积的近似数教案
发表时间:2024-03-03最新积的近似数教案11篇。
经过精心的思考栏目小编为您整理了“积的近似数教案”。教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师都要用心的考虑自己的教案课件。教案是展现教师专业素质和知识水平的重要手段。建议您将本网页收藏以便随时学习!
积的近似数教案(篇1)
学会把较大的整数改写成以“万”或“亿”作单位的小数。
重点:把较大数改写成以“万”或“亿”作单位的小数。
难点:把较大数改写成以“万”或“亿”作单位的小数,容易丢掉计数单位或单位名称。
为了读写方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数
1、学习例2:
(1)提问:把384400 km改写成用“万千米”作单位的数,应该用多少来除?
(2)应该把384400缩小多少倍?
(3)小数点应该向哪个方向移动几位?
(4) 启发提问:既然把一个数改写成以“万”作单位的数,只要在万位后面点上小数点,再写上单位“万”,那么要把一个数改写成以“亿”作单位的数,应该怎么办?
出示数据和问题:木星离太阳的距离是多少亿千米(保留一位小数)?
(1)独立完成,并说出改写方法。
4、区别对比。
例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?
5、小结:
(1)求近似数需要省略某位后面的尾数。保留整数,表示精确到个位,就要看十分位是几,然后按照“四舍五入”法决定是舍还是入。求出的.是近似数,应用“≈”表示,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。最后要注意别忘记写单位“万”或“亿”,遇有单位名称的要写上单位名称。
(2)把一个数改写成以“万”或“亿”作单位的数,求的是准确数,就在“万”或“亿”位后面点上小数点,小数末尾的0要去掉,遇有单位名称的要写上单位名称,应用“=”表示,并写上单位“万”或“亿”。
积的近似数教案(篇2)
一.教学内容:
求出积的近似数和有关它的一些内容。
二.教学目的:
(1)进一步巩固小数乘法计算。
(2)根据要求,会用“四舍五入法”取积的近似值。
(3)体会“四舍五入法”是解决实际问题的重要工具,培养学生的实践能力和思维的灵活性。
三.教学重、难点:
重点:应用“四舍五入法”取积的近似数。难点:要根据实际
需要求出积的近似值。
四.教学过程:
(一).复习:
1.保留一位小数
2.34 5.68
2.保留两位小数
4.256 34.708
3.保留整数
5.67 6.502
(二).导入课:
1.老师出示几个语句,你知道那些句子表达是准确数,哪些是近似数。你是根据句中的哪些字词来判断的呢?
(1)我们班有28人
(2)这个箱子里大约有23个苹果。
(3)小明的身高是172厘米,体重约60千克。
2.我们生活中有时需要很准确的数字,但是有些时候往往不需要知道很精确的数字,只需要知道它们的近似值就可以了,那我们一般用什么方法来取近似值生:四舍五入法
3.师:现在就用“四舍五入法”求出小数的近似值。保留整数保留一位小数保留两位小数2.095 4.307思考并回答:怎么样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,去它们的近似值?按要求,它们的近似值各应是多少?
4.揭题谈话:在实际应用中,小数乘法乘得积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似数。
板书:积的近似数
(三).探求新知:
1.出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45狗约有多少亿个嗅觉细胞?(得数保留一位小数)
(1)读题,找出已知所求,列式计算,板书:0.04945
(2)指明板演,集体订正。
(3)按要求,积保留一位小数,怎么保留?结果怎样?
0.49 ×45 ≈ 2.2(亿个)
师:今天我们学习了用四舍五入法取积的近似数,那么谁来归纳一下?生答,互相补充,归纳概括:我们求积的近似数时,首先求出积的准确值,然后明确要保留的小数位数,再看比要保留的小数位数多一位上的数字,按“四舍五入”法截取积的近似数。
(四).巩固练习:
1.填空题:
(1).积是4.56保留一位小数( )
(2).积是6.075保留两位小数( )
(3).积是45.9保留整数( )
2.要完成第10页的“学一学”
(五).小结:
四舍五入法:
0------4要舍去。
5------9向前进一位,再舍去。
(按着要求再用“四舍五入法”)
五.布置作业:
第13页1 . 2
教学反思:
(一).优点:
(1)从实际问题中取材,使学生更快进入新知学习中,也能让学生体会源于实际生活而且于生活,激发学生学习的兴趣。
(2)在出示图片后让学生自己提取信息、提问、解答,意在培养学生提取信息、分析问题、解决问题的能力。
(二)不足:
(1)引入太冗长,“四舍五入法”是四年级所学的内容,对五年级学生来说不是难点,因此可以直接入题。重难点把握不是很准确,没能很好分析学生的学情。
(2)内容过于简单,不够充实,练习的时间过长了。可以再根据生活中实际情况深入内容,渗透“进一法”和“去尾法”。
(3)在上课时,由于自身经验不足,在对及时抓住学生的反馈给予及时的评价和引申方面有很大欠缺,比如:我在问学生你们想付给他多少钱时,学生的答案很多,有的说6元,有的说6.1元,这些我都没能及时抓住学生的反馈,完美地结合实际生活进行教学。
(4)在巩固练习的习题设置上不懂得延伸,2、3两题设计意图有点重复,其实可以直接用其一进行延伸。
积的近似数教案(篇3)
目标确定依据:结合具体情境,学会求商的近似数
教材分析:
求商的近似数是第二单元的内容,是在学习小数除法的基础上学习的。小数除法有时会出现除不尽的情况,还有商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。因此这部分内容的教学很重要。在本册前面,已经学过用“四舍五入法”求一个小数的近似值,以及求小数乘法的积的近似值,本节课通过学习应用题,让学生体验求商的近似数的必要性。让学生自己想一想,怎样取商的近似值。
学情分析
由于本学段的学生年龄多在9—11岁,富于形象直观思维,但他们都有比较强烈的自我发展意识和表现欲望,在学习素材的选取和呈现、学习内容和活动的安排上,一定要想方设法给学生提供“做数学”的机会,让他们在数学活动中表现自我、发展自我,感受到数学学习活动有意义、很重要、可以做。在这些过程中,初步学习数学思考的方法,形成从不同的角度分析同一个问题的辩证思考问题的能力
教学内容:教科书第23页的例7和“做一做”中的题目。
学习目标:
1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.
2、提高学生的比较、分析、判断的能力。
评价任务
1、结合具体事例根据实际需要用“四舍五入”来求小数的近似数.
2、通过学习提高学生的比较、分析、判断的能力。
教学重点:掌握求商的近似值的方法。
教学难点:比较求商的近似值与求积的近似值的异同。
教学过程:
一、复习
1.按“四舍五入法”,将下列各数保留一位小数.
3.724.185.256.037.98
2.按“四舍五入”法,将下列各数保留两位小数.
1.4835.3478.7852.864
7.6024.0035.8973.996
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
二、新课
1.教学例6.
教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)
教师问:保留一位小数,应该等于多少?表示计算到“角”。
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)
2.做第23页“做一做”中的题目.
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
教师问:你解题时用了什么技巧?
三、巩固练习
1、求下面各数的近似数:
3.81÷732÷42246.4÷13
2、书上的作业。
积的近似数教案(篇4)
教材分析
本节课是在学生已掌握小数除法基本计算方法的基础上进一步教学的。以人民币的计量单位引出商的近似数,说明求商的近似数在实际应用中的作用。通过用近似数表示钱数,掌握求商的近似数的方法,为后面学习循环小数作铺垫,为学生今后的学习打下基础。
学情分析
传统教学的种种封闭压抑了学生个性的发展,学生迫切需要一种展现自我,发展个性的体验式学习。教师只有创造性的教,学生才能创造性的学。用动态的眼光钻研教材,营造体验式的学习氛围,学生深刻体验了数学学习的过程,并获得了积极的情感体验,最大限度促进了自身发展。
教学目标
1、使学生学会用“四舍五入”法取商的近似数,能结合实际情况用“进一法”或“去尾法”取商的近似数。
2、培养学生的.实践能力和思维的灵活性,培养学生解决实际问题的能力。
3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学重点和难点
教学重点:使学生知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。
教学难点:能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学过程
一、复习
1.按“四舍五入法”,将下列各数保留一位小数.
6.03 7.98
2.按“四舍五入”法,将下列各数保留两位小数.
8.785 7.602 4.003 5.897 3.996
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
3. 计算0.38×1.14(得数保留两位小数)
二、新课
1.教学例7:
教师出示例横式应该怎样写出?教师板书.
教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)
我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?
2.P23做一做:
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
师:解题时用了什么技巧?
三、巩固练习
1、求下面各题商的近似数:
3.81÷7 32÷42 246.4÷13
题。
四、作业:P题、第11题。
积的近似数教案(篇5)
教学目标:
1、使学生会用“四舍五入”法截取商是小数的近似值,了解掌握这一方法的必要性,并培养学生解决实际问题的能力。
2、学生通过自主探索和合作交流等方式,经历探索求商的近似值的方法,培养学生运用所学知识灵活解决问题的能力。
3、使学生感受到数学知识在生活中的广泛应用。
教学重点:使学生会用“四舍五入”法截取商是小数的近似值。
2、用四舍五入法求表中各数的近似值。
3、小结:
保留整数(精确到个位),看十分位上的数决定舍还是入。
保留一位小数(精确到十分位),看百分位上的数决定舍还是入。
保留两位小数(精确到百分位),看千分位上的数决定舍还是入。
保留三位小数(精确到千分位),看万分位上的数决定舍还是入。
1、教学例7。
用多媒体课件出示例7的情景图,引导学生观察并说出图意。
3、集体交流。
5、全班独立完成,指名板演。
6、小结:计算小数除法,需要求商的近似值时,一般先除到比需要保留的小数位数多一位,再按照“四舍五入”法求商的近似值。
1、完成 P23 “做一做”。
2、妈妈用20元钱买了6.4千克苹果,每千克苹果售价多少元?
3、现在有苹果32吨,如果东风牌汽车每次只能运5吨,32吨苹果要几次才能运完?
引导学生理解在运送货物时,最后一次所剩的货物无论是多少,都必须运送。因此,在这种情况下,需要用“进一法”。
4、现有布料60尺,若做一套衣服需布料16尺,60尺布料可做几套衣服?
引导学生理解0 .75 米布是做不成一套衣服的。所以不能用“四舍五入”法约等于4。只能取近似数3了。这种方法叫做“去尾法”
五、课堂总结:在这节课上,给你留下印象最深的是什么? 你还有什么需要帮助解决的问题吗?
2、找一找我们的日常生活中会遇到哪些近似数。
积的近似数教案(篇6)
教学内容:
教材第11、12页
教学目标:
1、经历生活数据收集的过程,理解近似数表示的必要性。
2、探索“四舍五入”求近似数的方法。
3、能根据实际情况,灵活运用不同精确值的近似数。
教具准备:
相关数据资料,学生课前搜集的数据。
教学重点:
会正确读、写多位数,并能比较数的大小。
教学过程:
一、小组交流收集的有关森林面积方面的数据。
交流收集的有关森林面积方面的数据,并说说这些数据的实际意义。在此基础上引导学生对数据进行分类,在各种分类中重点讨论精确数与近似数这两类数的特点,并让学生再举例说一说日常生活中接触的近似数。
二、用四舍五入法取近似数
出示说一说中的数据,使学生通过比较、分析,了解四舍五入法取近似数的方法。结合是试一试第2题的讨论,体会如何根据不同需要求近似数。
三、巩固与应用
做试一试第1题:汇报时说说取近似值的方法。
试一试第2题:在实际生活中常常需要根据情况取不同精确程度的近似数。在本题中,可先让学生说一说三个近似值的精确程度,再出示下面的两个小问题,供学生讨论。在讨论时重点让学生理解取近似值是根据实际的需要来确定的。
讨论:重点可讨论括号内的数字有几种可能性,分析哪些是“五入的”,哪些是“四舍的”。
四、课堂作业新设计
1、教材第12页底1题。
2、教材第12页第2题。
3、教材第12页第3题。
五、思维训练
括号里能填几?
49()835≈50万、49()835≈49万
积的近似数教案(篇7)
一、素质教育目标
(一)知识教学点
1.使学生理解近似数和有效数字的意义
2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字
3.使学生了解近似数和有效数字是在实践中产生的.
(二)能力训练点
通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.
(三)德育渗透点
通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想
(四)美育渗透点
由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.
二、学法引导
1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识
2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习
三、重点、难点、疑点及解决办法
1.重点:理解近似数的精确度和有效数字.
2.难点:正确把握一个近似数的精确度及它的有效数字的个数.
3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片
六、师生互动活动设计
教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.
七、教学步骤
(一)提出问题,创设情境
师:有10千克苹果,平均分给3个人,应该怎样分?
生:平均每人千克
师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?
生:不能
师:哪怎么分
生:取近似值
师:板书课题
2.12近似数与有效数字
【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性
(二)探索新知,讲授新课
师出示投影1
下列实际问题中出现的数,哪些是精确数,哪些是近似数.
(1)初一(1)有55名同学
(2)地球的'半径约为6370千米
(3)中华人民共和国现在有31个省级行政单位
(4)小明的身高接近1.6米
学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.
师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?
启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.
以开始提出的问题为例,揭示近似数的有关概念
板书:
1.精确度
2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.
例如:3.3?有二个有效数字
3.33?有三个有效数字
讨论:近似数0.038有几个有效数字,0.03080呢?
【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②
例1.(出示投影2)
下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?
(1)43.8(2).03086(3)2.4万
学生口述解题过程,教者板书.
对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.
【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.
巩固练习见课本122页练习2、3页
例2(出示投影3)
下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?
学生活动,教者不给任何提示,请三位同学板演(基础较差些的做第一小题,基础较好的做第二、三小题)其余学在练习本上完成,请一优秀学生讲评同桌同学互相检查评定.
【教法说明】①通过本例的教学,学生能进一步把握近似数的精确度和有效数字的概念,②通过分层板演,学生点评,能提高所有学生的积极性,每个层次的学生都得到发展
(三)尝试反馈,巩固练习
(出示投影4)
一、填空
1.某校有25个班,光的速度约力每秒30万千米,一星期有7天,某人身高约1.65米,远些数据中,准确数为_________,近似数为____________
2.近似数0.1080精确到__________位,有_________个有效数字,分别是____________
二、下列各近似数,各精确到哪一位,各有哪几个有效数字:
1 32.02 1.5万3
学生活动:学生抢答:
【教法说明】抢答培养学生的竞争意识.
(四)归纳小结
师生共同小结
(1)有效数字的意义及两个注意点;
(2)带单位的近似数(为2.3万)和用科学记数法表示的近似数的精确度和有效数字的求法.
八、随堂练习
1.判断下列各题中的效,哪些是准确数,哪些是近似数?
(1)小明到书店买了10本书
(2)中国人口约有13亿
(3)一次数学测验中,有5人得了100分
(4)小华体重约54千克
2.填空题
(1)3.14精确到________位,有_________有效数字
(2)0.0102精确到_________位,有效数字是__________
(3)精确到__________位,有效数字是___________
3.选择题
(1)下列近似数中,精确到千位的是()
A.1.3万B.21.010
C.1018D.15.28
(2)有效数字的个数是()
A.从右边第一个不是0的数字算起
B.从左边第一个不是0的数字算起
C.从小数点后的第一个数字算起
D.从小数点前的第一个数字算起
九、布置作业
课本第124页A组l.
十、板书设计
积的近似数教案(篇8)
教学目的:
1.使学生学会比较亿以内数的大小;
2.使学生学会将整万的数改写成用万作单位的数;
3.使学生学会用四舍五入法把一个亿以内的数的万位后面的尾数省略,求出它的近似数。
教具准备:
学生每人准备一把算盘。
教学过程:
一、教学比较数的大小
1.复习。
让学生在○里填上>、<或=。
999○1010601○564687○678
指名学生说一说各是怎样比较的。引导学生说出四位数与三位数比较,四位数比三位数大;两个三位数比较,百位上数大的那个数就大;百位上的数相同,十位上数大的那个数就大。
2.导入新课
教师:刚才我们复习了比较万以内数的大小,下面我们来学习比较亿以内数的大小。
板书课题:比较数的大小。
3.教学例5.
(1)比较第一组数:99864和101010.
①让学生把这两个数拨在算盘上,然后提问
99864是几位数?
五位数的最高位是什么位?99864有几个万?
101010是几位数?
六位数的最高位是什么位?101010有几个万?
这两个数谁大谁小?为什么?
学生回答后,再让他们说说是怎样比较的。
②接着再出一组数;56720xx和88320,让学生比较它们的大小,井说一说是怎样比较的。
③提问
从刚才两组数的比较中,可以看出比较不同数位的两个数的大小要怎样比较?让学生结合例题说明。
使学生明确:比较亿以内数的大小和比较万以内数的大小一样,如果位数不同,那么位数多的那个数就大。
(2)比较第二组数:356000和360000。
①指名学生读出这两个数,然后提问
356000是几位数?
360000是几位数?
位数相同的两个数比较大小,该怎样比较呢?
启发学生想:在比较万以内数的大小时,当两个数的位数相同,左起第一位上的数也相同时,要比较左起第二位上的数。现在这两个数位数相同,左起第一位上的数也相同,就应该比较左起第二位上的数。
然后引导学生进行比较,第一个数万位上是5比第二个数万位上的6小,所以356000<360000。
②再出一组数:43200和43O00,让学生比较它们的大小,并说一说是怎样比较的。
③提问
从刚才两组数的比较中,可以看出,比较位数相同的两个数的大小是怎样比较的?
让学生结合例题加以说明,使学生明确:比较位数相同的两个数的大小,应从左起第一位比起,左起第一位上的数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数
(3)总结比较亿以内两个数大小的方法。
提问
比较两个数的大小有几种情况?
位数不同的怎么比较?位数相同的怎么比较?
教师根据学生的回答加以概括;比较两个数的大小,如果位数不同,那么位数多的那个数就大;如果位数相同,左起第一位上的数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数
(4)做例5下面第一个做一做中的题。
让学生根据总结出的比较方法,比较每组中两个数的大小,并说一说是怎样比较的。
比较两个数的大小时,要提醒学生区别数位与位数,使学生明确:数位是指一个数中的数字所占的位置。如9357中的5在右起第二位,即5所在的数位是十位。位数是指一个数是用几个数字写出来的(最左端的数字不能是零),有几个数字就是几位数。如9357是四位数。
二、教学把整万的数改写成用万作单位的数。
1.教师板书出:50000和1800000。
让学生读出来。
教师指出:这两个数都是整万的数,为了读、写简便,我们常常把整万的数改写成用万作单位的数。
然后教师讲解改写方法:万位在右起第五位,整万的数万位后面有4个0。把4个0去掉,加上一个万字就行了。
随后教师把50000改写成用万作单位的数,并在50000的下面板书:5万。
然后让学生把1800000改写成用万作单位的数,并说一说改写的方法。
2.做第10页最下面的做一做的习题。
让学生独立改写,然后说说改写的方法。
三、教学求近似数
1.复习。
教师:我们在第五册学过用四舍五入法求一个数的近似数。请大家用四舍五入法把下面各数千位后面的尾数省略,求出它们的近似数。
49269375
学生做完后,着重让他们说一说各是根据哪一位上的数进行四舍五入的。使学生明确:用四舍五入法省略一个数千位后面的尾数,要根据百位上的数进行四舍五入。
然后教师说明:比万大的数,我们也可以用同样的方法来求它的近似数。
2.教学例6.
(1)教师板书出84380,指名学生读出来,并提出
谁会把这个数万位后面的尾数省略,求出它的近似数?
启发学生思考:省略一个数千位后面的尾数时,是根据哪一位上的数进行四舍五入的?那么省略万位后面的尾数时,要根据哪一位上的数进行四舍五入呢?
让学生类推出:因为省略千位后面的尾数时,是根据百位上的数进行四舍五入的,所以省略万位后面的尾数时,要根据千位上的数进行四舍五入。
然后让学生求出它的近似数,并说出是怎样求的。
同时教师强调指出:要省略某一个数位后面的尾数,求近似数,只要根据要省略的尾数的最高位来考虑就可以了,不要管尾数的后几位是多少。
(2)教师板书出726310,让学生自己说一说怎样省略万位后面的尾数,求出近似数。要多让几个学生说说。
(3)做做一做中的习题。
四、巩固练习
做练习三的第1题、第2题、第3题、第4题。
积的近似数教案(篇9)
教学目标:
1.知识与技能:能理解商的近似数的意义。
2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。
教学重点:
掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
教学难点:
根据题意正确求出商的近似数。
教学方法:
注重新旧知识的迁移,引导学生自主学习、总结。
教学准备:
多媒体。
教学过程:
一、复习导入
复习旧知:(出示如下题目)
1.用“四舍五入”法将下面的数改写成一位小数。
8.7693.45212.7118.64
2.计算下面各题,得数保留两位小数。
2.43×4.67 12.15×3.41
订正答案,并通过问题:你是用什么方法求这些数的近似数?
(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)
引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)
二、互动新授
1.出示教材第32页例6情境图。
阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?
引导学生自主列算式,并试着计算:19.4÷12
学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?
通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。
教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)
然后再引导学生想一想:算到分和角时分别需要保留几位小数?
(算到分要保留两位小数,算到角就要保留一位小数。)
师引导学生思考并讨论:除的时候应该怎么算?
小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。
让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书
2.提问:说一说如何求商的近似数?
让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。
3.引导学生比较求商的近似值和求积的近似值的异同点。
小组讨论后发言:相同点:都是用“四舍五入”法求近似数。
不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。
师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。
三、巩固拓展
1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。
四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?
引导学生归纳
1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。
积的近似数教案(篇10)
学习目标: 理解精确度和有效数字的意义;准确地按要求求一个数的近似数。
学习重点:近似数、精确度和有效数字的意义,
学习难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.
学习过程:
一、自主学习
准确数与近似数:
(1)初一(4)班有42名同学,数42是 数;
(2)每个三角形都有3个内角,数3是 数;
(3)我国的领土面积约为960万平方千米,数960万是 数;
(4)王强的体重是约49千克,数49是 数.
二、合作探究
1、王强的身高为165cm,数165是一个 数,表示王强的身高大于或等于 cm,而小于 cm。
2、长江长约6300千米,是一个 数,表示长江长大于或等于 千米,而小于 千米。
3、按四舍五入法对圆周率 取近似值:
(精确到个位), (精确到0.1,或叫做精确到十分位),
(精确到0.01,或叫做精确到 分位),
(精确到 ,或叫做精确到 ),
(精确到 ,或叫做精确到 ), ………
4、有效数字:从一个数 起,到 止,所有数字都是这个数的有效数字。
5、 3.256精确到 位,有 个有效数字是 ;
5.08精确到 位,有 个有效数字是 ;
6.3080精确到 位,有 个有效数字是 ;
0.0802精确到 位,有 个有效数字是 ;
3.02万精确到 位,有 个有效数字是 ;
1.68×105精确到 位,有 个有效数字是 。
6、 按括号内的`要求,用四舍五入法对下列各数取近似数:
(1)0.015 8(精确到0.001) (2)30 435(保留3个有效数字)
(3)1.804(保留2个有效数字) (4)1.804(保留3个有效数字)
三、巩固提高
1、完成课本练习。
2、 用四舍五入法,按括号里的要求对下列各数取近似值:
(1)0.65148 (精确到千分位); 解:0.65148
(2)1.5673 (精确到0.01);
(3)0.03097 (保留三个有效数字);
(4)75460 (保留三个有效数字);
(5)90990 (保留二个有效数字);
(6) 64.8 (精确到个位);
(7) 0.0692 (保留2个有效数字);
(8)399720 (保留3个有效数字)。
2、下列由四舍五入得到的近似数各精确到哪一位?各有几位有效数字?
(1)32; 解:精确到 位,有 个有效数字,是 ;
(2)17.93; 解:精确到 位,有 个有效数字,是 ;
(3)0.084; 解:精确到 位,有 个有效数字,是 ;
(4)7.250; 解:精确到 位,有 个有效数字,是 ;
(5)1.35×104; 解:精确到 位,有 个有效数字,是 ;
(6)0.45万; 解:精确到 位,有 个有效数字,是 ;
(7)2.004; 解:精确到 位,有 个有效数字,是 ;
(8)3.1416. 解:精确到 位,有 个有效数字,是 。
积的近似数教案(篇11)
教学内容:
课本第77页例8及练习十六第6题。
学生的数感和估计能力。
教学重、难点:
1、通过独立猜测、交流等活动让学生掌握一定猜测的方法。
2、培养学生的数感和估计能力。
1、 接着数数。
、( )、( )、( ) 9997、( )、( )、 ( ) 497、( ) ( ) 、( )
2、按照要求排列下面各数。
1001 996 1008 ( ) > ( ) > ( )
205 306 402 ( )
1、组织理解近似数的含义。
出示例8的主题图。
聪聪去调查了育英小学的学生数,他写下了这样的一句话:
“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?
B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。
师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)
引导学生明白近似数更容易记,因为它正好是正百数。
交流。谁来说说你写出的近似数是多少?
个别汇报:
A、约是10000人,因为我觉得9992人接近10000人,
B、我写的是“约9990人”因为9992人和9990只相差2。
同学们你们同意哪位写的呢?为什么?
师生小结:我们用近似数就是为了让我们更容易记住,所以,一般我们都用整百、整千、整万数。
2、请你说说身边的近似数,找找生活中的近似数。按照教师的要求,
先独立想想,再和小组的同学交流。
3、组织活动3——猜一猜。
提出题中的要求。
请大家独立动脑筋想一想,再和同桌交流看你们手猜的一样吗?互相说说你们为什么要这样猜。
(2)组织进行集体交流。说一说你猜出来的结果是什么样的?你是怎么猜的?
及时肯定回答好的学生,并帮助学生总结应当怎样猜。
让学生将所准备的卡片,按照教师的要求摆一摆:将所准备的卡片组成三位数或四位数;读一读:同桌相互读摆出的数;
1、组织数学游戏——猜价格/
(1)电视节目“幸运52”猜商品价格的游戏大家看过吗?
其实这样的游戏应用的也是数学知识。今天我们也来玩一玩这样的猜数游戏。
后就开始猜,老师提示手中的数比你猜的数大还是小。同学们再根据这个提示继续猜直到猜对为止。
(3)进行第一轮猜数游戏。
育英小学有1506人,约是1500人。
jk251.cOm扩展阅读
[优质教案] 《积的近似数》教案范文优选
每个老师不可缺少的课件是教案课件,每个老师对于写教案课件都不陌生。下足了教案课件的前期准备工作,这样可以避免很多因为准备不足导致的教学事故。要写好教案课件,需要注意哪些方面呢?下面的内容是小编为大家整理的[优质教案] 《积的近似数》教案范文优选,仅供参考,希望能为您提供参考!
教学目标:
1.使学生掌握求小数乘法的积的近似数的方法。
2.使学生经历求小数乘法的积的近似数的过程。
3.使学生在解决实际问题中,进一步体会数学与生活的密切联系,培养实践能力的灵活性。
教学重点:
掌握求小数乘法的积的近似数的方法。
教学难点:
根据要求与实际需要取积的近似数。
教学准备:
多媒体课件。
教学过程:
一、基础训练
1.436保留整数、一位小数、两位小数分别是多少?
15.7394精确到个位、十分位、百分位、千分位分别是多少?
一般用什么方法取近似数?怎样用四舍五入法求出这些近似数?
二、导入新课
师:同学们你们知道什么单位的嗅觉最灵敏吗?
生:狗,人们用狗来做侦探,看家。
三、进入新课
师出示教材11页情境图
师:从图上你都看到了什么?
生:描述画面内容。
师:是呀,狗狗使用它灵敏的嗅觉发现坏人的。
投影出示例6
生:读题,理解题意。题中得知生活中和多地方不需要准确值,要近似数。
1.尝试题
师:怎样计算狗的嗅觉约有多少亿个嗅觉细胞呢?(求0.049的45倍是多少。)
2.自学课本
有困难的同学借助课本来学习
3.尝试练习
生:独立完成在练习本上。指名学生板演。
0.049×45≈2.2(亿个)
4.学生讨论
师:充分展示学生出现的情况,组织学生讨论,探究。
强调:横式后面写的是近似数所以要用约等号而不用等号。
明确:保留一位小数,看哪位,根据什么保留?(看百分位,满5舍去后向前一位进一;小于5就直接舍去)保留两位小数呢?
生:看千分位是几,千分位上是5舍去后向前一位进一。
讨论:怎样求积的近似数?
5.教师讲解
小结:先求积,看保留小数的后一位,用“四舍五入法”取近似数,横式得数要用约等号。
四、巩固练习
1.11页做一做第1题.
求近似数要注意什么?(计算准确,看清题目要求几位小数,积中小数点的位置)
2.11页做一做第2题.
明确为什么保留两位小数?(生活中没有比分更小的钱币)
五、课堂作业
练习三1~3题。
六、小结:谈谈收获。
练习题
1.计算下面各题。
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
2.一种大米的价格是每千克3.85元,买2.5千克应付多少钱?
练习三
1.按要求保留小数数位
(1)保留一位小数
1.2×1.40.37×8.43.14×3.9
(2)保留两位小数
0.86×1.22.34×0.151.05×0.26
2.一幢大楼有21层,每层高2.84米。这幢大楼约高多少米?(得数保留整数)
3.世界上的一台电子计算机很大,它的质量相当于6头5.85吨重的大象。这台计算机有多重?(得数保留整数)
《积的近似数》教案如何写(合集5篇)
以下由栏目小编为大家精心整理的“《积的近似数》教案如何写”,希望本文对您有所帮助。上课前准备好课堂用到教案课件很重要,这就要老师好好去自己教案课件了。要知道一份优秀的教案课件,是能让老师课堂教学氛围大大不同。
《积的近似数》教案如何写 篇1
教学目的:
1、使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。
2、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重点:能正确的求一个小数的近似数。
教学难点:怎样准确的求一个小数的近似数。
教学过程:
一、前置作业
1、下面我们就用这种方法来求课前同学们提供的这些小数的近似数。
(1)0.25612.006(保留两位小数)
(2)43.958(保留一位小数)
(3)13.499(保留整数)
2、求下面小数的近似数。
(1)3.474.08(精确到十分位)
(2)5.3440.402(省略百分位后面的尾数)
3、思考题:一个两位小数,它的近似数是5.6,那么这个小数最大是多少?最小是多少?
二、探究新知
1.导入新课
我们学过求一个整数的近似数。在日常生活和计算,我们有时还需要求出一个小数的近似数。比如说这天豆豆陪妈妈去买水果,明明电子秤上显示苹果的总价是8.953元,可以售货员阿姨却说:“请付8.95元。”她是怎样把8.953元取近似数为8.95元呢?
【引导学生说出用可以用四舍五入的方法求出小数的近似数】
那么今天我们就来学习如何求一个小数的近似数。
【板书课题:求一个小数的近似数】
2、新授
师:豆豆的身高0.984米。0.984是一个精确值,那我们可以说豆豆身高大约多少米呢?
(1)保留两位小数。
师:如果保留两位小数,就要第三位数省略。 0.984的第三位小数是“3”,小于5,舍去,所以0.984≈0.98。
师:保留两位小数的近似数是精确到哪一位的?
生:精确到小数第二位,也就是百分位。
师:你们还可以求出这个小数在别的不同情况下的近似数吗?
(2)保留整数。
师:如果保留整数,就要把小数部分省略。小数第一位,也就是十分位是9 ,大于5,向前一位进一,所以0.984≈1。
师:保留整数的近似数是精确到哪一位的?
生:精确到个位。
(3)保留一位小数。
师:如果保留一位小数,豆豆身高大约是多少米?
【学生讨论近似数是1.0还是1。引导学生小组讨论交流:使学生明确近似数1.0,精确到十分位;近似数1是精确到个位,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,近似值就越精确。】
师:尽管两个数的大小相等,但表示的精确程度不同。求近似数时,小数末尾的零不能去掉。
(4)小结:
师:请同学们回忆求0.984近似数的过程,我们是怎么求出这个小数的近似数的?
生:①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。
②取近似值时,在保留的小数位里,小数末一位或几位是0的。0应当保留,不能丢掉。
师:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
三、全课总结
教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。
【反思】:本课是在学生熟练掌握求整数的近似数的基础上学习求一个小数的近似数。首先是复习旧识这个环节重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础,也在做题时抛出了疑问:求整数的近似数是用“四舍五入”的方法,那么求小数的近似数是不是也可以用“四舍五入”的方法来求呢?
秉承数学来源于生活,我在引入环节选取的题材也是生活中常见的:豆豆买水果,苹果总价是8.953元,售货员阿姨却说付8.95元,既是从生活实际出发,同时也引导学生说出用可以用四舍五入的方法求出小数的近似数,继而引出课题:用四舍五入的方法求一个小数的近似数。
利用豆豆的身高创设情景,选材始终贴近生活,提出问题:0.984大约是多少?学生独立思考,根据学生的回答,分别出示求0.984保留整数部分和保留两位小数的近似数。在教学设计时预设到学生可能很难回答出0.984保留一位小数的情况,这就需要老师来引导学生思考,这里容易出现争议,到底是1.0还是1?使学生明确近似数1.0,精确到十分位;近似数1是精确到个位,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,近似值就越精确,越接近原来的准确数。但是在这个环节我处理得不太好,学生虽然知道小数末尾的0不能去掉,但并没有理解透彻这个0为什么不能去掉,是因为精确的数位不同,两个数的意义就不同。在评课时老师也指出这个难点没有完全突破,是否在此处采用小组讨论让学生自主探究会不会更合适。
新授后的练习设计中我注重了题目的梯度,从基本的求近似数到难度较大的拓展思考题,也符合了学生从简单到难的思维方式。下课后听了指导老师和其他老师的评课,我也深深的进行了反思。可能是由于低年级的教学习惯所致,我们总喜欢重复学生的话,或者自己讲得太多,没有放手多让学生思考,多让学生自行探究,中高年级的学生已经有自己的思维方式了,老师过多“带”着学习反而会令学生的思维受到局限,我已经注意到自己在这方面的不足,也尝试着改变这些不太合适的教学习惯,期盼在今后的教学中有更大的进步。
《积的近似数》教案如何写 篇2
教学目标:
1.使学生掌握求小数乘法的积的近似数的方法。
2.使学生经历求小数乘法的积的近似数的过程。
3.使学生在解决实际问题中,进一步体会数学与生活的密切联系,培养实践能力的灵活性。
教学重点:
掌握求小数乘法的积的近似数的方法。
教学难点:
根据要求与实际需要取积的近似数。
教学准备:
多媒体课件。
教学过程:
一、基础训练
1.436保留整数、一位小数、两位小数分别是多少?
15.7394精确到个位、十分位、百分位、千分位分别是多少?
一般用什么方法取近似数?怎样用四舍五入法求出这些近似数?
二、导入新课
师:同学们你们知道什么单位的嗅觉最灵敏吗?
生:狗,人们用狗来做侦探,看家。
三、进入新课
师出示教材11页情境图
师:从图上你都看到了什么?
生:描述画面内容。
师:是呀,狗狗使用它灵敏的嗅觉发现坏人的。
投影出示例6
生:读题,理解题意。题中得知生活中和多地方不需要准确值,要近似数。
1.尝试题
师:怎样计算狗的嗅觉约有多少亿个嗅觉细胞呢?(求0.049的45倍是多少。)
2.自学课本
有困难的同学借助课本来学习
3.尝试练习
生:独立完成在练习本上。指名学生板演。
0.049×45≈2.2(亿个)
4.学生讨论
师:充分展示学生出现的情况,组织学生讨论,探究。
强调:横式后面写的是近似数所以要用约等号而不用等号。
明确:保留一位小数,看哪位,根据什么保留?(看百分位,满5舍去后向前一位进一;小于5就直接舍去)保留两位小数呢?
生:看千分位是几,千分位上是5舍去后向前一位进一。
讨论:怎样求积的近似数?
5.教师讲解
小结:先求积,看保留小数的后一位,用“四舍五入法”取近似数,横式得数要用约等号。
四、巩固练习
1.11页做一做第1题.
求近似数要注意什么?(计算准确,看清题目要求几位小数,积中小数点的位置)
2.11页做一做第2题.
明确为什么保留两位小数?(生活中没有比分更小的钱币)
五、课堂作业
练习三1~3题。
六、小结:谈谈收获。
练习题
1.计算下面各题。
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
2.一种大米的价格是每千克3.85元,买2.5千克应付多少钱?
练习三
1.按要求保留小数数位
(1)保留一位小数
1.2×1.40.37×8.43.14×3.9
(2)保留两位小数
0.86×1.22.34×0.151.05×0.26
2.一幢大楼有21层,每层高2.84米。这幢大楼约高多少米?(得数保留整数)
3.世界上的一台电子计算机很大,它的质量相当于6头5.85吨重的大象。这台计算机有多重?(得数保留整数)
《积的近似数》教案如何写 篇3
教学目标
1、使学生会根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似值。
2、培养学生根据具体情况解决实际问题的能力。
教学重点
用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点
根据题目要求与实际需要,用“四舍五入法”截取积是小数的近似值。
教学工具
多媒体课件
教学过程
一、激发兴趣
1、口算
1.2×0.3、0.7×0.5、0.21×0.8、1.8×0.5
1-0.82、.3+0.74、1.25×8、0.25×0.4
2、用“四舍五入法”求出每个小数的近似数。(投影出示)
2.095、4.307、1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试
谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?
2、读题,找出已知所求。
3、列式,板书:0.049×45。
4、独立计算出结果,指名板演并集体订正,说一说是怎样算的。
5、引导学生观察、思考:
(1)积的小数位数这么多。可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。
6、专项练习(根据下面算式填空)
3.4×0.91=3.094积保留一位小数是(),保留两位小数是()。
7、计算下面各题。
0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)
三、运用
一千克白菜的价钱是6.78元,妈妈买了0.8千克,应付多少题?(虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。)
课后小结
谁来小结一下今天所学的内容?
课后习题
1、根据下面算式填空。
3.4×0.91=3.094
积保留一位小数是( )积保留两位小数是( )
2、两个因数的积保留两位小数的近似数是3.58,准确值(三位数)可能是下面哪个数?
3.059 3.578 3.574 3.583 3.585
3、两个因数的积保留整数的近似数是14,精确值可能是哪些数?个位上的数是4,十分位的数是4、3、2、1、0;个位上的数是3,十分位上的数是5、6、7、8、9。
板书
积的近似数
2.45×2.5≈6.13(元)
竖式
答:
《积的近似数》教案如何写 篇4
学习目标
1.能根据要求用四舍五入法求一个小数的近似数。
教学重、难点:求一个小数的近似数。
学习过程
一、复习导入:老师:同学们,你们今天下午要去干什么啊?(春游)春天来了,阳光明媚,鸟语花香,这一切都与太阳有这密切的关系。关于太阳,你了解多少呢?1.太阳的直径大约是1389000千米,大约是多少万千米?老师:求一个整数的近似数用的是“四舍五入”法。那怎么求小数的近似数呢?今天我们就一起来探究小数的近似数。板书:小数的近似数
二、学习新知
1、老师邻居家的姑娘活泼可爱,名叫豆豆,你知道豆豆的身高是多少吗?(出示主题图)
预设1:小豆豆身高0.984m。
预设2:小豆豆身高约0.98m。
预设3:小豆豆身高约1m。
2、两位同学所说豆豆的身高,与实际身高为什么不一样呢?
小结:生活中根据需要,经常会用“四舍五入”法求小数的近似数。
3.想一想:0.984保留两位小数、一位小数,它的近似数各是多少?(同桌讨论
(1)首先要理解保留整数、一位小数、两位小数......的含义。还可以怎样表述?
引导学生理解,保留整数就是省略整数后面的尾数;保留一位小数就是省略十分位后面的尾数,或者说精确到十分位;保留两位小数就是精确到百分位,也就是省略百分位后面的尾数。
(2)求一个小数的近似数的方法是什么?
引导学生明确,仍然采用“四舍五入”法,看省略部分的最高位,是5以上的数,省去后在前一位加l,是4以下的数舍去。
在明确上述两点的基础上,让学生自己试算,得出:
0.984≈0.980.984≈1.0
小结:如果保留两位小数,就要把千分位上的数“四舍五入”;
如果保留一位小数,就要把百分位上和后面的数“四舍五入”;
在表示近似数时,小数末尾的0不能去掉。
4.独立完成
0.984≈1(保留整数)
保留整数得到的“1”和保留一位小数得到的“1.0”一样吗?末尾的0能去掉吗?
小结:求近似数时,保留整数,表示精确到个位,就是把十分位上的数“四舍五入”;
保留一位小数,表示精确到十分位,就把百分位上的数“四舍五入”;
保留两位小数,表示精确到百分位,就是把千分位上的数“四舍五入”……
保留哪位,就要把这位后面的数“四舍五入”。
三、巩固练习
1、求下面小数的近似数。
(1)0.256 12.006 1.0987(保留两位小数)
(2)3.72 0.58 9.0548(保留一位小数)
找学生演板,然后再让其他发现错误的同学帮忙修改。
2、求下面各小数的近似数。
(1)3.47 0.239 4.08(精确到十分位)
(2)5.344 6.268 0.402(省略百分位后面的尾数)
3、下面的说法正确吗?正确的画“√ ”,错误的画“ ×”。
(1)3.56精确到十分位是4。()
(2)6.05和6.0599保留一位小数都是6.1。()
(3)近似数是6.32的三位小数不止一个。()
(4)5.29在自然数5和6之间,它约等于5。()
(5)0.596保留两位小数是0.6。()
四、分享收获
学习了本节课,你有哪些收获?
五、布置作业
第54页练习十三,第2题。
《积的近似数》教案如何写 篇5
教学内容:
教材第11、12页
教学目标:
1、经历生活数据收集的过程,理解近似数表示的必要性。
2、探索“四舍五入”求近似数的方法。
3、能根据实际情况,灵活运用不同精确值的近似数。
教具准备:
相关数据资料,学生课前搜集的数据。
教学重点:
会正确读、写多位数,并能比较数的大小。
教学过程:
一、小组交流收集的有关森林面积方面的数据。
交流收集的有关森林面积方面的数据,并说说这些数据的实际意义。在此基础上引导学生对数据进行分类,在各种分类中重点讨论精确数与近似数这两类数的特点,并让学生再举例说一说日常生活中接触的近似数。
二、用四舍五入法取近似数
出示说一说中的数据,使学生通过比较、分析,了解四舍五入法取近似数的方法。结合是试一试第2题的讨论,体会如何根据不同需要求近似数。
三、巩固与应用
做试一试第1题:汇报时说说取近似值的方法。
试一试第2题:在实际生活中常常需要根据情况取不同精确程度的近似数。在本题中,可先让学生说一说三个近似值的精确程度,再出示下面的两个小问题,供学生讨论。在讨论时重点让学生理解取近似值是根据实际的需要来确定的。
讨论:重点可讨论括号内的数字有几种可能性,分析哪些是“五入的”,哪些是“四舍的”。
四、课堂作业新设计
1、教材第12页底1题。
2、教材第12页第2题。
3、教材第12页第3题。
五、思维训练
括号里能填几?
49()835≈50万、49()835≈49万
积的近似值
[教学内容]
求小数乘法的。
[教学目标]
1.理解,掌握求小数乘法的的方法。
2.培养学生自觉利用所学知识解决简单实际问题的能力。
3.渗透知识来源于实际生活的思想。
[教学过程]
课前谈话:前面我们学习了小数乘以整数和一个数乘以小数。今天我们继续学习新知识。下面我们先复习一下以前学的旧知识。
(一)复习旧知(出示投影,并回答)
口答后,让学生说说用什么方法取的近似值。
教学意图:本环节主要是复习利用“四舍五入”法将小数按要求取近似值,为后面教学新知识作准备。
(二)探索尝试
教师谈话:我们学校食堂要到菜场买菜,想请我们班同学当小采购员,你们愿意吗?我们看看哪位同学最聪明,能将买菜的钱计算得非常清楚。
出示例5:
食堂到菜场买青菜49.2千克,每千克价钱是0.92元。应付菜款多少元?
先指名一名学生大声读题,然后全班学生再默读审题。审好题后,全班学生动笔,在练习本上独立解答。教师巡视,掌握学生可能出现的问题。
一般情况下,学生可能出现如下两种可能:
(1)0.92×49.2=45.264(元)
(2)0.92×49.2≈45.26(元)
教师指名,让学生把不同做法板书。
教学意图:本环节通过让学生当“小采购员”与独立尝试,计算菜款,调动学生的积极性,激发学生的学习兴趣,使学生能更主动地参与到教学中。
(三)质疑总结
1.全班学生观察黑板上的两种答案,讨论:哪一种答案是正确的?为什么?
讨论后让学生畅所欲言,然后教师提问,学生思考后回答。
(1)请学生将45.264元化成复名数。(45元2角6分4厘)
(2)钱币的最小单位是什么?我们能按计算出的精确值付款吗?为什么?(钱币的最小单位是分,精确值的最小单位比分小,是厘,4厘不够一分,所以没法按精确值付款。)
(3)我们要想付款应该怎么办?用什么方法取近似值?(用“四舍五入法”将精确值取近似值。)
(4)为什么取近似值要精确到百分位?(以元为单位的小数,十分位对应的是角,百分位对应的是分,在实际付款时只算到分,所以精确到百分位。)
2.教师小结。
今后遇到付款的问题时,如果小数部分位数较多,要自觉地进行四舍五入,一般精确到分。书写时注意,先求出积的精确值,再写出它的近似值,近似值前要用“≈”符号。
教学意图:本环节先让学生进行讨论,开阔思路,然后通过教师的提问整理学生的思路,最后通过教师小结点出所学新知识的要点。教学中应注意让学生全体参与。
(四)反馈调节
1.计算下面各题。
(1)0.8×0.9(得数保留一位小数)
(2)1.7×0.45(得数保留两位小数)
出示投影,全体学生在练习本上解答。教师引导学生看清题目要求,每题得数应保留几位小数。
订正:(1)0.8×0.9≈0.7
(2)1.7×0.45≈0.77
2.一种面粉每千克的售价是2.14元,买14千克应付多少元?
学生独立在练习本上列式解答,教师订正答案:
2.14×14=29.96(元)
提问:这道题的结果为什么不用取近似值?
教学意图:通过这两组题,反馈学生掌握取的情况,并及时调节课堂教学。通过第二组题也使学生明确,是否将乘积取近似值要根据实际情况进行判断。
(五)巩固发展
1.计算下面各题,得数保留一位小数。
(1)1.2×1.4(2)0.37×8.4(3)3.14×3.9
2.计算下面各题,得数精确到百分位。
(1)0.85×1.12(2)0.86×5.4
(3)0.15×2.34
3.一个长方形操场,长59.5米,宽42.5米。计算出这个操场的面积是多少平方米?(得数保留整数。)
将以上三题分别在投影上出示,全体学生动笔完成。
订正:
1.(1)1.7(2)3.1(3)12.2
2.(1)0.95(2)4.64(3)0.35
3.59.5×42.5≈2529(平方米)1
4.认识发票。
(1)认识大写数字。
012345678910
零壹贰叁肆伍陆柒捌玖拾
让学生读两遍,再写一写。
(2)认识发票。
教师谈话:在我们买东西时经常要接触发票,你们都见过发票吗?知道发票都包括哪些内容吗?现在老师这儿有一张发票,我们一起来看一下。
教师边提问边引导学生观察:
发票中包含哪些基本内容?以第一横栏白粉笔那项为例,说说是什么意思?最后一项“金额”是什么意思?应怎样计算?发票最下面一项“总计金额人民币”是什么意思?怎样计算?
让学生在自己的书上把空项填好,然后教师订正。
5.两个因数的积保留两位小数的近似值是3.58,准确值可能是下面的哪几个数?
3.5093.5783.5743.5833.585
引导学生思考,两个因数的积保留两位小数,那么就省略了百分位后面的尾数,题目中的几个数分别保留两位小数后得到的结果是:3.51、3.58、3.57、3.58、3.59,所以与3.58对应的数可能就是准确值,即3.578和3.583。
教学意图:本环节通过练习,进一步巩固本节课所学的新知识。在认识发票时要使学生初步了解发票的格式、金额的计算方法,初步认识大写数字,以及金额总计的写法。
近似数课件11篇
我们精选出来的“近似数课件”是在众多文章中最为出色的。教学过程中教案课件是基本部分,每天老师都需要写自己的教案课件。 教案和课件的不断完善是积累教学经验的过程。我们致力于为您提供更多的行业趋势和发展动态!
近似数课件 篇1
教学要求:
1、使学生会根据需要,用四舍五人法保留一定的小数位数,求出积的近似值。
2、使学生初步了解发票的格式,金额的计算方法,初步认识
大写数字以及总计金额的写法。
教学重点:用四舍五人法截取积是小数的近似值的一般方法。
教学难点:根据题目要求与实际需要,用四舍五人法截取积是小数的近似值。
教学用具:投影片若干张。
教学过程:
一、激发:
1、口算。
1.20.30.70.50.210.81.80.5
1-0.821.3+0.741.2580.250.4
0.40.40.8910.110.6800.05
2、用四舍五人法求出每个小数的近似数。(投影出示)
保留整数
保留一位小数
保留两位小数
2.095
4.307
1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用四舍五人法将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用四舍五人法保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试:
1、出示例5:食堂到菜场买青菜49.2千克,每千克价钱是0.92元。应付菜款多少元?
2、读题,找出已知所求。
3、生列式,板书:0.9249.2
4、生独立计算出结果,指名板演并集体订正。
5、引导学生思考:
(1)人民币最小的单位是什么?
(2)以元为单位的小数,分在哪个数位上?
(3)在收付现款时,通常只算到什么位?
(4)菜款应该怎样付?
(5)横式中的结果应该怎样写?
6、指导看书:向学生介绍目前由于市场上已经没有分币出现,因此一般在付款时只要算到角即可,也就是保留一位小数。
7、尝试后练习:
▲P.7页做一做1.计算下面各题。
0.80.9(得数保留一位小数)
1.70.45(得数保留两位小数)
▲P.7页做一做2.一种面粉每千克的售价是2.14元。买14千克应付多少元?
学生独立解答后指出:
(1)这题只有两位小数,不必再求近似数;(或保留一位小数)
(2)一定要根据题目的要求或实际情况来判断是否要取近似数。
三、示范
1、投影出示:P.8页4题。
文兴文化用品商店发票
第003574号
购货单位:育群小学1994年9月15日
货名
数量
单位
单价(元)
金额
百
十
元
角
分
白粉笔
35
盒
1.50
彩色粉笔
18
盒
2.50
白报纸
15
张
0.38
蓝墨水
5
大瓶
3.72
浆糊
4
大瓶
3.40
总计人民币大写佰拾元角分
2、看发票。
⑴发票中的金额是什么?(总价)
⑵认识11个大写数字,并读两遍。
3、填写发票。
⑴白粉笔的金额为:1.5035=52.5元。
⑵师示范填写白粉笔的金额。
⑶学生独立计算并填写。
⑷教师个别辅导,集体订正。
四、运用
1、P.8页3题:一个长方形操场,长59.5米,宽42.5米。计算出这个操场的面积是多少平方米?
2、P.8页5题:两个因数的积保留两位小数的近似值是3.58。准确值可能是下面的哪个数?
3.0593.5783.5743.5833.585
五、体验:
谁来小结一下今天所学的内容?
六、作业:
P.8页1-2题。
近似数课件 篇2
教学目标
1.理解求近似值的实际意义,掌握求积的近似值的方法.
2.培养学生应用数学知识解决实际问题的能力.
教学重点
会根据实际需要求小数乘法中积的近似值.
教学难点
会根据实际需要求小数乘法中积的近似值.
教学过程
一、复习旧知
(一)口算
0.210.430.62.540.17-0.08
0.20.31.20.050.43200.510
(二)按要求取下面各小数的近似值.
0.384(保留一位小数)2.859(保留两位小数)
3.4(保留整数)7.996(保留两位小数)
二、导入新课
教师谈话:王红的妈妈是单位的采购员,她为单位购买了如下商品,商店为她出具了一张发票.出示图片:发票,里面数据没填全,你能帮助营业员阿姨填写完整吗?
(学生试做)
教师:填的对不对呢?学完今天的知识,看谁能帮助营业员阿姨填一份标准的发票?
三、指导探索
(一)出示例5
粮库小麦收购价是每千克0.967元.小红家今年卖了小麦492千克,应得小麦款多少元?
1.请同学根据题意列式解答(指名板演)
2.讨论:为什么结果保留两位小数?保留两位小数应看哪一位数字?
3.教师介绍四舍五入法
4.计算下面各题
0.80.9(得数保留一位小数)
1.70.45(得数保留两位小数)
四、课堂总结
今天我们学习了用四舍五入法求积的近似值,关于求近似值的方法还有很多,请同学们课后自己查看资料,看谁找的多,找的全.
五、巩固练习
(一)一种面粉的价格是每千克1.92元,买14千克应付多少元?
(二)一种面粉的价格是每千克1.92元,买1.4千克应付多少元?
(三)出示图片:发票,由学生完成.
(四)思考题:一个两位小数,用四舍五入法取它的近似值是2.4,这个小数可能是多少?最大可能是多少?最小可能是多少?
六、课后作业
(一)一个长方形操场,长59.5米,宽42.5米,计算出这个操场的面积是多少平方米?
(得数保留整数.)
(二)一个三位小数四舍五入后成为5.70,这个数最大可能是多少?最小可能是多少?
近似数课件 篇3
教学目标
根据实际需要用四舍五入来求小数的近似数.
知识重点
教学难点
教学过程
教学方法和手段
引入
复习:
(1)保留一位小数
2.345.6843.22452.97
(取舍后十分位的0要也要保留)
(2)保留两位小数
1.4835.3475.8973.996
(取舍后百分位的0要也要保留,为什么,表示精确到百分位)
教学过程
出示P23【例7】
让学生根据题目的要求列式
19.412
学生计算后发现这题的余数不能等于0
提问:这样算下去,商可能算不完,小数点后的位数很多,我们还要继续往下算吗?
在实际生活中,我们在计算除法算式时候,商可能有很多位,这时候我们要根据四舍五入来取近似数。
这题19.4是表示钱数,19.412表示的也是钱数,表示一个羽毛球的钱数,现在人民币最小的币值单位是分,分刚好是用元做单位数的百分位,因此表示钱数的时候,根据实际,要保留两位小数。
除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按四舍五入法省略百分位后面的尾数。)
教师问:保留一位小数,应该等于多少?表示计算到角。
教师要让学生想一想:怎样求商的近似值?(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再四舍五入.)
课堂练习
P23做一做
计算出商的小数的位数要比要求保留的小数位数多一位,再按四舍五入法省略尾数.
本题最多保留三位小数,所以要计算到小数点后面第4位。
本课作业
课后追记
因为商有可能是无限小时,同时鉴于实际生活中一般情况下并不需要高精度的小数,所以同样用四舍五入来取舍小数的近似值,注意要比题目要求保留的位数多计算一位小数。
近似数课件 篇4
教学内容:教材第47页例6、练一练,练习十二第1-4题。
教学要求:
1.使学生学会求商的近似值的方法,能按四舍五人法求商
的近似值。
2.培养学生应用已有知识解决简单实际问题的能力。
教学过程:
一、复习引新
1.用四舍五人法求下列的近似数。
(1)2.42和2.45保留一位小数各是多少?
(2)3.698和0.724保留两位小数各是多少?
提问:用四舍五人法是怎样求小数的近似数的?
2.引入新课。
我们已经会求一个小数的近似数。在生产和生活中,小数除
法常常遇到除不尽,或者商的小数位数多而实际不需要的情况,这
时就要根据需要保留几位小数,求出商的近似值。这节课,我们就
学习求商的近似值。(板书课题)
二、教学新课
1.出示例6,让学生读题。
提问:这道题要怎样列式?(板书算式)结果只要几位小数?
为什么?
2.提问:商要保留两位小数,只要看小数部分第几位数?
想一想,计算时只要除到商的小数部分第几位?
按照刚才想的,你会计算吗?
指名一人板演,其余学生自己计算。
集体订正,说出计算过程。
3.提问:除到商的哪一位?保留两位小数取近似数是多少?
(板书得数,说明用约等号,并写答案)
追问:求出千分位上的商以后,为什么不必再除下去?
让学生在课本上填得数、答案。
指出:求商的近似值,一般先除到比需要保留的小数位数多
一位,再按照四舍五人法取商的近似值。
三、巩固练习
1.做练--练第1题。
指名两人板演,其余学生做在练习本上。
集体订正,结合提问为什么除到小数第三位。
提问:第一小题求近似数时用的什么方法,(五人)第二小
题用的什么方法?(四舍)为什么不一样?
把除到十分位的余数与除数比,哪一题的余数满除数的一半?
哪一题下一位商满57
说明:除到要保留的商的位数以后,也可以看余数满不满除
数的一半来取商的近似数。如果余数满除数的一半,下一位商肯
定满5,就可以直接在求出的商末位加上1,求出近似值。如果余
数不满除数的一半,下一位商就不满5,要舍去,可以直接得出商
的近似数。
2.做练一练第2题。
指名两人板演,其余学生做在练习本上。
集体订正。
3.做练习十二第2题。
读题目要求。
提问:想一想,每道除法算式先除到商的哪一位上,再分别取
近似值比较方便?为什么除到商的小数部分第四位比较方便?
让学生计算后填在表中,再校对结果,相互纠正。
4.做练习十二第3题。
指名两人板演,学生分两组,每组一道题,各人自己计算
老师按要求说每一步计算要求,学生分步计算。
集体订正。
四、课堂小结
这节课学习了什么?商的近似值一般要怎样求?
五、课堂作业
练习十二第1、4题。
近似数课件 篇5
教学目标:使学生理解商的近似值的意义;掌握用四舍五入法取商的近似值的方法,能正确地求出商的近似值。
教学重点:利用四舍五入法求商的近似值。
教学难点:根据保留小数的位数,正确利用四舍五入法求商的近似值。
教学过程:
一、复习
1、口算
0.4272510.278
8.42.10.6911.260.60.50.2
2、按四舍五入法填出下表中名数的近似值
3、计算:(指名板演)
2.4790.672.210.034
二、新课
1、质疑导入:
在实际应用中,小数除法除得的商有时位数较多,有时除不尽,这时也可用四舍五入法保留一定的小数位数,求出商的近似值。(板书课题)
2、教学例6
(1)出示例6,读题,列式
(2)列式后,让学生自己算一算,想一想,人民币最小用到哪一位?需要保留几位小数?必须除到哪一位?该怎么办?能以这道题的答案应该是多少?
结论:因为保留两位小数要看后一位是几,能以只要比需要保留的小数位数多除出一位,然后进行四舍五入。
能以商应该为4.46元,横式上用什么符号?()表示近似值。
3、课内练习P24做一做
三、巩固练习
1、幻灯出示课本第25页第3题
在教师指导下共同完成
2、指名板演:课本第25页第1题
3、作业P25第2、4题各第1~2题
近似数课件 篇6
教学目标:
教科书P96-97页的内容,求大数目的近似数。
教学要求:
1、让学生知道近似数的含义,并会根据要求用四舍五入的方法省略一个数的尾数,写出它的近似数。
2、在认识近似数、理解近似数的过程中培养学生的估算意识。
3、使学生体会近似数的含义,增强对近似数的感受,发展学生的数感。
教学准备:
课前查资料,了解一些数量信息。
1、读中感悟:
(1)出示:到20xx年末,我国共有公共图书馆2709个,图书馆藏书约43776万册。
到20xx年末,我国共有自然保护区个,自然保护区的面积大约有14398万公顷。
(2)学生读一读,师:画线的四个数所表达的数量的准确程度是否一样?
组织讨论,引入准确数、近似数的概念。
像43776万和14398万表示大约的数,与实际比较接近的数近似数
生活中的一些事物的数量,有时不用精确的数来表示,而只是用一个与它比较接近的数来表示,这样的数是近似数。
师:生活中的许多数量是用近似数表示的,你留心了吗?你在哪见过或听过?(或课前同学们也搜集了一些数,请拿出你搜集到的资料,和同桌说说这些数是准确数还是近似数)
回忆,交流。
说明:没有办法得到一个精确结果或没有必要用一个准确数表示时,就用近似数。
过度:老师这里也搜集了几组数据,你能读出这些数,说说哪些是近似数吗?
①《中国昆虫名录》收录了当时已知的`中国昆虫9种。
②20xx年4月英国《自然》杂志报告说,全球昆虫可能仅有200万到600万种。
③江阴市实验小学共有学生4502人。
④20xx年五一黄金周期间,苏州东方水城7天来共接待境内外游客230万人次,旅游总收入约16亿元。
下面是某市20xx年末全市人口情况统计。
先把男性和女性的人数分级,它们各接近四十几万?你能写出它们的近似数吗?
什么叫四舍五入法呢?请你自学书P96页下方的一段话。
交流,老师解释。
例如484204通过分级,我们知道大约有四十几万,然后看万位后一位,千位上是4,比5小,四舍去,所以
同样,486685怎样取近似数?学生说,老师板书。
970889呢?自己坐在作业本上。注意格式。
(1)对着前面判断的信息,提问这些近似数是以什么为单位的?万或亿作单位写近似数有什么好处?
(2)出示:2830001970000000它们选用什么单位比较合适?
集体讲评,说思考过程。
讨论得出:相同方法相同四舍五入,不同前者用0占位,后者省略尾数后用万或亿作单位。
完成第97页的想想做做,师指名回答,并纠正学生的错误的认识。
四、课堂总结。
六、作业设计:
1、省略下面各数最高位后面的尾数,再写出近似数。
2、用亿、作单位写出下面各数的近似数。
完成相应的《三级训练》。
近似数课件 篇7
教学内容
教科书第98-99页例7、例8,完成练习十九1~3题。
教学目标
1、使学生掌握用四舍五入法取商的近似值的方法,能较熟练地按要求取商的近似值。
2、会运用本节课所学知识解决日常生活中的常见问题。
教学过程
一、复习:
1、按四舍五入法,将下列各数保留一位小数
3.724.185.256.03
2、按四舍五入法,将下列各数保留两位小数
1.4835.3474.0033.996
3、计算下面各题:
7.30.315(保留两位小数)
0.270.45(保留三位小数)
4、说说小数乘法取近似值的方法
要先计算出整个积的值,然后看比要求保留位数多一位的数字,进行四舍五入。
二、新授:
(一)教学例7
下面是几种动物在水中的最高游速。
动物名称海狮海豚飞鱼
速度(千米/时)405064
海狮的最高游速是每分多少千米?
4060=0.666(千米)
如果继续除下去,余数和商有什么特点?
说明:如果继续除下去,余数重复出现40,商重复出现6。像0.666这样的小数是循环小数。根据需要,可以用四舍五入的方法取循环小数的近似值。
这道题得数保留两位小数是:
40600.67(千米)
(二)试一试。
用计算器算一算,海豚和飞鱼的最高游速大约各是每分多少千米?(得数保留三位小数)
50606460
(三)学习例8
1、组织学生阅读例8,理解题意后,让学生看书自学
2、指名说说这道题,为什么结果是6个?
3、通过讨论,让学生进一步明白根据生活实际,最多只能买到6个足球。
5、完成试一试,学生板演。
6、独立完成练一练后,集体订正。
三、综合练习,完成练习十九1、2题
1、写出下面各循环小数的近似值。(得数保留三位小数)
0.18181.290290
0.56566.74949
2、用四舍无入的方法求商的近似值。
保留一位小数保留两位小数保留三位小数
2.71.1
1623
2.70.46
四、作业
完成练习十九3-5题
近似数课件 篇8
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.
1.写出下列多项式各项的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
近似数课件 篇9
1、通过具体的情景让学生理解近似数的含义,体会近似数在生活中的作用。
2、通过独立猜测、交流等活动让学生掌握一定猜测的方法,培养学生的数感和估计能力。
教学重、难点:
1、通过独立猜测、交流等活动让学生掌握一定猜测的方法。
2、培养学生的数感和估计能力。
1、组织理解近似数的含义。
出示例8的主题图。
聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?
小组汇报:
A、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。
B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。
师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)
引导学生明白近似数更容易记,因为它正好是正百数。
出示例8主题图比较一下1506和1500这两个数,体会一下准确数和近似数哪个数更容易记住
(2)聪聪那天不仅调查了育英小学的人数,还调查了新长镇的人数是9992人,约是()人,先独立填填,再和你的同桌交流交流。谁来说说你写出的近似数是多少?
个别汇报:
A、约是10000人,因为我觉得9992人接近10000人,
B、我写的是“约9990人”因为9992人和9990只相差2。
同学们你们同意哪位写的呢?为什么?
师生小结:我们用近似数就是为了让我们更容易记住,所以,一般我们都用整百、整千、整万数。
通过活动的学习,理解近似数的含义,感受到近似数的作用,同时掌握近似数的写法。
2、请你说说身边的近似数,找找生活中的近似数。按照教师的要求,先独立想想,再和小组的同学交流。
3、组织活动3――猜一猜。
提出题中的要求。
请大家独立动脑筋想一想,再和同桌交流看你们手猜的一样吗?互相说说你们为什么要这样猜。
(2)组织进行集体交流。说一说你猜出来的结果是什么样的?你是怎么猜的?
及时肯定回答好的学生,并帮助学生总结应当怎样猜。
让学生将所准备的卡片,按照教师的要求摆一摆:将所准备的卡片组成三位数或四位数;读一读:同桌相互读摆出的数;
通过“说一说、猜一猜”活动让学生感受到近似数与生活的联系。
1、组织数学游戏――猜价格/
(1)电视节目“幸运52”猜商品价格的游戏大家看过吗?
其实这样的游戏应用的也是数学知识。今天我们也来玩一玩这样的猜数游戏。
(2)游戏规则:老师给你一个提示,比如这个数几千几百的数,然后就开始猜,老师提示手中的数比你猜的数大还是小。同学们再根据这个提示继续猜直到猜对为止。
(3)进行第一轮猜数游戏。
此活动培养学生的思维能力和数感。
近似数课件 篇10
教学目标
(1)结合实际例子,使学生明确学习截取商的近似值的实际意义,进一步体验学习数学的目的,调动学生学习数学的积极性。
(2)使学生掌握截取商的近似值的一般方法,初步学会在小数除法中用四舍五人法截取商的近似值。
重点难点
使学生掌握截取商的近似值的一般方法,初步学会在小数除法中用四舍五人法截取商的近似值。
看什么位四舍五人
主要教学方法
自学法、讨论法
操作过程
板书过程:截取商的近似值
例1我国的原煤产量1981年是6。2亿吨,1991年达到10。9亿吨,1991年的原煤产量是1981年的多少倍?(得数保留一位小数)
分析:几倍数一倍数=倍数
10.96。2
例2一台织布机12小时织布62。55米,平均每小时织布多少米?(得数保留两位小数)
分析:工作总量工作时间=工作效率
62.5512
教师活动
预计时间分钟
学生活动
预计时间分钟
一、准备练习
1、8.746保留一位小数约是(
),保留两位小数约是()
2、出示课题:取商的近似值
二、教学新课
1、出示例1
自学例1
做了这题得到什么经验?
2、出示例2
自学例2
做了这题得到什么经验?
3、归纳取商的近似值的方法
4、试一试:(书14面)
三、练一练
1、求商的近似值(保留一位)
2、求商的近似值(保留三位)
3、应用题3、4
四、总结。
1、指名回答,并说道理。
1、理解题意,列式,说根据。
自学后回答:
1)为什么除到小数点后面第二位?
2)商的近似值怎样取?
2、理解题意,列式,说根据。
自学后回答:
1)为什么除到小数点后面第三位?
2)商的近似值怎样取?
3、学生分小组讨论,说说方法,
并在书上划划、读读、背背。
4、全班齐练,反馈。
1、全班齐练,3生板演,反馈。
2、全班齐练,3生板演,反馈。
3、全班齐练,校对。全班齐练,
四、总结后做目标检测10
延伸练习
作业本10
反馈
与
矫正
目标达成情况
近似数课件 篇11
教学目标
(一)通过学生熟悉的事物来认识求近似数的实用性。
(二)使学生掌握四舍五入法求一个数的近似数的方法。
(三)培养学生分析、判断、解决实际问题的能力。
教学重点和难点
重点:使学生掌握用四舍五入法求一个数的近似数的方法。
难点:掌握近似数的判断方法。
教学过程设计
(一)复习准备
教师通过启发谈话,即从学生生活贴近的事物中引出近似数。
在日常生活中,描述一些事物的数量有时不一定要说出它们的准确数量,只要知道它们的大概是多少就可以了,因此不用准确数表示,而是用一个与准确数比较接近的整十、整百、整千数表示。如:我们国家的领土大约960万平方千米;我国人口大约12亿;我们学校有学生大约1200人等等。这样做比较方便、记忆容易、计算简单。
(二)学习新课
出示例题:
同学们浇树。浇了206棵松树,浇了284棵杨树。求这两个数的近似数大约是几百?
首先引导学生观察、思考:
206接近哪个整百数?(接近200)
206200用连接,叫做约等号。读作:206约等于200.
讨论下面几个数的近似数大约是几百?说一说你是怎样想的?怎样求的?
314300(十位上的1不满5)
325300(十位上的2不满5)
336300(十位上的3不满5)
347300(十位上的4不满5)
那么我们进一步讨论284接近哪个整百数?为什么?怎样想的?
284300(十位上的8满5,把十位、个位上的数改写成0,向百位进1)
继续进行小组讨论:395,486,573,264,358的数大约是几百?
395400486500573600
264300358400
根据同学讨论的情况,归纳小结:
要求三位数的近似数,关键是看它十位上的数是不是满5,(也就是4或3,2,1)就把位和个位上的数去掉写成0.如果满5,(也就是5或6,7,8,9)就把十位和个位上的数改写成0,同时向百位进1.这样的方法我们称作四舍五入法。
(三)巩固反馈
1.说出下面各数的近似数。(投影)
(1)386400(2)247200
579600739700462500305300
758800428400
观察比较两组题的相同点与不同点。(小组讨论)
相同点:两组题都是求三位数的近似数。
不同点:第(1)组各数十位上的数都满5,(大于或等于5),所以都把十位和个位上的数改写成0,同时向百位进1.第(2)组各数十位上的数都不满5,(小于5)就把十位和个位上的数字舍掉改写成0.
请同学们强调:把一个三位数改写成整百的近似数关键是什么?
关键是看十位上的数是否满5,来决定四舍五入。
那么,我们一起来研究一下,如何求四位数的近似数?关键要看哪一位上的数呢?
出示:6250大约是几千?
62506000
6250百位上是2(小于5),就把百位后面的尾数舍掉,改写成0.
2.做一做。(投影)
求下面各数的近似数。(独立写在本上)
3845400024892000
5290500045625000
2908300083978000
订正时请同学说一说是怎样想的?(求一个四位数的近似数,要看百位上的数是否满5,百位上的数不满5,直接把千位后面的尾数舍掉改写成0.如果百位上的数满5,把千位后面的尾数改写成0,同时还要把百位上的数向它的前一位进1)
3.求下面各数的近似数。
根据学生掌握情况教师总结:
求万以内数的近似数,要根据要求省略这个数的十位、百位或千位后面的尾数。如果尾数的最高位不满5,就直接把尾数舍去,改写成0;如果尾数的最高位满5,把尾数改写成0后,还要向它的前一位进1.
作业:看书第20、21页。
小资料
〔近似数和四舍五入法〕
有关近似数的知识在实际生活、应用中经常遇到。在多位数读写之后,教学近似数和四舍五入法,使学生初步理解近似数的意义与截取近似数的方法,可以进一步加深学生对数的概念的理解,为以后学习小数取近似值做准备。
取近似数的时候,省略哪一位后面的尾数要根据实际需要,按一定的规则进行。考虑到学生的接受能力,在小学主要讲常用的把一个多位数四舍五入到万位或亿位的方法。例如751872和754920,755830和758850,要省略万后面的尾数。751872和754920,尾数最高位千位上是1和4,不足一万的一半,把尾数舍去,改写成0.751872750000,754920750000.755830和758850,尾数最高位千位上是5和8,等于或大于一万的一半,把尾数改写成0后,要向它的前一位进1.755830760000,758850760000.省略亿位后面的尾数的方法可以依此类推。462500305300
758800428400
观察比较两组题的相同点与不同点。(小组讨论)
相同点:两组题都是求三位数的近似数。
不同点:第(1)组各数十位上的数都满5,(大于或等于5),所以都把十位和个位上的数改写成0,同时向百位进1.第(2)组各数十位上的数都不满5,(小于5)就把十位和个位上的数字舍掉改写成0.
请同学们强调:把一个三位数改写成整百的近似数关键是什么?
关键是看十位上的数是否满5,来决定四舍五入。
那么,我们一起来研究一下,如何求四位数的近似数?关键要看哪一位上的数呢?
出示:6250大约是几千?
62506000
6250百位上是2(小于5),就把百位后面的尾数舍掉,改写成0.
2.做一做。(投影)
求下面各数的近似数。(独立写在本上)
3845400024892000
5290500045625000
2908300083978000
订正时请同学说一说是怎样想的?(求一个四位数的近似数,要看百位上的数是否满5,百位上的数不满5,直接把千位后面的尾数舍掉改写成0.如果百位上的数满5,把千位后面的尾数改写成0,同时还要把百位上的数向它的前一位进1)
3.求下面各数的近似数。
根据学生掌握情况教师总结:
求万以内数的近似数,要根据要求省略这个数的十位、百位或千位后面的尾数。如果尾数的最高位不满5,就直接把尾数舍去,改写成0;如果尾数的最高位满5,把尾数改写成0后,还要向它的前一位进1.
作业:看书第20、21页。
小资料
〔近似数和四舍五入法〕
有关近似数的知识在实际生活、应用中经常遇到。在多位数读写之后,教学近似数和四舍五入法,使学生初步理解近似数的意义与截取近似数的方法,可以进一步加深学生对数的概念的理解,为以后学习小数取近似值做准备。
取近似数的时候,省略哪一位后面的尾数要根据实际需要,按一定的规则进行。考虑到学生的接受能力,在小学主要讲常用的把一个多位数四舍五入到万位或亿位的方法。例如751872和754920,755830和758850,要省略万后面的尾数。751872和754920,尾数最高位千位上是1和4,不足一万的一半,把尾数舍去,改写成0.751872750000,754920750000.755830和758850,尾数最高位千位上是5和8,等于或大于一万的一半,把尾数改写成0后,要向它的前一位进1.755830760000,758850760000.省略亿位后面的尾数的方法可以依此类推。462500305300
758800428400
观察比较两组题的相同点与不同点。(小组讨论)
相同点:两组题都是求三位数的近似数。
不同点:第(1)组各数十位上的数都满5,(大于或等于5),所以都把十位和个位上的数改写成0,同时向百位进1.第(2)组各数十位上的数都不满5,(小于5)就把十位和个位上的数字舍掉改写成0.
请同学们强调:把一个三位数改写成整百的近似数关键是什么?
关键是看十位上的数是否满5,来决定四舍五入。
那么,我们一起来研究一下,如何求四位数的近似数?关键要看哪一位上的数呢?
出示:6250大约是几千?
62506000
6250百位上是2(小于5),就把百位后面的尾数舍掉,改写成0.
2.做一做。(投影)
求下面各数的近似数。(独立写在本上)
3845400024892000
5290500045625000
2908300083978000
订正时请同学说一说是怎样想的?(求一个四位数的近似数,要看百位上的数是否满5,百位上的数不满5,直接把千位后面的尾数舍掉改写成0.如果百位上的数满5,把千位后面的尾数改写成0,同时还要把百位上的数向它的前一位进1)
3.求下面各数的近似数。
根据学生掌握情况教师总结:
求万以内数的近似数,要根据要求省略这个数的十位、百位或千位后面的尾数。如果尾数的最高位不满5,就直接把尾数舍去,改写成0;如果尾数的最高位满5,把尾数改写成0后,还要向它的前一位进1.
作业:看书第20、21页。
小资料
〔近似数和四舍五入法〕
有关近似数的知识在实际生活、应用中经常遇到。在多位数读写之后,教学近似数和四舍五入法,使学生初步理解近似数的意义与截取近似数的方法,可以进一步加深学生对数的概念的理解,为以后学习小数取近似值做准备。
取近似数的时候,省略哪一位后面的尾数要根据实际需要,按一定的规则进行。考虑到学生的接受能力,在小学主要讲常用的把一个多位数四舍五入到万位或亿位的方法。例如751872和754920,755830和758850,要省略万后面的尾数。751872和754920,尾数最高位千位上是1和4,不足一万的一半,把尾数舍去,改写成0.751872750000,754920750000.755830和758850,尾数最高位千位上是5和8,等于或大于一万的一半,把尾数改写成0后,要向它的前一位进1.755830760000,758850760000.省略亿位后面的尾数的方法可以依此类推。462500305300
758800428400
观察比较两组题的相同点与不同点。(小组讨论)
相同点:两组题都是求三位数的近似数。
不同点:第(1)组各数十位上的数都满5,(大于或等于5),所以都把十位和个位上的数改写成0,同时向百位进1.第(2)组各数十位上的数都不满5,(小于5)就把十位和个位上的数字舍掉改写成0.
请同学们强调:把一个三位数改写成整百的近似数关键是什么?
关键是看十位上的数是否满5,来决定四舍五入。
那么,我们一起来研究一下,如何求四位数的近似数?关键要看哪一位上的数呢?
出示:6250大约是几千?
62506000
6250百位上是2(小于5),就把百位后面的尾数舍掉,改写成0.
2.做一做。(投影)
求下面各数的近似数。(独立写在本上)
3845400024892000
5290500045625000
2908300083978000
订正时请同学说一说是怎样想的?(求一个四位数的近似数,要看百位上的数是否满5,百位上的数不满5,直接把千位后面的尾数舍掉改写成0.如果百位上的数满5,把千位后面的尾数改写成0,同时还要把百位上的数向它的前一位进1)
3.求下面各数的近似数。
根据学生掌握情况教师总结:
求万以内数的近似数,要根据要求省略这个数的十位、百位或千位后面的尾数。如果尾数的最高位不满5,就直接把尾数舍去,改写成0;如果尾数的最高位满5,把尾数改写成0后,还要向它的前一位进1.
作业:看书第20、21页。
小资料
〔近似数和四舍五入法〕
有关近似数的知识在实际生活、应用中经常遇到。在多位数读写之后,教学近似数和四舍五入法,使学生初步理解近似数的意义与截取近似数的方法,可以进一步加深学生对数的概念的理解,为以后学习小数取近似值做准备。
取近似数的时候,省略哪一位后面的尾数要根据实际需要,按一定的规则进行。考虑到学生的接受能力,在小学主要讲常用的把一个多位数四舍五入到万位或亿位的方法。例如751872和754920,755830和758850,要省略万后面的尾数。751872和754920,尾数最高位千位上是1和4,不足一万的一半,把尾数舍去,改写成0.751872750000,754920750000.755830和758850,尾数最高位千位上是5和8,等于或大于一万的一半,把尾数改写成0后,要向它的前一位进1.755830760000,758850760000.省略亿位后面的尾数的方法可以依此类推。462500305300
758800428400
观察比较两组题的相同点与不同点。(小组讨论)
相同点:两组题都是求三位数的近似数。
不同点:第(1)组各数十位上的数都满5,(大于或等于5),所以都把十位和个位上的数改写成0,同时向百位进1.第(2)组各数十位上的数都不满5,(小于5)就把十位和个位上的数字舍掉改写成0.
请同学们强调:把一个三位数改写成整百的近似数关键是什么?
关键是看十位上的数是否满5,来决定四舍五入。
那么,我们一起来研究一下,如何求四位数的近似数?关键要看哪一位上的数呢?
出示:6250大约是几千?
62506000
6250百位上是2(小于5),就把百位后面的尾数舍掉,改写成0.
2.做一做。(投影)
求下面各数的近似数。(独立写在本上)
3845400024892000
5290500045625000
2908300083978000
订正时请同学说一说是怎样想的?(求一个四位数的近似数,要看百位上的数是否满5,百位上的数不满5,直接把千位后面的尾数舍掉改写成0.如果百位上的数满5,把千位后面的尾数改写成0,同时还要把百位上的数向它的前一位进1)
3.求下面各数的近似数。
根据学生掌握情况教师总结:
求万以内数的近似数,要根据要求省略这个数的十位、百位或千位后面的尾数。如果尾数的最高位不满5,就直接把尾数舍去,改写成0;如果尾数的最高位满5,把尾数改写成0后,还要向它的前一位进1.
作业:看书第20、21页。
小资料
〔近似数和四舍五入法〕
有关近似数的知识在实际生活、应用中经常遇到。在多位数读写之后,教学近似数和四舍五入法,使学生初步理解近似数的意义与截取近似数的方法,可以进一步加深学生对数的概念的理解,为以后学习小数取近似值做准备。
取近似数的时候,省略哪一位后面的尾数要根据实际需要,按一定的规则进行。考虑到学生的接受能力,在小学主要讲常用的把一个多位数四舍五入到万位或亿位的方法。例如751872和754920,755830和758850,要省略万后面的尾数。751872和754920,尾数最高位千位上是1和4,不足一万的一半,把尾数舍去,改写成0.751872750000,754920750000.755830和758850,尾数最高位千位上是5和8,等于或大于一万的一半,把尾数改写成0后,要向它的前一位进1.755830760000,758850760000.省略亿位后面的尾数的方法可以依此类推。
小数近似数的教案
老师职责的一部分是要弄自己的教案课件,相信老师对要写的教案课件不会陌生。与此同时老师写好教案课件,对自己教学情况也能有所提升。那怎么才能快速写好一份优质教案课件?小编特地花时间为你收集并编辑了小数近似数的教案,请阅读,或许对你有所帮助!
小数近似数的教案 篇1
【教材内容】
《求一个小数的近似数》是义务教育课程标准实验教科书数学(人教版)第八册第四单元《小数的意义和性质》的内容。
【教学目标】
1、通过知识迁移,使学生能根据要求正确地运用四舍五入法求一个小数的近似数。
2、使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的0不能去掉。
3、进一步培养学生运用旧知迁移知识和类比推理的能力。
【教学重点】掌握用四舍五入法求小数的近似数的方法。
【教学难点】求小数的近似数时,小数末尾的0不能去掉的理解
【预案设计】
一、师生对话,迁移引入
1、学生的自我介绍
2、教师自我介绍
我姓颜
信息一:我今年31岁
信息二:我的体重大约是50千克
信息三:我在城关第三小学任教四年级,我们班有42位聪明可爱的孩子,他们在第三单元的检测中总分是3820.5分。
3、比较信息一与信息二的不同,揭示近似数与准确数。
4、猜一猜老师体重的准确数是多少千克?回顾四舍五入求近似数的方法。
【设计意图】求小数的近似数的方法与求整数的近似数的方法相似,学生在四年级上学期时,已经学习了求整数的近似数的方法,对四舍五入法已有了一定的理解和掌握。因此,在这个基础上,我借助老师介绍的素材,经历三个层次的知识回顾迁移,一是比较信息一与信息二的不同,揭示近似数与准确数;二是通过猜老师体重的准确数,学生猜测的整数范围集中于(45-54)之间,复习整数求近似数的方法,用四舍五入到十位看个位;三是通过猜测的精确,从小数的猜测中初步感知了求小数的近似数。这样三个层面,不同深度的知识展现最大限度的激发学生思维的最近发展区,为掌握小数的近似数的方法奠定基础。
二、自主探究,方法获得
1、介绍信息三:学生列示求平均分:3820.542
2、计算器算出平均分:90.964285......,这么长的数字,怎么办呢?
3、小组学习:取这个数的近似数
要求:1)独立思考:你能取出几个这个数的近似数
(有困难的同学:热线一:向老师、同伴请教;热线二:向书本p73学习)
2)在小组内说说,你是怎么想的?3)小数近似数的方法?
4、汇报交流
1)保留一位小数就是精确到十分位,保留两位小数就是精确到百分位,保留三位小数就是精确到千分位......。
2)讨论保留一位小数是91.0与91的不同想法
3)汇报填写表格
近似数
方法
保留整数(精确到个位)
91
看十分位,进一
保留一位小数(精确到十分位)
91.0
看百分位,舍去
保留两位小数(精确到百分位)
90.96
看千分位,进一
......
4)观察所取的近似数,有什么相同与不同?
都是近似数,但精确程度的不同;都要多看一位,但方法不同。
5、归纳求小数近似数的方法
【设计意图】求小数近似数方法的知识起点是整数的近似数,在上一环节充分的铺垫与感知后,这一环节安排自主学习、合作探究的学习方式,有的能写出多个近似数,从而对小数近似数的方法有所体验;有的能写出2个近似数,有的在同伴的帮助下学会求小数的近似数,这样就满足了不同层次的孩子得以不同的发展,使课程资源得以最优化的利用。
三、练习巩固,提高升华
1、一头海象的体重
1)1.98吨(保留整数)2)取出不同的近似数
2、大象的奔跑速度
1)0.418千米/分(保留两位小数)
2)0.4180.418,里可以填上哪些数
3、小明的妹妹身高0.999米,请把这个数
保留整数:
1)精确到十分位、精确到百分位:
2)近似数是1的一位小数有哪些?最大?最小?
3)近似数是1.0的两位小数最大?最小?
4)在尺子上比较1和1.0的精确度
5)比较91、91.0、90.96,谁最精确?如果想更加精确,怎么办?
4、数学日记春游了
明天春游了,我到超市买了22.35元的食品,我给营业员23元,他找我0.6元。这次春游坐车去科技馆,我们四年级共有240人,一辆客车最多可以坐55人,我用计算器算出:24055=4.36,需要4.36辆汽车。进科技馆参观,需要买票,门票每张6.5元,200元可以买30.76张,我们班有31位同学正好够。我们在科技馆里玩的可开心了
【设计意图】练习呈现不同的层次,不同的练习目的。练习1通过求不同的近似数达到知识的应用巩固作用,又通过对比归纳,突破难点,清晰建立近似数根据需要末尾的0不能省略。练习2通过对比,保留整数后近似数都是8,进一步明确求小数近似数的方法,在通过升华,拓展思维保留整数后是8的两位小数还有吗?练习3的数学日记让学生明白求小数的近似数要与日常生活实际相联系。
小数近似数的教案 篇2
教学目标
(一)使学生能根据要求用四舍五入法求一个小数的近似数。
(二)使学生学会把较大的整数改写成以万或亿作单位的小数。
教学重点和难点
求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。
把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。
学习新课
(一)复习准备
我们已经学过求一个整数的近似数,请大家回忆一下:23956省略万后面的尾数约是多少?省略千后面的尾数约是多少?
启发学生说出:省略万后面的尾数,看千位上的数是3,根据四舍五入法要舍去,得出239562万;省略千位后面的尾数,要看百位上的数是9,应该入上去,2395624千。
师:求一个整数的近似数用的是四舍五入法。在实际应用小数的时候,往往没必要说出它的准确数,只要说出它的近似数就够了。例如,量得大新身高是1.625米,平常不需要说得那么准确,只说大约1.6米或1.63米。
求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近似数。
板书课题:求一个小数的近似数。
(二)学习新课
1.求一个小数的近似数。
例12.953保留两位小数、一位小数和整数,它的近似数各是多少?
(1)首先要理解保留整数、一位小数、两位小数的含义。还可以怎样表述?
引导学生理解,保留整数就是省略整数后面的尾数;保留一位小数就是省略十分位后面的尾数,或者说精确到十分位;保留两位小数就是精确到百分位,也就是省略百分位后面的尾数
(2)求一个小数的近似数的方法是什么?
引导学生明确,仍然采用四舍五入法,看省略部分的最高位,是5以上的数,省去后在前一位加1,是4以下的数舍去。
在明确上述两点的基础上,让学生自己试算,得出:2.9532.95.
板书:2.9533.02.9533
引导学生分别说明省略的方法。
提问:
(1)上面求出的近似数3.0,为什么末尾的0不能去掉?
(2)上面求出的两个近似数3.0和3,哪个更精确些?
引导学生讨论后明确:3.0是保留一位小数,表示精确到十分位,3是保留整数,表示精确到个位,所以3.0要更精确些。由此可知近似数末尾的0是不能去掉的,因为它表示近似数的精确度的。
总结求近似数应注意什么?
在学生议论的基础上,概括出注意两点:
(1)要根据题目的要求取近似值。保留整数,就要看十分位;保留一位小数,就要看百分位然后按照四舍五入法决定舍还是入。
(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,应保留,不能去掉。
反馈:完成115页做一做(上面)。
订正时说明保留的方法。
2.改写成以万或亿作单位的数。
例21992年我国生产洗衣机7127000台。把这个数改写成用万台作单位的数。
提问:
(1)把7127000台改写成用万台作单位的数,应该用多少来除?
(2)应该把7217000缩小多少倍?
(3)小数点应该向哪个方向移动几位?
学生回答后,教师说明,为了简便只在万位后面点上小数点,去掉小数末尾的0.
板书;7127000台=712.7万台
反馈:把348000改写成以万作单位的数。
348000=34.8万
师启发提问:既然把一个数改写成以万作单位的数,只要在万位后面点上小数点,再写上单位万,那么要把一个数改写成以亿作单位的数,应该怎么办?
3.改写成以亿作单位的数后,再求近似数。
例31991年我国生产原油139000000吨。把这个数改写成用亿吨作单位的数。
学生独立改写成139000000吨=1.39亿吨,并说出改写的方法。
提问:如果要求保留一位小数怎么办?
启发学生自己得出(接上题)1.4亿吨,并说出保留一位小数的方法。
反馈:完成115页下面做一做
订正时要注意,防止改写与省略混淆。
4.区别对比。
例2、例3的学习中,有的数需要把它改写成以万或亿作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?
引导学生讨论后明确:
(1)求近似数需要省略某位后面的尾数。保留整数,表示精确到个位,就要看十分位是几,然后按照四舍五入法决定是舍还是入。求出的是近似数,应用表示,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。最后要注意别忘记写单位万或亿,遇有单位名称的要写上单位名称。
(2)把一个数改写成以万或亿作单位的数,求的是准确数,就在万或亿位后面点上小数点,小数末尾的0要去掉,遇有单位名称的要写上单位名称,应用=表示,并写上单位万或亿。
(三)巩固反馈
1.我国第二大岛海南岛的面积是32200平方千米,把这个数改写成以万平方千米作单位的数,再保留一位小数。
2.把135000000人改写成以亿人作单位的数,再保留一位小数。
(四)作业
练习二十四第1~5题。
课堂教学设计说明
本节课把求一个数的近似数与把一个数改写成以万或亿作单位的数两个概念同时进行,便于学生区别对比。
求一个数的近似数与求一个整数的近似数一样,也是根据需要用四舍五入法保留位数。由于保留的位数不同,求得的近似数的精确度也不一样,特别是末尾的0不能去掉的道理要让学生明白。
把一个数改写成以万或亿作单位的数,也是在前边学习的基础上进行的,最后通过对比明确这两个概念的区别,从意义、方法、符号以及末尾0的处理几方面分清,共同点是都不要忘记写单位万或亿及单位名称。
练习时采用讲练结合方式,最后通过综合练习形成熟练技巧。
板书设计
求一个小数的近似数
例12.953保留两位小数,一位小数和整数,它的近似数各是多少?
四舍五入法
2.9532.95省略百分位后面的尾数
2.9533.0省略十分位后面的尾数
2.9533省略个位后面的尾数
例21992年我国生产洗衣机7127000台,把这个数改写成用万台作单位的数。
7127000台=712.7万台
例31991年我国原油产量是139000000吨,把这个数改写成用万吨作单位的数。再保留一位小数。
139000000吨=1.39亿吨
1.4亿吨
求近似数与改写的区别
意义上
方法上
符号上
小数末尾0的处理上
小数近似数的教案 篇3
教学目标
1.使学生能根据要求正确地运用四舍五入法求一个小数的近似数.
2.使学生学会把较大的整数改写成以万或亿作单位的小数.
教学重点
求一个小数的近似数及把较大的数改写成以万或亿作单位的小数.
教学难点
使学生能够区别求近似数与改写求准确数的方法.
教学步骤
一、铺垫孕伏.
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
9865345874131200
5004739801014870
2.下面的□里可以填上哪些数字?
32□64532万47□0547万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用四舍五入法保留一定的小数位数.
(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?
教师提问:保留两位小数,要看哪一位?怎样取近似数?
使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.
学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?
使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0.2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.
分组讨论:保留一位小数3.0十分位上的0能不能去掉为什么
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位
(3)求下面小数的近似数.
3.781(保留一位小数)
0.0726(精确到百分位)
(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(5)小结.
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几然后按四舍五入法决定是合还是人.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.
小数近似数的教案 篇4
教学要求:使学生能正确、熟练地取积的近似值,熟练运用定律使一些小数乘法运算简便。
教学过程:
一、练习。
1.口算。
4.3?0.2
0.008?1.25
0.13?0.4
1.5?0.4
0.25?400
1.6?0.5
0.25?68?40
16?0.5
2.计算46.15?0.23要求积分别保留整数、一位小数和两位小数。)
3.用简便方法计算下面各题.
0.125?13?8
3.4?99
32?2.5
0.42?72+38?0.42
2.5?0.8?4?1.25
4.改错题.
(1)1.074?5.8=0.62292
(2)0.7?0.9=0.6(保留一位小数)
(3)4.25
(4)
0.15
4.6
2.34
2550
60
1700
45
1.9950
30
0.00810
5.判断题.
(1)0.8?5与5?0.8算式表示的意义一样.()
(2)3.95保留一位小数是4。()
(3)整数乘法的运算定律可以用于小数乘法。()
(4)4?3.5表示4个3.5是多少?()
(5)列竖式计算时,要把因数中小数点齐。()
二、课堂练习。
课本练习三第6题,第14题、16题。
小数近似数的教案 篇5
教学目标
1.理解和掌握求一个小数的近似数的方法。
2.会按要求求一个小数的近似数。
3.培养学生的推理能力和应用意识。
教学难点用四舍五入法怎样求一个小数的近似数。
教学过程教师活动
学生活动
创设情境初步感知
1.课件出示一个加油站。93#汽油3.73元/升,加油12.5升。
2.请同学们用计算器算一算,应付多少钱?46.625元。
3.怎样付这笔加油费?说一说理由。
4.可以付46元6角3分,46元6角,还可以付47元。
刚才同学们说到的46.63元、46.6元、47元都是46.625元的近似数。板书课题:求一个小数的近似数。
学生看图用计算器计算要付的钱。说一说你怎样付这笔钱。
实践探索归纳方法
1.结合计算器,经历求近似数的过程,边演示边说明求近似数的过程和方法。(1)46.625元保留两位小数,怎样求出它的近似数?
小数点后第3位是5,第3位去掉后向第2位进1.
写作:46.625元鈮?6.63元
(2)46.625元保留一位小数,怎样求出它的近似数?
小数点后第2位上是2,去掉第2位、第3位上的数,第1位不变。
写作:46.625元鈮?6.6元
(3)46.625元保留整数,该怎样求出它的近似数?
十分位上是6,把小数部分全部去掉,向个位进1.
写作:46.625元鈮?7元
2.求近似数,说出过程。(学习P80例1)
引导学生说过程和方法时,要突出保留几位?观察哪一位,这一位上是几?去掉哪些?去掉后是否进1.
3.讨论归纳:用四舍五入法求一个小数近似数的方法。
4.生自学例2.
先独立完成并议一议:1.40与1.4这近似数有什么不同?近似数1.40末尾的0能去掉吗?
学生在小组里讨论46.625元怎样保留一位小数、两位小数以及三位小数。自学例1.说一说是怎样想的。
归纳小结用四舍五入法求一个小数近似数的方法。
生自学例2.
先独立完成并议一议:1.40与1.4这近似数有什么不同?近似数1.40末尾的0能去掉吗?
课堂小结这节课学习了什么?你有哪些收获?还有什么疑问?