]
A.核能和太阳能。B.化石燃料与水能。
C.核能和潮汐能。D.太阳能与地热能。
三、计算题
10.地球表面所受太阳辐射热为75600J/dm2,阳光经过一个直径为1m的太阳灶曲面,20min能接受多少太阳能?它相当于完全燃烧多少干木柴所产生的热量?
单元练习C组答案
1.放射性现象2.穿透3.氢,2,2
4.裂变,聚变5.内,电,化学6.聚,电磁波
7.D8.C9.A
10.1.18×106,0.1kg。

手机端
收藏


