圆柱的表面积课件
发表时间:2024-03-182025圆柱的表面积课件系列十五篇。
经过细致的筛选栏目小编为大家整理出了一篇最新的“圆柱的表面积课件”,感激您花费宝贵的时间阅读本文。通常老师在上课之前会带上教案课件,通常老师都会认真负责去设计好。 周全的教学教案课件有利于教师进行有序的教学活动。
圆柱的表面积课件【篇1】
教学内容:
小学数学第十二册教材P33~P34
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
圆柱形物体、学具、多媒体课件
教学重点:
圆柱侧面积的计算方法推导。
教学过程:
一、猜测面积大小,激发情趣导入
1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法
师:怎么计算圆柱的表面积呢?
圆柱的表面积=侧面积+两个底面的面积 (板书)
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的.话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)
底面积:3.14×5×5=78.5(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+78.5×2=748.576(平方厘米)
情况二:半径:18.84÷3.14÷2=3(cm)
底面积:3.14×3×3=28.26(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+28.26×2=648.096(平方厘米)
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)
所以圆柱体表面积=长方形面积=底面周长×(高+半径)
用字母表示:S=C×(h+r)
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)
那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。
本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。
三、 分组闯关练习
1、多媒体出示题目。
第一关(填空)
沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。
第二关
一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。
第三关(用你喜欢的方法完成下面各题)
一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?
2、汇报结果,给予评价。
我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。
四、 质疑(同学们还有什么疑问吗?)
五、反馈小结:
教学反思
1、 自主探究,体验学习乐趣
以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。
2、合作交流,加深对知识的理解深度。
给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。
圆柱的表面积课件【篇2】
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。
(二)核心能力
运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。
(三)学习目标
1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。
2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。
3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。
(四)学习重点
圆柱表面积的计算
(五)学习难点
圆柱体侧面积计算方法的推导
(六)配套资源
实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具
二、学习设计
(一)课前设计
自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。
【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】
(二)课堂设计
1.创设情境,引入新课
师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)
师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?
今天我们就来一起研究圆柱的表面积。(板书课题)
2.探究新知
(1)认识表面积
①回忆旧知
师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?
学生上台演示。
小结:六个面的面积总和是长方体的表面积。
师:正方体呢?
学生自由发言。
②迁移类推新知
师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?
学生操作后,自主发言。
根据学生发言板书:圆柱的表面积=圆柱的两个底面面积+圆柱的侧面积
【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】
(2)探求表面积计算方法
①自主探索
师:两个底面是圆形,我们早就会求它的面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的平面图形?
学生自由发言,
师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。
以小组为单位进行操作活动。
②交流汇报
各小组展示汇报,引导学生互相评价。
预设1:沿高剪开
预设2:沿斜线剪开
预设3:随意剪开或撕开
引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。
③用字母表示
师:怎么用字母表示呢?
直接计算:S=Ch
利用直径计算:S=πdh
利用半径计算:S=2πrh
④归纳小结
师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。
S表=S侧+2S底
师:要求圆柱的表面积需要知道哪些条件?
练一练:
第21页的做一做。
一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?
学生独立完成后汇报。
师:通过计算,你发现圆柱的表面积和侧面积有什么不同?
引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。
【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1、2、3.】
(3)举一反三,灵活应用
出示例4:
一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。)
①理解题意
师:求多少面料就是求什么?
师:“没有底”的帽子如果展开,它由哪几部分组成?
小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。
②独立完成
学生独立完成后交流汇报。
③归纳小结
师:通过计算这道题目,你有什么收获?
引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。
【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3.】
3.巩固练习
(1)求下面圆柱的侧面积。
①底面周长是1.6m,高是0.7m。
②底面半径是3.2dm,高是5dm。
(2)小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要多少彩纸?
4.课堂总结
师:回顾本节的学习,你们有什么收获?
引导小结:认识了圆柱的表面积,并利用转化的思想推导出了圆柱的表面积怎样计算,并利用它来解决生活中的一些问题。
(三)课时作业
1.利用工具量出你所需要的信息,计算你手中圆柱体的表面积。
(1)测量的数据
(2)计算过程及结果
圆柱的表面积课件【篇3】
1.在情境中建立数学与生活的联系。
《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。
2.在操作中渗透转化思想。
转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。
3.在应用中培养学生解决问题的能力。
“培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。
圆柱的表面积课件【篇4】
(1)计算圆柱体的表面积:教材14页做一做(强调作业格式要求:分三步,首先分别求出侧面积和底面积,最后求表面积)
(2)底面直径6分米,高2分米。
(3)底面周长12.56米,高3米。
无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的`周长和面积计算公式,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。即使我建议学生们制作了1——100的派表,可练习六第1题需要用到192派,第2题需要用到6.25派,这些结果从派表中都无法查找到结果,必须计算。三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。
这里,向同学们介绍另一种计算圆柱体表面积的方法。
我们把两个底面分别剪成8个相等的扇形(剪成的扇形越多越精确),取其中一个扇形再平均分成两个小扇形。把这些扇形贴紧长方形的长拼成一个近似的长方形,与原来侧面展开的长方形拼成一个大长方形。(因为我的绘图能力有限,所以图略。)
这个大长方形的面积就是圆柱体的表面积,它的长是圆柱体的底面周长,它的宽是圆柱的高与底面半径的和。这样就可以得到另一种计算圆柱体表面积的公式,即:
小朋友,你能用两种不同的公式解答下面的题目吗?
一个圆柱形铁皮油桶,高1.5米, 底面直径0.8米, 做这个没桶至少用铁皮多少平方米?
圆柱的表面积课件【篇5】
活动名称:
感官——插座圆柱体1
教具构成:
第一组插座圆柱体
教育目的:
1. 培养幼儿辨别大小的视觉能力。
2. 培养序列与配对的概念。
操作方法:
1. 教师介绍工作区域,取铺工作毯、工作卡。
2. 教师拿用具,托盘内放置嵌板,介绍今天的工作名称。
3. 教师展示工作:
(1) 用三指捏的方式从左侧的开始一个一个拿出来,放到对应的洞穴前面。
(2) 三段式教学:将最大的和最小的放到前面,教师命名:这是最大的、这是最小的;请幼儿指一指哪个是最大的,哪个是最小的;教师手指着提问:这是X X,这是X X。将最大的和最小的放回原处。
(3) 从最大的开始用右手捏住柄,左手食指、中指从前往后划,再用左手食指、中指从左向右划洞口,比较大小,放回洞穴后用食指、中指触摸洞穴划圈。
(4) 用同样的方法将所有的放回。
(5) 全部放回后,将其竖放,双手食指、中指沿边缘划。
4. 幼儿尝试,教师指导。
5. 工作结束,从哪拿得送回哪去。
变化与延伸:
1. 插座圆柱体其他几组。
2. 蒙眼做插座圆柱体组。
3. 将四组全部拿出,将一样的圆柱体放在一起。
错误控制:
每个圆柱体只能嵌进适当的圆柱插座。
兴趣点:
1. 三指捏的方法。
2. 每个圆柱体有自己特定的洞穴。
注意事项:(略)
圆柱的表面积课件【篇6】
一、创设情境,悬念导入。
上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料?
板书课题:圆柱的表面积
二、合作探究,发现方法。
1、圆柱的表面积包括哪些面的面积?
2、研究圆柱的侧面积。
(1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?
(2)学生想办法亲自验证。
(学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。)
师问:①剪、拆的过程中你有什么发现?
②长方形的长当于什么,宽相当于什么?
③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢?
(3)推导圆柱体侧面积的计算公式:
通过学生动手操作、观察比较得出,因为:长方形的面积=长×宽
所以:圆柱的侧面积=底面周长×高
3、明确圆柱的表面积的计算方法。
师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗?
板书:圆柱的表面积=圆柱的侧面积+两个底面的面积
三、实际应用
现在你能求出做这样一顶厨师帽需要多少面料吗?
出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
1、引导:①求需要用多少面料,实际是求什么?
②这个帽子的表面积 的是什么?
2、学生同桌讨论,列式计算,师巡视指导。
3、汇报计算情况。
板书:帽子的侧面积:3.14×20×28=1758.4(cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4≈20xx(cm2)
答:需用20xxcm2的面料。
四、巩固练习:课本第14页“做一做”。
五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。
六、作业:课内:练习二第5、7题;课外:练习二第6、8题。
附:板书设计
圆柱的表面积
长方形的面积= 长 × 宽
圆柱的侧面积=底面周长 × 高
圆柱的表面积=圆柱的侧面积+两个底面的面积
例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
帽子的侧面积:3.14×20×28=1758.4cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4
≈20xx(cm2)答:需用20xxcm2的面料。
圆柱的表面积课件【篇7】
一、说教材
本节课的教学内容是九年义务教育六年制小学数学第十二册,它是学生初次接触圆柱这个几何形体,要求学生认识掌握圆柱的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法,教材是在学生掌握长方形面积、圆的面积计算方法的基础上安排的,因而要以上述知识为基础,运用迁移规律使圆柱体的侧面积、表面积的计算方法,这一新知识纳入学生原有的认知结构中。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。
几何初步知识的教学是培养学生抽象概括能力、思维能力和建立空间观念的重要途径。大纲明确指出:教学是要通过学生的多种感官的参与,掌握形体的特征,培养学生的空间观念。结合本课概念抽象,知识点多的特点和学生的空间想象力不够丰富等实际情况,现拟如下目标:
(1)知识教学
使学生认识圆柱体,掌握圆柱体的特征及各部分名称的同时理解并掌握圆柱体的侧面积、表面积的计算方法。
(2)能力训练
培养学生的观察、操作、想象能力,发展学生空间观念,渗透“认识来源于实践”和“全面看问题”的唯物主义观点,以及事物间的相互联系和相互转化的观点。
(3)素质培养
培养学生的合作能力和尝试精神,养成敢于质疑问难的习惯,唤起学生的竞争意识和创新意识。
圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础,所以本课的重点是:掌握圆柱体侧面积、表面积的计算方法,由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:圆柱体侧面积公式的推导。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。
二、说教法
本课由于概念抽象,知识难懂,易使学生感到枯燥无味或产生畏难情绪。我根据学生由感知——表象——抽象的认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,以“学生发展为本,以尝试学习为主线,以创新能力为主旨”。采用微机辅助教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法等,让学生全面、全程的参与教学的每一个环节,充分调动学生学习的积极性,培养学生的观察力、动手操作和想象力,发展学生的空间观念,总结出圆柱的侧面积、表面积的计算方法。
三、说学法
本课非常注重培养学生的空间观念和想象力。以教师设计的导思题为依托,以小组合作学习为形式,创设平等、民主、和谐、安全的教学环境,通过学生的动手操作、观察、比较等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。
四、说教学程序
(一)温故引新,巧妙入境
开课提问,我们都认识了哪几种立体图形?学生回答长方体和正方体。然后教师拿出圆柱体模型问,这个物体的形状是不是长方体?为什么?让学生讨论后回答,得出这个物体的形状不是长方体,它是一种新的形体——圆柱体。在日常生活中有很多物体的形状是圆柱体,如:药瓶、铅笔、墨盒等。(这样以旧引新,通过讨论唤起学生的学习兴趣和求知欲望,使学生对圆柱体表象有了深刻的认识。)教师由此引出新课,圆柱体的侧面积和表面积怎样计算呢?这就是我们这节课所要研究的内容。板书:圆柱体的表面积以上设计能让学生充分体验到数学与生活的联系,教师的巧妙设疑把学生引入一个心求通而未得,口欲言而无能的愤悱境地,较好地激发学生的求知欲,巧妙的揭示课题。)
(二)探求尝试,明确概念
1、动手操作,引导发现圆柱体侧面积的计算方法。这是本节课的难点,了解决这一难点,我设计如下:
首先,教师拿出圆柱体教具并提问:圆柱体的各部分名称是什么?圆柱体的侧面积指的是什么?生答后师说:那么怎样计算圆柱体的侧面积呢?请你们带着三个问题动手操作,小组讨论。这三个问题是
(1)把圆柱体的侧面沿高剪开得到一个什么图形?
(2)展开后的图形各部分与圆柱体的各部分有什么关系?
(3)你想怎么求圆柱体的侧面积?
学生讨论后,接着教师引导学生回答上述思考题,并且用电脑演示,指出把圆柱体的侧面展开后得到一个长方形。这个长方形的长等于圆柱体的底面周长,宽等于圆柱体的高。再引导学生根据长方形的面积=长×宽,推导出圆柱体的侧面积=底面周长×高,最后引导学生利用公式计算。师问:要求圆柱体的侧面积必须知道哪些条件?这是及时出一道尝试题:
已知圆柱体的底面直径是3厘米,高是5厘米,求圆柱的侧面积。
做完后让学生分组说说解题思路。再让学生自学课本中的例1。使学生体验到尝试学习新知的乐趣。(这一环节,使学生的眼、手脑等多种感官参与感知活动,做到了在合作学习和动手操作中,思维、讨论、抽象概括出计算方法,这样能够更好的突破难点。)
2、引导学生独立推导出圆柱体表面积的计算方法。
(1)师提问:什么是圆柱体的表面积?
(2)验证表面积,让学生运用手中的学具拆一拆,摆一摆,看一看圆柱体的表面积是由哪几部分组成的?然后教师用电脑演示圆柱表面积的组成。
(3)由学生分组讨论,独立发现计算方法,再向老师汇报:
(4)提问:要求圆柱的表面积,必须知道哪些条件,引导学生独立运用公式计算。例2:师巡视指导,共同订正。(这一步骤的设计是在前一步教师扶的基础上充分放手引导学生独立推导出计算方法。这样充分发挥了学生的主体作用,也培养了学生独立思考的能力和初步的逻辑思维能力。)
3、教师小结,师强调重难点。
4、质疑问难,生问生答或师答。
(三)巩固练习,培养能力
这一环节是内化知识,训练思维培养能力。形成技能的重要环节,因而我设计的练习题在注重基本练习的前提下,首先在形式上注意新颖、多样、采取、辨析、填空、判断、选择、列式、口答,笔算练习等形式。其次在内容上注意采取秩序渐进的原则,由易到难,这样即符合儿童的认识特点,又能兼顾大多数学生。
(四)全课总结,促进构建
结合板书,让学生说说本课学到的知识,并说出是怎样学到的,(目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到会学之目的。)那么在实际中要计算一只水桶的用料面积是多少,又怎样计算呢?我们下一课再研究。(这样的结尾既承接了本节课的内容,又为学习新知识高下悬念。有利于激发学生的学习兴趣。)
圆柱的表面积课件【篇8】
今天我说课的内容是:九年义务教育六年制小学人教课本数学六年级第十二册第一单元《圆柱的表面积》
一、教材与学情分析
1、教材分析
本节课的教学内容是在学生认识掌握圆柱基本的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法。教材是在学生掌握长方形面积、圆的周长和面积计算方法的基础上安排的,因而要以上述知识为基础,运用转化、迁移的方法理解和掌握圆柱体的侧面积、表面积的计算方法,并且能运用这一知识解决一些简单的实际问题。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。本课教材分圆柱表面积的含义,计算方法和表面积的实际应用三部分内容。
2、学情分析:
为了使教学设计更贴近学情,有效的完成教学目标,我在课前对学生的知识基础和学习经验进行了调研,这是课前调研的内容和统计的结果:从调研结果可以看出学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积指的是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过奥数的。由此可知,学生对圆柱的表面积了解的比较少,存在着一定的困难。
二、教学目标
因此,依据教材和学情,我制定了如下教学目标。
知识目标:在探究活动中,使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
能力目标:培养学生观察、操作、概括的能力,以及利用知识合理灵活地分析、解决实际问题的能力。
情感目标:培养学生初步的逻辑思维能力和空间观念,向学生渗透事物间的相互联系和相互转化的观点。
三、教学重点:能应用圆柱体侧面积、表面积的计算方法解决实际问题。
四、教学难点:探究圆柱体侧面积、表面积的计算方法。
五、教具准备:每组一套学具(包括能组成圆柱体的长方形、正方形、平行四边形和多个圆及其他图形)
六、教学主要环节:
为有效的落实教学目标,突破教学重、难点,在本节课中,我共设计了四个环节。
(一)激趣导入,初步感受
(二)动手操作,探求新知
(三)巩固应用,拓展提高
(四)回顾整理,总结收获
第一环节:激趣导入,初步感受
平面图形的面积学生已经会求了,而圆柱的侧面是个“曲面”,怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。
课前,我发给每组学生一份材料袋,并对他们说:“同学们你们想不想亲手制作一个圆柱体?老师为你们准备了一些材料,请你们四人合作,制作一个圆柱。柱体部分的接缝可用胶条粘好,上下两个底直接搭在柱体上下就可以了,不用粘上。在制作的过程中思考一个问题:你们是如何选择材料的?你有什么新的发现?
这样一来,把学生理解上的难点“由曲变直”,转化为“由直变曲”,根据学生的生活经验,“由直变曲”会容易的多。通过他们自己制作圆柱,直观了解曲面和平面之间的关系,有利于突破教学难点。同时提高了学生的学习兴趣。
学生带着兴趣,开始尝试,兴趣有了,自主探究的欲望自然也就强烈了。
第二环节:动手操作,探求新知:这是本节课的核心,也是重、难点所在,我主要通过4个层次来完成,使学生在小组探究的活动中,归纳圆柱体表面积的计算方法。
第一层次:小组探究,自主发现
学生在操作过程中很容易想到用长方形或正方形卷起来做成圆柱的侧面,然后选择合适的圆作为两个底,但对于学生能否想到利用平行四边形做侧面,学生的认识可能仍不清晰。因此,在小组探究时,我会到小组中巡视了解学生制作情况,及时对学生进行适时的启发引导,在这样的小组活动中,学生不仅对圆柱体有了更加准确的认识,也提高了合作、探究的能力及观察、概括的能力。
第二层次:小组汇报,总结归纳
在小组探究的基础上,分组汇报讨论结果,共分三种情况
分别选择长方形、正方形、平行四边形作为圆柱体的侧面把它卷成圆筒,再选正好能和圆筒对上的同样大小的两个圆。
在学生汇报完后,我让学生思考一个问题,为什么上下两个底面的圆必须是大小相等的两个圆?不相等行不行?
通过动手操作,让学生从感官上加深对表面积的认识,为总结圆柱表面积公式打下基础。
然后,我直接提出问题:你会求它的侧面积吗?你是怎么推导出来的?这里还是让学生自主探究,学生很有可能无从下手去思考,我及时点拨学生引导他们发现长方形的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系。这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。通过老师的点拨,学生能够找到这两者的内在关系,学生汇报时,由课件配合,让学生从视觉上进一步感受到长方形的长就是圆柱的底面周长,宽是圆柱的高。如果展开是平行四边形,平行四边形的底就是圆柱的底面周长,高是圆柱的高;如果展开的是正方形,正方形的一个边长就是圆柱的底面周长,另一个边长就是圆柱的高。从而推导出圆柱的侧面积公式就是底面周长×高。这一教学过程学生亲自参与知识的获取中,真正理解了公式的由来,感受到重新创造数学的乐趣,增强了学好数学的信心。
在研究完圆柱侧面积的推导后,我又让学生来摸摸这个圆柱的表面,然后小结:我们摸过的所有这些面的面积和就是这个圆柱体的表面积。这里让学生摸的过程就是学生对表面积的认识过程,由于前面已经做了足够的铺垫,在学生理解了侧面积计算方法的基础上,我让学生独立想办法求出圆柱体的表面积。在学生活动的过程中,我巡视、指导,帮助有困难的学生。
在本环节中,在学生的眼、手、脑等多种感官参与感知活动中,探究的精神得到了张扬,自主学习的能力得到了实在的体现与培养。教学的重点、难点在学生的.亲历探究实践中得到了突破。
第三层次:及时巩固,内化知识
在教学重难点基本突破后,让学生根据材料中给出的信息,计算本组制作的圆柱体的表面积,然后全班交流,因为学生利用的材料不同,因此涉及到的信息比较全面,侧面展开图有长方形,有正方形,还有平行四边形。这样就使学生巩固了对圆柱体表面积的理解。
第四层次:尝试应用,解决问题
由于本课的教学重点是能应用圆柱体侧面积、表面积的计算方法来解决实际问题,生活中不仅有不缺面的圆柱体,而且还有只有侧面的圆柱体和只有一个底面的圆柱体。能够准确的判断所求圆柱的表面积共几个面对于学生来说是个难点。因此我利用学生手中的圆柱体进行了一系列的拓展练习,首先我拿出一个学生做好的圆柱,把其中一个底拿走,引导学生思考怎样求这个圆柱的表面积?为什么?通过观察,学生很容易发现这个圆柱体的表面积就用侧面积加一个底面积就可以了。接着再引导学生思考生活中哪些物体跟这个圆柱类似?(如水桶、圆柱体的笔筒)在这里我安排的一道求水桶表面积的练习。
这样一来,使学生在丰富的感性认识的基础上,自主解决了只有一个底面的圆柱体类型的实际问题。
然后用同样的方法,解决只有侧面的圆柱体这一类型的实际问题。同样还是拿出一个学生做好的圆柱,把其中两个底都拿走,问学生求这个圆柱的表面积怎么求?生活中哪些物体跟这个圆柱类似?(烟囱,钢管内、外部的表面积)我也安排了一道求烟囱表面积的练习。
在前面的学习中,学生经历了自主观察并解决了生活中的一些实际问题,为了便于学生更好的区分他们,于是我引导学生按照圆柱体的面给圆柱体分分类:第一类是不缺面的圆柱体、第二类是缺一个底面的圆柱体、第三类是缺两个底面的圆柱体。为了更好区分,更好记忆,我又引导学生分别给它们起个名字:不缺面的就叫它全面圆柱体,缺一个底面的最典型物体就是水桶,我们就叫他水桶圆柱体,缺两面的最典型物体是烟囱,我们就叫他烟囱圆柱体。最后引导学生归纳出这三种圆柱体的表面积的求法:
在这一系列的总结、概括、归纳中,学生完善了认识,全面了解了各类圆柱体的区别及表面积的计算方法,进而提高学生的总结、归纳的能力。
第三环节:巩固应用,拓展提高
根据以上内容,我准备在实践练习中安排四个层次的内容。
1.一组已知底面半径、直径、周长和高求侧面积、表面积的对比习题,加深学生对圆柱表面积的理解,提高求表面积的技能。
2.一道求烟囱圆柱体表面积的习题。学生进行练习后,追问:为什么只求侧面积就可以了。
3.求一个用塑料薄膜覆盖的蔬菜大棚表面积的习题,追问:为什么求完全面圆柱体表面积后还要除以2.使学生养成灵活计算圆柱的表面积的习惯,培养实际应用的能力。
4最后安排的是一个拓展题,求帽子的表面积。这个表面积是由一个水桶型的圆柱体和一个环形的表面积组成的。把圆柱体表面积和我们以前学过的环形面积及组合图形的知识揉和在一起,培养了学生多角度思考问题的能力。
第四环节:回顾整理,总结收获
在一节课即将结束时,我引导学生回顾整个学习的过程,学习时运用的数学思想,使学生在一节课的学习中不仅有知识上的积累,还能在学习方法上有所收获,使学生感受到学习数学的快乐和价值。
以上就是我对这一部分内容的理解与分析,谢谢各位老师!
圆柱的表面积课件【篇9】
教学内容:北师大版小学数学第十二册第一单元的内容第5、6页。
教学目标:
1、形成圆柱体侧面积和表面积的空间观念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
教学重点:动手操作展开圆柱的侧面积
教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
教具准备:圆柱表面展开电脑动画展示(如果条件不允许就用展开图贴在黑板上)
学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
教学过程:
一、创设情境,引起兴趣。
拿出圆柱体茶叶罐,摸一摸,说说你都摸到了哪些面。
想一想工人叔叔做这个茶叶罐是怎样用料的?(学生会说出做两个圆形的底面再加一个侧面)
那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)
二、自主探究,发现问题。
研究圆柱侧面积
1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
用自己喜欢的方式展开可能会出现很多种可能,比如斜着剪、拐弯剪等,对各种可能情况的处理方式教师应该做到心中有数。也可能有的学生把长方形纸卷成圆柱的侧面。
2.观察对比观察展开的图形各部分与圆柱体有什么关系?
3.小组交流能用已有的知识计算它的面积吗?
4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积
即长宽=底面周长高
所以,圆柱的侧面积=底面周长高
S侧==Ch
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2rh
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
2、圆柱体的表面积怎样求呢?
得出结论:圆柱的表面积=圆柱的侧面积+底面积2
3、动画:圆柱体表面展开过程
三、实际应用
1、填空
圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()
2、要求一个圆柱的表面积,一般需要知道哪些条件()
3、教材第六页试一试。
四、回顾全课
本节课你收获了什么,有什么遗憾。
作业:《指导丛书》
板书设计:
圆柱体的表面积
圆柱的侧面积=底面周长高S侧=ch
长方形面积=长宽
圆柱的表面积=圆柱的侧面积+底面积2
圆柱的表面积课件【篇10】
教材内容:23-24页
教学目标:
1、进一步巩固圆柱侧面积、底面积、表面积的计算方法,体会这些计算方法的联系和区别。
2、引导学生运用所学的圆柱表面积的知识解决相关的实际问题。
教学重难点:
通过解决实际问题,加深学生对圆柱表面积计算方法的理解,培养学生灵活运用所学的知识解决实际问题的能力,发展学生的空间观念。
教学具准备:
与练习六中的练习相关的图片。
教学过程:
一、复习引入
1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?
2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。
二、基本练习
1、出示练习六第3题,理解表格意思。
2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?
各自计算,算后填写在书中表格里,再交流方法和得数。
3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?
各自计算,算后填写在书中表格里,再交流方法和得数。
4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?
各自计算,算后交流方法和得数。
三、综合练习
1、完成练习六第4题。
⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?
⑵各自练习后交流算法。
2、完成练习六第5题。
⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?
⑵各自练习后交流算法和结果。
3、讨论练习六第7题。
⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?
⑵看看,这个博士帽是怎么做成的,包括哪几个部分?
⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。
你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?
⑷各自计算,算后交流算法和结果。
⑸如果要做10顶呢?怎么算?
3、讨论练习六第8题。
⑴出示题目,让学生读题,理解题目意思。
⑵讨论:塑料花分布在这个花柱的哪几个面上?
要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?
算出上面和侧面的面积后,怎么算?为什么?
4、讨论解答练习六第9题。
⑴出示题目,读题,理解题目意思。
⑵尝试列式。
⑶交流算法:
这题先算什么?再算什么?最后算什么?
怎么算一根柱子的侧面积的?为什么不要算底面积?
四、全课
五、作业:练习六6、7、8、9题。
圆柱的表面积课件【篇11】
一、设计理念
新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动”
二、教学策略
1.创设生活情景,激励自主探索。
2.创建探究空间,主动发现新知。
3.自主总结规律,验证领悟新知。
4.解决生活问题,深化所学新知。
三、教材分析
《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。
四、教学目的:
使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。
五、教学难点:
理解和掌握求圆柱表面积的计算方法。
六、教具准备:
圆柱表面积展开模型电脑课件
学具准备:
易拉罐、白纸壳、剪子
七、教学过程
(一)创设生活情景,激励自主探索
在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”
(评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。)
(二)创设探究空间,主动发现新知
1、认识圆柱的表面积
师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?
生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。
师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)
生:我知道了,圆筒是用长方形纸卷成的!
师:各小组试试看,这位同学说的对吗?
(其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)
师:还有别的可能吗?如三角形、梯形。
生:不能。如果是的话,就不是这种圆柱形的饮料罐了。
(评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)
2、把实际问题转化为数学问题
师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?
学生观察、思考、议。
生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。
生B:求饮料罐铁皮用料面积就是求:
圆面积X 2 + 长方形面积
生C:必须知道圆的半径、长方形的长和宽才能求面积。
生D:我看只要知道圆的半径和高就可以求出用料面积。
师:我们让这位同学谈谈他的想法。
生D:长方形的长与圆的周长相等,长方形的宽与高相等。
所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。
师随着板书:长方形的面积 = 长 × 宽
圆柱的侧面积 = 底面周长 × 高
(三)自主总结规律,验证领悟新知
让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 πr h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(评析:学生在教师创设的情境中,由学生得出结论,又让学生验证,极大地发挥了学生的主观能动性,充分地展示自我,使学生个性得到发展。)
(四)解决生活问题,深化所学新知
师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。
生汇报。
师:通过计算,你有哪些收获?
生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于侧面积加上底面积和的两倍。
生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。
(评析:教师让学生合作学习,自主发现问题,交流解决。)
课件出示例四,读题明题意,学生试做,全班交流。
课件出示第16页第七题,学生试做,全班交流。
讨论:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?小结,谈收获。
八、板书设计
S表面积=S侧+2S底
=2πrh+2πr
圆柱的表面积课件【篇12】
教学目标
1.经历灵活运用知识自主解决实际问题的过程。
2.能灵活运用圆柱表面积的知识解决生活中的简单实际问题。
3.体验数学在日常生活中的广泛应用,培养应用意识。
教学重点
运用圆柱表面积公式计算水桶的表面积。
教学难点
注意水桶的表面积只有一个底面积。
教学过程
一、新授
观察教材中无盖圆柱形铁皮水桶示意图,了解提供的信息。
师:读题之后,你有什么想对同学们说的?
生:这道题是求做这个水桶要用铁皮多少平方厘米,实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。
多人板演,一人说想法。
水桶的侧面积:3.143035=3297(平方厘米)
水桶的底面积:3.14(302)2
=3.14152
=3.14225
=706.5(平方厘米)
需要铁皮:3297+706.5=4003.5(平方厘米)
答:做这个水桶要用4003.5平方厘米。
二、尝试:试一试
1)读题理解题意。先讨论一下:画水桶用料的示意图,应该画什么?再让学生自己计算并画出水桶示意图。
注意水桶底面直径和高都是20厘米,怎样在图上画出来。
有的学生可能会说运用比例尺,老师要加以表扬。
2)交流学生画图的过程和结果。
三、巩固:练一练
1.先让学生独立完成,再交流。
选择哪一个蛋糕盒,说一说自己选择蛋糕盒的合理性。
2.读题,使学生了解木墩的底面不漆。
3.读题,帮助学生理解题意,接缝处按1厘米计算怎样运用到题中,也就是怎样处理。学生可能不理解,这时老师可进行提示,把这一厘米应该加在底面周长上,也就是计算出底面周长后再加上1厘米,再去乘高,才是一节烟囱的侧面积。
四、课堂小结
这节课我们所研究的是有关圆柱表面积的计算问题,圆柱的表面积在实际应用时要注意什么呢?
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。
五、家庭作业
(一)求出下面各圆柱的侧面积。
1.底面周长是1.6米,高是0.7米。
2.底面半径是3.2分米,高是5分米。
(二)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)
(三)练一练第3小题。
圆柱的表面积课件【篇13】
活动一:
教师出示喝水用的杯子,提问是什么形状?
进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?
学生思考并提出数学问题。
活动二:
1、教学圆柱体表面积的意义
教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?
学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。
教师板书课题。
请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的总面积?
概括:圆柱的两个底面面积加一个侧面面积就是圆柱体的表面积
板书:侧面积+一个底面积×2=表面积
2、引导学生探究圆柱体侧面展开图
⑴设疑:我们已经会求什么面的面积?还有什么面的面积不会求?
⑵引导:想一想,能否将这个曲面转化成我们学过的平面图形?
⑶小组合作进行探究。
⑷小组汇报交流研究成果。
3、探究圆柱体侧面积计算方法
教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?
在学生交流、比较,完善,形成结论:圆柱的侧面积=底面周长×高。
教师:你能求出做这个圆柱形杯子需要多少铁皮吗?
学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。
活动三:
课件出示闯关题,让学生进行抢答。
活动四:
1、请同学谈收获
2、教师小结:
今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。
活动五:
布置作业:教科书五十页自主练习的第1题。
圆柱的表面积课件【篇14】
教学内容:p21-22页例3-例4,完成“做一做”及练习四的部分习题。
教学目标:
1、在初步认识圆柱的基础上理解圆柱表面积的含义,掌握圆柱表面积的计算方法,会正确计算圆柱表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的.能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学重点:掌握圆柱表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教 法:启发引导法
学 法:自主探究法
教 具:课件
教学过程:
一、定向导学(5分)
(一)导学
1.指名学生说出圆柱的特征.
2.口头回答下面问题.
(1)怎样求圆的周长与面积?
(2)怎样求圆柱的侧面积?
3、导入课题
(二)定向
揭示学习目标
1、理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2、会正确计算圆柱表面积,能解决一些有关实际生活的问题。
二、自主探究(10分)
(一)填空
1、因为圆柱体有两个( )和一个( ),所以
圆柱的表面积课件【篇15】
教学目标: 1、知识目标:通过教师的引导和学生的探究使学生理解圆柱体的侧面积和表面积的计算方法,并会正确计算。 2、能力目标:①运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;②使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法。 3、情感目标:①让学生体验出自己探究发现的快乐;②感受到数学与日常生活联系广泛,激发起热爱数学的情感。 教学重点: 探究求圆柱体表面积、侧面积的计算方法,并能正确进行计算. 教学难点: 能灵活运用表面积、侧面积的有关知识解决实际问题. 教具学具准备: 1.茶叶筒教师、学生每人准备一个圆柱形实物。 2.幻灯片。 教学过程设计 一、情景激趣,引出探究课题。 师:同学们,在上节课老师布置大家用书上第5页的图样制作一个圆柱,大家都带来了吗? 生:…… 师:那你们想知道制作这么一个圆柱需要多大面积的纸呢? 生:…… 师:今天这节课咱们就来解决这个问题。(板书课题:圆柱的表面积) 二、探究新知,回报交流。 师:以前我们已经学过了长方体和正方体的表面积,那么你们认为圆柱的表面积应该指的是什么呢?用自己的手摸一摸。 生:…… (教师复述:圆柱的表面积指的是所有面的面积之和。) 师:你认为圆柱的表面积是由哪几部分组成的.呢? 生:圆柱的底面面积和侧面面积组成。 师:你们同意他的说法吗?让我们一块看大屏幕。(幻灯片) 的确像同学们所说的,圆柱的表面积是由两个底面积和一个侧面积组成。你能用一个等式来概括这句话吗? 生:圆柱表面积 = 两个底面积 + 侧面积 (幻灯片) 师:根据这个等式要知道圆柱的表面积必须知道那两个条件? 生:需要知道圆柱的底面积和侧面积。 师:圆柱的底面积是圆形,根据圆面积公式可以求得。那怎么求侧面呢?小组合作用自己手中学具探究一下.(幻灯片点拨) 生探究 师:怎么样?你们有结果了吗?谁来汇报一下。 生1:我们将圆柱的侧面沿一条高剪开得到一个长方形,发现长方形的长就是圆柱的底面周长,宽就是圆柱的高,根据长方形的面积计算公式得到侧面积的计算公式。侧面积=底面周长*高 生2:我们组是用长方形纸围成一个侧面,也得出和他们组同样的结论。 师:很不错,大家很爱动脑筋。自己推导出了圆柱的侧面积公式。下面我们一起来看大屏幕。(幻灯片) 圆柱的侧面展开是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。根据长方形的面积计算公式可以得到圆柱的侧面积的计算公式是:底面周长*高(板书公式) 刚才通过我们的研究已经知道圆柱的侧面积等于底面周长乘高,那么现在你会求圆柱的表面积了吗? 三、联系生活,巩固练习。 就让咱们赶紧求一求这个圆柱的表面积是多少呢?( 幻灯片) 一个茶叶桶底面半径是10厘米,高是30厘米,做这个茶叶桶至少需要多大面积的纸板? 学生独立解答,汇报结果。 接下来让我们看这道题(幻灯片) 请同学们认真的默读题目,题目让我们求什么?应该怎样求呢? 一顶厨师帽高28厘米,帽顶直径20厘米,做这样一顶帽子至少需要多少面料?(得数保留整数) 师:我觉得这位同学能根据实际情况求近似值,其实生活当中有很多这样的例子。希望你们能灵活运用所学的知识。 同学们,老师这里带来了几种不同物体的图片,他们都有一个部分是圆柱,首先让我们来看第一幅图片:这是一个铁皮大油桶,如果要制作这个油桶至少需要多大面积的铁皮该怎样求呢? 生:…… 让我们再来看第二幅图:这是一段圆柱形的铁皮通风管,制作这个通风管至少需要多少铁皮该怎样求呢? 这是一个什么呢?对,蓄水池。现在要在他的内壁和底面贴上瓷砖,贴瓷砖的面积是多少呢? 让我们来看最后一幅图,这是一台压路机,压路机前轮转动一周,压过多大面积的地面该怎样求呢? 同学们,你们已经明白了不同物体的表面积,现在请大家把书翻到第六页,从第二题开始默读题目,自己解决问题。 四、全课总结,促进构建。 同学们,今天这节课咱们学习了圆柱的表面积,谈谈你的收获。 学习完今天这节课,你能不能计算出制作这样一个圆柱模型需要多大面积的纸呢?课后请测量出你需要的数据,把它计算出来。
Jk251.coM编辑推荐
课件推荐: 《圆柱的表面积》教学设计模板
在校园里,我们阅读过许多范文,优秀的范文可以让我们积累相关的知识,通过阅读范文我们可以提高语言组织能力。多阅读范文还能帮助我们加深阅读写作的认识,您是否正在考虑怎么样才能写好优秀范文呢?考虑到您的需要,教师范文网(jk251.com)小编特地编辑了“课件推荐: 《圆柱的表面积》教学设计模板”,但愿对您的学习工作带来帮助。
教材分析
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。
学情分析
由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。
教学目标
知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。
情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。
教学重点和难点
重点:教师引导,动手操作得出求圆柱表面积的方法。
难点:计算方法在生活中的应用。
教学过程
一、复习导入:
1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?
2、圆面积怎样求?
3、长方形的面积呢?
二、创设情境,引起兴趣:
出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》
三、 自主探究,发现问题。
1、分组,讨论:
(1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)
圆柱的侧面剪开发现侧面是一个长方形(正方形),
侧面积=长方形的面积=长×宽=地面周长×高。
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
(2)、复习引导:(用旧解新)
上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)
(3)、小结:小组讨论,将公式延伸。
圆柱表面积 = 圆柱的侧面积+底面积×2
=Ch+2π r2
=πdh+2π r2
2、知识的运用:(回到情景创设)
(1)、出示例题:
例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)
(2)、独立试做:
(3)、集体讲评。
(4)、讲解进一法。
3.巩固练习:
四、课堂总结:
这一节课重点学习了圆柱表面积的计算方法及运用。
月度课件精选 《圆柱的表面积》教学设计其一
我们在上学时也会去读一些范文,这些优秀的范文能我们学到很多的东西,通过阅读范文我们可以学会如何去记录重要的事情。对于一些人来说,多看一些范文能增进知识,写优秀范文需要包括呢些方面呢?下面是小编帮大家编辑的《月度课件精选 《圆柱的表面积》教学设计其一》,供大家参考,希望能帮助到有需要的朋友。
【教学目的】:
1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
2、培养学生分析推理,解决实际问题的能力。
3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。
4、在计算机操作中培养学生的信息素养。
【教学重点】:
使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
【教学难点】:
在计算机操作中培养学生的信息素养。
【教具准备】:
计算机辅助教学课件一套。
【教学过程】:
一、创设情境,提出问题。
1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)
2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)
二、自由选择,自学新知。
1、电脑显示: 自学新知a 自学新知b
说明:在学习新的知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。
2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。
(展开侧面)
自学新知a:
(1)
长方形
底面周长
高
长方形面积=
圆柱的侧面积=
(2)
底面
底面
侧面
圆柱表面
(动画)
圆柱的表面积=
(3)小组讨论:
(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?
(2)求圆柱的底面积必须具备什么条件?
自学新知b:
(1)思考:把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱底面的(),宽等于圆柱的()。
长方形面积= ×
圆柱的侧面积= ×
(2)思考:圆柱的侧面积加上两个底面积就是圆柱的表面积,
所以:圆柱的表面积= +
(3) 小组讨论:
(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?
(2)求圆柱的底面积必须具备什么条件?
三、初步应用,尝试例题。
学生在学习完自学新知后,进入尝试例题:(注:每道例题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
电脑显示:
例1:一个圆柱,底面的直径是0。5米,高是1。8米,求它的侧面积。(得数保留两位小数)
例2:一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
例3:一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
提示学生在做完例3后,查阅知识点::这里不能用四舍五入法取近似值,在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。
四、灵活选择,星级题库。
1、师说明:大家在做例题时,完成得都挺不错,下面就请大家把今天所学的知识运用到练习当中,这里有三星题库,题目依次由易到难,请每位同学根据自己的能力,自由选择一星、二星或三星。
2、生自由选择,有困难可以与老师、同学间交流。(注:每道练习题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
题库:
1、 一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积?
2、 一个圆柱,底面直径是2分米,高是45分米,求它的表面积?
题库:
1、 砌一个圆柱形的沼气池,底面直径是3米,深是2米,在池的周围与底面抹上水泥,抹上水泥的部分面积是多少平方米?
2、 一个压路机的前轮是圆柱,轮宽1。5米,直径1。2米,前轮转动一周,压路的面积是多少平方米?
题库:
1、 一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?
2、 一个没有盖的圆柱形铁皮水桶,高是12分米,底面直径是高的3/4,做这个水桶大约用铁皮多少平方分米?(用进一法取近似值,得数保留整十平方分米)
五、课外知识,开阔视野。
1、师:练习完成又快又好的同学,可以点击课外知识,查阅其它的数学知识。
2、学生点击课外知识:链接北京科教信息网
1、师小结本节课所学内容。
2、学生点击布置作业,查看作业内容:
给一个圆柱形罐头盒加外包装,在计算材料时,注意使用“进一法”。
长方体的表面积课件推荐
根据您的需求,教师范文大全小编为您搜集了一些内容:长方体的表面积课件,大家不妨来参考。希望你能喜欢。教学过程中教案课件是基本部分,撰写教案课件是每位老师都要做的事。教案是课堂教学的支柱。
长方体的表面积课件(篇1)
一、教学教材分析
教学内容:北师大版小学数学五年级下册第二单元。
教学目标:
1.使学生熟练地掌握长方体表面积的计算方法,能灵活的解决一些实际问题。
2.使学生进一步提高应用知识的能力,能根据实际情况计算有关物体某几个面的总面积,感受数学在生活中的应用。
教学重点:实际生活中的长方体表面积的计算。
二、教学策略分析
本节课是在学生认识了长方体的特征,基本掌握了长方体的表面积的计算方法之后,进一步提高应用知识的能力,感受数学在生活中的'应用。这节课的教学我本着“让学生的自主探究贯穿于课的始终”的原则,应用“解决问题”的教学模式,按照“创设情境,提出问题→探索、解决问题→联系实际,创新应用”的教学流程进行设计。
三、教学内容的创新处理和教学过程
1.巧设伏笔,激趣导入。
激发学生的参与动机是引导学生主动学习的前提,因此,我设计了两个基本问题让学生自主发言、解答,在学生体验成功的快乐的基础上点出课题,为学生探索长方体表面积在生活中的应用打下良好基础。
2.创设情景,提出问题,探索长方体表面积在生活中的应用。
数学与生活有密切的联系,新课程倡导学生学习有用的数学,并尽可能在有趣的情景中学习。因此,我创设了义务劳动为班级粉刷教室的情景,让学生讨论需要做哪些准备,应当注意哪些问题,然后提出具体问题,让学生自主探索,明确实际生活中有时只需要计算长方体某几个面的面积,感受长方体的表面积在生活中的应用,再让学生举生活中的例子,加深理解。
3.联系实际,灵活应用,培养学生的创新精神。
数学于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与生活是密切联系的,而且能培养学生的创新精神。
设计“为母亲包装礼品盒的问题”,引导学生思考“包装纸是否需要留足粘贴处”,培养学生具体问题具体分析,不生搬硬套的创新精神和解决实际问题的兴趣与能力。
本节课我按照“激趣→探索→迁移→应用“的思路进行设计,让学生主动地在探索,交流等教学活动中,愉快学习,长知识,长智慧。
长方体的表面积课件(篇2)
教学目标:
1、知识与技能:学生建立表面积概念,会求长方体与正方体的表面积。
2、过程与方法:小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。
3、情感、态度与价值观:运用公式实际应用,并提升学生的数学思维能力。
教学重点:
1、长方体表面积公式的求法探究。
2、公式的实际应用。
教学难点:
长方体、正方体的表面积公式探究方法。
教具、学具的准备:长方体盒、正方体盒、长方体展开图、课件
教学过程
一、创设情境 导出新课
师:同学们,告诉大家一个好消息,今天是我们学习的好伙伴淘气的十岁生日,他的好朋友笑笑要送给他一份生日礼物。这个礼物准备好了,可是老师对这个包装盒却不太满意,你能帮助笑笑出一个好主意吗?
生:可以在包装盒外面包一层彩纸。
师:老师也是这么想的。看,老师用彩纸将这个包装盒包装了一下,请看(出示课件)。
师:漂亮吗?
生:漂亮。
师:现在新问题又出现了。要把这个包装盒包装好,需要多大的彩纸呢?要求多大的彩纸就是求什么呢?
生:求六个面的面积之和。
师:对,求六个面的面积之和就是求长方体的表面积。今天,我们就来研究长方体的表面积.(板书课题)
二、引导探索 初步感知
1、长方体表面积的意义
师:同学们,刚刚我们对长方体礼盒的哪些部分进行了包装?
生:它的六个面。
师:而且,刚刚我们知道的长方体六个面的面积之和就是长方体的表面积,那么,你是如何理解长方体的表面积的呢?(师提问)
生:就是求六个面的总面积。(出示课件)
师:下面,就请同学们拿出自己准备的长方体,仔细地观察,长方体的六个面的面积之和包括哪些?(同学之间互相交流)
师对照长方体讲解表面积的含义。(出示课件,学生齐读长方体表面积的意义)
师:那么正方体呢?(请同学对照正方体说一说)
师:他说得对不对呢?
生:对。
师:正方体的表面积也就是六个面的面积,它包括前面、后面、上面、下面、左面和右面。那么,下面请同学们对照着手中的长方体和正方体,标出它的六个面。
(同位之间互相指着模型说一说。)
师:好。请同学们观察手中的长方体,你从任意一个角度,对多能看到长方体的几个面?
生:三个面。
师:那么如果老师想看到六个面,应该怎么办呢?
生:把它拆开。
师:那么把它展开,是不是就能看到六个面了呢?
生:是的。
师:下面请同学们想象一下把长方体展开是什么图形?(出示课件)
请同学们上讲台介绍自己展开后的图形,并分别指出它们所对应的面。对于不同的方法加以表扬。
师:介绍长方体的展开图有多种。希望同学们课下动动脑筋想一想,想象展开后的图形。
(师用课件展示长方体的展开图形,并质疑:观察展开图你发现了什么?)
同学交流并回答问题。
2、探究长方体表面积的计算方法
师:正如大家所说所看到的长方体展开后的图形,相对的面完全隔开了,展开后每个长方体都有六个面。而且,我们知道长方体的对面面积相等,那么,求长方体的表面积就更加形象和直观了。由长方体变成了我们很熟悉的长方形。那么,你能求出它的表面积吗?
(出示课件,生相互交流并展示)
生介绍自己的方法,对好的方法加以肯定。
师:你是怎么想的?
生1:我是想先求出长方体六个面的面积,把它们的结果相加起来,就是长方体的表面积。
S表=S上+S下+S前+S后+S左+S右
师:说得很好。同学们应该表扬一下。谁还有不同的方法呢?
生2:由于长方体的对面相等,所以我只要求出一个面乘以2就可以了。我得出的公式是:
长方体的表面积=长×宽×2+长×高×2+宽×高×2
(师板书)
师:这个方法很好,还有不同的方法吗?
生3:我是先求出上面、前面、左面的面积之和,再乘以2,就可以求出长方体的表面积了。
我得到的公式是:长方体的表面积=(长×宽+高×宽+高×长)×2
(师板书)
师:你真聪明,大家表扬一下。(大家鼓掌表扬)
师出示课件,介绍长方体表面积的求法。
3、应用长方体表面积计算公式
师:请大家算一算,做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,需要多少平方厘米的硬纸板?(学生独立解答,指明学生回答)
4、渗透正方体表面积计算方法
(出示课件,学生独立思考并回答)
师:这个是一个棱长为8厘米的正方体,求它的表面积。
(学生独立思考并解答)
三、应用所学知识 解决问题
1、出示长方体礼盒的包装袋,并质疑,求几个面的面积。
学生独立解答,集体订正,要求学生说出理由和依据。
2、出示教材P18“试一试”,要求学生独立解答。
让学生理解题意后,鼓励学生独立解答,小组交流,全班集体订正。
3、师:做一个长方体的鱼缸需要求几个面的面积?(学生思考,指名回答)
(出示课件)
四、课堂小结
师:同学们当遇到具体问题,要具体对待。数学知识与我们密不可分,我们要学会利用数学知识解决实际问题。这一节课,你学到了什么?和同学们交流一下。
附:板书设计
长方体与正方体的表面积
长方体的表面积=长×宽×2+长×高×2+宽×高×2
长方体的表面积=(长×宽+高×宽+高×长)×2
正方体的表面积=棱长×棱长×6
长方体的表面积课件(篇3)
一、教材分析
1、说课内容
“长方体和正方体的表面积”第一课时的教学,内容是长方体、正方体表面积的概念和例1以及练习六的第1—4题。
2、教材简析
“长方体和正方体的表面积”是人教版九年义务教育六年制数学第十册第二单元第二小节的内容,它是在学生认识并掌握了长方体和正方体的特征及长方形和正方形的面积计算的基础上进行教学的。教材安排了3个例题,使学生掌握“长方体和正方体的表面积”的有关知识,本节课只要求学生学习例1,掌握长方体的表面积的计算方法,教材先通过让学生动手操作,把一个长方体和正方体纸盒的6个面展开,帮助学生认识表面积的概念。接着通过例1,教学长方体表面积的计算方法,并通过练习,巩固、掌握长方体表面积的计算方法。
3、教学目标
知识目标:
1、理解长方体、正方体表面积的概念。
2、掌握长方体表面积的计算方法。
3、会用长方体表面积计算方法,解决一些简单的实际问题。
能力目标:
1、通过观察、比较、培养学生概括能力、推理能力。
2、通过小组合作学习,培养学生合作意识,探索精神。
3、发展学生的空间观念。
情感目标:让学生通过自己的努力,体验学习的乐趣和成功的喜悦。
4、教学重点
掌握长方体表面积的计算方法。
5、教学难点
根据给出的长方体的长、宽、高,确定每个面的长和宽各是多少。
6、教学准备
学生每人准备一个长方体和一个正方体纸盒,一把剪刀。
教师准备一套多媒体课件。
二、教法、学法
本课时依据现代认识科学理论及新课程标准倡导的教学模式进行教学。在教学中教师运用创设情境,引入探究式的教法,充分调动学生学习的积极性、主动性。学生以小组合作交流的形式,通过动手操作、观察、讨论等方法主动地获取知识。从而培养学生自主学习意识、与他人合作意识,学会探究问题的方法。
三、教学设计
本节课,我的基本教学思路是:通过“创设一个情境,进行两次探究活动,设计三组层次训练”的教学步骤,通过六个环节来完成教学任务,达成教学目标。
1、创设情境,导入新课
(课件出示:丰富的生活场景;一些长方体、正方体纸盒;漂亮的礼品盒。)
教师让学生观察,然后提出问题:
①前面我们看到的主要是什么形状的物体?
②单独出示一个漂亮的礼品盒(出示图:长6厘米、宽5厘米、高4厘米)。
学生指出长方体的长、宽、高。
教师指出小红想做一个这样的纸盒,可她不知道至少需要多少硬纸板,同学们,你们知道吗?
2、动手操作,理解概念
这次探究活动的主要目的是通过学生剪一剪、看一看、想一想概括长方体和正方体表面积的概念。首先教师用课件示范,把一个长方体纸盒沿棱剪开,再展开,看看展开后的形状然后让学生自己动手剪开一个长方体纸盒和一个正方体纸盒,展开放在桌上。(学生在剪的时候,教师巡视,进行指导)
当学生都把展开的图放在桌上时,教师让学生用“上、下、前、后、左、右”六个字标明6个面。把标得又快又好的学生作品贴在黑板上,然后指着黑板上两个展开图,引导学生概括出长方体、正方体的表面积的概念。(揭示课题并板书:长方体和正方体的表面积)接着,让学生观察展开后的图形,思考两个问题:
①在长方体中哪些面的面积相等?
②每个面的长和宽与长方体的长、宽、高有什么关系?
3、合作交流,掌握方法
这次探究活动的主要有两项任务:一是通过学生观察思考根据给出的长方体的长、宽、高,指出每个面的长和宽各是多少;二是通过学生合作、交流总结长方体表面积的计算方法。
出示例1,学生读题后,明确这道题就是求长方体的表面积,然后出示想的过程,提出要求:同桌合作、讨论,完成P26例1下面想的过程。
抽生汇报,并说说每个面的长、宽各是多少,同时,课件在长方体图中进行闪烁。
接下来,组织学生通过小组合作、讨论、交流总结长方体表面积的计算方法。
最后,把学生的不同方法,特别是下面三种方法板书出来(课件出示)
①6×5+6×4+5×4+6×5+6×4+5×4
②6×5×2+6×4×2+5×4×2
③(6×5+6×4+5×4)×2
并试着让不同层次的学生说出算式的理由。
接着引导学生对这三种方法进行比较,得出简便的解法。
4、引导总结,归纳学法
教师首先引导学生对长方体、正方体表面积概念和表面积计算方法进行总结,让学生发现刚才的学习主要是通过动手操作、小组合作交流进行的,从而实现对学习方法的归纳。
5、分层训练,巩固运用
第一层次——导练:(课件出示)练习六第1、2题,主要解决长方体每个面的长和宽是多少
的问题。
第二层次——议练:练习六第3题,P26“做一做”用两种方法计算,主要巩固表面积的计算方法。
第三层次——自练:P28第4题,主要让学生运用刚学过的长方体表面积的计算方法,解决简单的实际问题。
6、结合板书,全课总结
(出示板书并简单进行说明)教师结合本课时板书,引导学生总结本课时主要内容。学生回顾学习情况,质疑解疑,教师肯定学生优点,提出希望。
本节课的教学,通过合理地利用多媒体教学的巨大优势,使静止的变为动态的,复杂的变为简单的,抽象的变为具体的,有效地突出了教学重点,突破了教学难点,显示了教学过程,启迪了学生思维。通过“创设一个情境,进行两次探究活动,设计三组层次训练”的教学步骤,安排六个环节来完成教学任务,达成教学目标。学生在学习活动中既理解了长方体、正方体表面积的意义,又掌握了长方体表面积的计算方法,还学到了学习的方法,享受了数学学习的乐趣。
长方体的表面积课件(篇4)
教学目标
1.通过操作观察,使学生知道长方体和正方体表面积的含义.
2.初步学会长方体和正方体表面积的计算方法.
3.培养学生的动手操作能力和空间观念.
教学重点
建立表面积概念,初步学会计算长方体和正方体的表面积.
教学难点
正确建立表面积的概念.
教学步骤
一、铺垫孕伏.
1.长方体的特征是什么?
2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?
二、探究新知.
导入 :同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容.
(一)建立长方体表面积的概念.
1、教师提问:什么叫做面积?
长方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2、教师明确:这六个面的总面积叫做它的表面积.
3、学生两人一组相互说一说什么是.
4、教师板书:长方体6个面的总面积,叫做它的表面积.
(二)长方体表面积的计算方法.【演示课件】
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.
2.教学例1.
做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
教师启发:做这样一个长方体纸盒要用多少平方厘米的硬纸板就是要计算这个.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积.
第一种解法:
长方体表面积=6个面积的和
64+64+45+45+65+65
=24+24+20+20+30+30
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
第二种解法:
长方体表面积=上下面面积+前后面面积+左右面面积
652+642+452
=60+48+40
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
副标题#e#
第三解法:
长方体表面积=(下面面积+前面面积+右面面积)2
(65+64+54)2
=742
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
3.思考:你认为哪种解法简便?
(根据乘法分配律可以把第一个式子和第二个式子改写成第三个式子;第三个算式更简便些)
4.教师小结:
计算长方体表面积的关键是找出每个面的长和宽.
5.练习:
一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?
三、全课小结.
这节课我们学习了什么知识?我们学习了有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)
四、随堂练习.
1.用两种方法计算自带.
2.计算下图的表面积.
①计算.
②有几种计算方法?
③哪种方法比较简便?
五、课后作业 .
一个长方体的形状大小如下图:
它上、下两个面的面积分别是多少平方分米?
它前、后两个面的面积分别是多少平方分米?
它左、右两个面的面积分别是多少平方分米?
这个是多少平方分米?
六、板书设计 .
长方体6个面的总面积叫做它的表面积.
例1.做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
64+64+45+45+65+65
=24+24+20+20+30+30
=148(平方厘米)
=60+48+40
=148(平方厘米)
652+642+452
=60+48+40
=148(平方厘米)
(65+64+54)2
=742
=148(平方厘米)
答:至少需要148平方厘米硬纸板.
长方体的表面积课件(篇5)
长方体和正方体的表面积二
教学内容:教科书
“长方体有几个面?每个面是什么形状?”
“长方体有哪些面是完全相同的长方形?它们的面积怎么样?有几组面积相等的长方形?”
然后让学生分别沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积的教具展开贴在黑板上。)
(2)让学生拿出自己准备好的正方体纸盒,分别用“上”、“下”、“左”、“右”、“前”、“后”标明六个面,并回答下面的问题:
“正方体有几个面?每个面是什么形状?正方体有几组面积相等的正方形?” 让学生分别沿着正方体的棱剪开,再展平。(教师将正方体表面积的教具展开贴在黑板上。)
(3)教师指着两个展开图说明:长方体或者正方体6个面的面积总和叫做它的表面积。(板书课题:长方体和正方体的表面积)
2.教学长方体表面积的计算方法。(1)教学例1。
让学生观察自己准备的长方体纸盒,思考下面的问题: ①什么叫长方体的表面积?
②长方体的6个面都是什么形状?每个面的面积怎样算?长方体的表面积怎样算? 然后教师说明:在日常生活和生产中,经常遇到要计算长方体的表面积。现在我们就来学习长方体表面积的计算方法。
教师出示例1的题目和图,指定学生读题,复述题目的已知条件和问题。然后提问: “要求‘做这样一个长方体纸盒要用多少平方厘米的硬纸板’就是要求什么?” 使学生明确:就是要计算这个长方体的表面积。
这时,让学生将刚才展开的长方体再折回原状,并按照例题的数据在自己的长方体上注明长6厘米、宽5厘米、高4厘米。然后提问:
“长方体的表面积中包括哪几组面积相等的长方形?”
让学生打开教科书
引导学生说出:根据乘法分配律可以把
长方体的表面积课件(篇6)
教学内容
教材第89 页:长方体和正方体的表面积
教学目标
1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。
2、使学生会运用表面积的意义,解决生活中的一些简单实际问题; 能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。
教学重难点
重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。
难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教学准备
教师:多媒体课件,长方体纸盒。
学生:长方体纸盒
教学设计
一、复习铺垫
同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?
生答。(教师强调面的知识)
二、创设情境 、引入问题
老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?
生:长方体纸盒的表面积。
师板书课题:长方体和正方体的表面积
师:看了课题同学们想问什么?
师生共议研究课题:
(1)什么叫长方体和正方体的表面积?
(2)怎样求长方体和正方体的表面积?
三、合作探究、学习新知
1. 探索长方体表面积的计算方法。
什么叫长方体的表面积呢?请看大屏幕。
多媒体出示长方体展开图。
师:同学们看完后有什么想说的?
生:围成长方体的是6个长方形。
生:长方体的表面积就是展开后6个面的总面积。
师归纳后板书:长方体或正方体6个面的总面积,叫做它的表面积。
师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?
多媒体出示长方体粘合图
师:同学们看完后,又想到了什么呢?
生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。
生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。
〔着重引导学生体会: 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕
多媒体出示长方体图形
师:现在同学们能求出它的表面积吗?
生:不能。
师:为什么?
生:没有数据。
师课件出示数据,引导学生把数据放到长方体相应的位置。
2.探究每个面的长和宽与长方体的长、宽、高有什么关系?
师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?
多媒体展示,引导学生讨论:
上、下每个面的长和宽分别是长方体的()和();
前、后每个面的长和宽分别是长方体的()和(); 左、右每个面的长和宽分别是长方体的()和()。
小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:
上、下每个面的长和宽分别是长方体的(长)和(宽);
前、后每个面的长和宽分别是长方体的(长)和(高); 左、右每个面的长和宽分别是长方体的(高)和(宽)。
3、尝试计算
问:现在你能求出做这纸盒至少需要多大面积的纸板吗?
学生尝试计算,出示活动要求:
(1) 小组讨论,想办法求出做这个纸盒需要多大面积的纸板。
(2) 把自己的计算方法和小组内的同学交流。
教师参与学生的活动。
反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问
学生板演后说明想法:
生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。
生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。
教师注意引导学生语言叙述的完整性,准确性。
师多媒体展示学生的汇报结论。
指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
4探究正方体的表面积计算方法。
多媒体出示:棱长为5厘米的正方体的表面积是多少?
学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6.
四,巩固新知、拓展运用
1、课件出示“我会选”,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。
2、课件出示“说一说”,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。
3、课件出示“聪明的你”,引导学生注意:
(1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);
(2)计算时,关键是找准数据。
学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。
4、课件出示“攀登高峰”,引导学生分析计算时应考虑几个面,问题课后讨论完成。
五、课堂小结
通过学习,你有哪些收获?还有那些不懂的问题?
长方体的表面积课件(篇7)
长方体和正方体的表面积 教学目标:(一) 让学生理解长方体和正方体表面积的意义,初步学会长方体和正方体表面积的计算方法。 (二) 根据现实情境和信息,通过动手操作 小组合作 观察思考等解决问题的方法,去探索感受长方体和正方体的表面积的概念和长方体表面积计算方法,培养学生动手操作 观察 抽象概括探索问题的能力和初步的空间概念。 (三) 使学生感受到数学与生活的密切联系,培养学生初步的数学意识。 教学重点:长方体和正方体表面积的概念和长方体表面积的计算。 教学难点:确定长方体的每一个面的长和宽。 教学方法:运用引导探索的教学策略,以“用活教材,练活习题,激活课堂”为教学途径,创设一定的教学情境,让学生感受到数学从生活中来,又应用于生活。 教具准备:教师准备长方体和正方体表面积展开的教具,学生每人准备长方体和正方体纸盒和火柴盒各一个。 教学过程: 一 直揭课题: 长方体和正方体的表面积 师问:看了这个题目,你想到了什么?想知道什么? 二 复习准备:(投影出示题目) 三 学习新课: (一) 长方体和正方体表面积的意义。 1、教师出示长方体教具,问: ①这个盒子是什么形状的,它有几个面? ②我们把它放在桌面上最多只能看到几个面? ③如果要使六个面一眼全看到,有什么办法?(把六个面展开放在一个平面上) 2、让学生拿出各自的长方体纸盒,教师指导学生沿着上面与前面相交的棱、左面与上面、前面、后面相交的棱以及右面与上面、前面、后面相交的棱将纸盒剪开。 让学生将剪开的纸盒展平、合上,再展平,观察原来长方体的各个面展平后各在什么位置,并分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面,教师注意订正。 3、教师选一个展开图贴在黑板上,请一个学生在展开图上指出原长方体的各个面。 4、学生和剪长方体的方法一样剪开正方体,并分别用“上”、“下”、“前”、“后”、“左”、“右”标明原正方体的6个面,教师注意订正。 5、教师选一个正方体展开图贴在黑板上,然后问:每个面是什么形状?有几个面积相等的.面?每个面的边长是原正方体的什么? 师:现在我们是不是很清楚的看到了长方体和正方体的六个面? 教师归纳板书:长方体或正方体6个面的总面积,叫做它的表面积。(学生齐读概念) (二)长方体表面积的计算方法。 1、多媒体演示展开动画 观察展开过程,出示下列问题::长方体有几个面?哪些面的面积相等?有几组相等的面?上、下、前、后、左、右各个面的长和宽分别是原长方体的什么? 2、小组讨论并汇报(讨论和回答时可让学生对着长方体盒子说) (引导学生答出:上、下每个面的长和宽分别是原长方体的长和宽,前、后每个面的长和宽分别是原长方体的长和高,左、右每个面的长和宽分别是原长方体的宽和高。) 3、 空间想象 通过想象在头脑中建立一个立体的长方体形象; 4、练习六第l、2题。(第一幅图让学生说出前面的长和宽,再答出前面的面积,后两幅图直接答出前面的面积,每一幅图前面面积算出后,追问:后面的面积是多少?要求前、后面的总面积怎么列式?) (三)教学例1: 例1(出示幻灯片5)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板? ⑴要求做这个长方体纸盒需要用多少厘米硬纸板就是要计算这个长方体的什么? ⑵长方体的表面积包括几组面积相等的长方形? ⑶每组面积相等的长方形的长、宽、各是多少?(学生独立填空) ⑷学生小组讨论并试作:如何计算出这个长方体的表面积? ⑸指名学生说出自己的算法,教师板书。 解法1:6×5×2+6×4×2+5×4×2 =60+48+40 =148(平方厘米) 解法2:(6×5+6×4+5×4)×2 =(30+24+20)×2 =74×2 =148(平方厘米) 答:至少要用148厘米2纸板。 ⑹比较两种方法 ⑺教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。 四、巩固反馈 做例1下面的做一做中的题目。先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。 五、全课总结 (1)长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。 (2) 长方体的表面积如何计算 六、布置作业: 练习六第3、4题。 七、板书设计:长方体和正方体的表面积
长方体的表面积课件(篇8)
各位评委老师:
大家好!
今天我给大家呈现的这节课是北师大版小学数学五年级下册第二单元的第3课《长方体的表面积》,本单元是属于我们小学数学四大领域里的“空间与图形”范畴内的内容。在本节课之前学生已经掌握了长方体与正方体展开图的基础上进行的,而本节课是长方体的表面积,也为后面学习圆柱的表面积起着铺垫作用。鉴于本课特点及教材编排意图,结合学生已有的认知水平和年龄特点,我为本课制定了以下教学目标:
1、在解决实际问题的过程中,探索长方体表面积的计算方法。
2、掌握长方体表面积的计算方法。
基于以上目标,本课的教学重点是掌握长方体表面积的计算方法。教学难点是探索长方体表面积的计算方法。通过学生自主探究、合作交流及形式多样的练习来突破难点,解决数学问题,内化新知。
在整个教学过程中,我采用了点拨引导、讲解分析、类比迁移等方法进行教学,在主问题提出后,新知探究中,我会适时指导点拨,引领学生去学习,在学生内化新知中对于学生不够明确的知识适时进行讲解分析,照顾到所有学生,让每一位学生在本节课中都有所收获。在检测反馈和巩固提升中,我将采用类比迁移的方法将新知进一步升华,提高学生解决问题的能力。
基于以上的构思,为了能凸显“有效教学”的理念,更好的达成学习目标,本着“教什么,怎么教,为什么这样教“的思路对本节课作如下设计:
一、回顾旧知,让知识“衔接”起来!
通过复习旧知,让学生加深对新知的理解,并将新旧知识衔接起来,并在学习新知中加以应用。
二、创设情境,让课堂“活”起来!
提出熟视无睹,习以为常的生活情境中的新问题,从而导入新课,可激发学生的.学习兴趣和探究新知的积极性,也使学生体会到数学来源于生活,又用于生活。
三、自主探究,让学生“动”起来!
苏霍姆林斯基曾说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、研究者、探究者。而在小学生精神世界中,这种需要尤为强烈。”因此在获取新知的过程中我采用了涂一涂、数一数、算一算、想一想等多种方法,培养学生的创新意识,使学生思维的灵活性、独特性得到发张,最大限度地开发学生的创造潜能。
四、体验成功,让学生“乐”起来!
设计由易到难,由浅入深,力求体现知识的纵横联系做到层次分明的练习,让学生学以致用,用数学的眼光观察生活,用数学的方法解决实际问题,感受数学就在我们身边,生活中处处有数学,同时让学生体验到成功的喜悦。
总之,本节课始终关注着学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用的过程中,从而落实“四基”,培养“四能”,使不同层次水平的学生都在原有的基础上有所提高。
当然,课堂上也有很多不尽人意的地方,不能照顾到学生全部,大部分学生的积极性没能调动起来,但学生的创新思维与求异思维还有待于我进一步挖掘。没有最好,只有更好,在成长的路上,我会更加努力,希望各位老师给予指教和点拨。
长方体的表面积课件(篇9)
尊敬的各位评委、各位老师:
大家好!今天我说课的内容是人教版小学数学五年级第下册第33——35页《长方体、正方体的表面积》一课。我将从目标的叙写、评价的设计、学习流程和板书设计这四个方面谈谈这节课的教学设计。
一、学习目标的叙写
学习目标是课堂教学的根本出发点和归宿点,它决定了教学的有效性,关系到新课程理念的真正落实。为此,在叙写目标前,我认真查阅了标准、教材、了解了五年级学生的知识现状。
1、基于标准
(1)通过观察、操作,认识长方体、正方体的展开图。
(2)结合具体情境,探索并掌握长方体和正方体表面积的计算方法,并能解决简单的实际问题。
2、基于教材
长方体、正方体的表面积是五年级下册第三单元《长方体和正方体》的第二节内容。它是在学生认识并掌握了长方体和正方体特征的基础上进行学习的。通过学习,既加深学生对长方体和正方体特征的理解,又有助于学生解决生活中的实际问题,并为进一步学习其他立体图形打下基础。本节课的内容分三个层次:一是观察长方体和正方体实物展开图概括出长方体和正方体表面积的意义。二是利用长方体和正方体展开图推导出长方体和正方体表面积计算公式;三是利用公式解决例1和例2等一些实际问题。
3、学情分析
学生已经掌握了长方形、正方形面积的计算方法,并掌握了长方体和正方体的特征。本节课学习难点在于学生不能根据给出的长方体的长、宽、高,想象出求每个面所需的长和宽各是多少。在教学中我让学生把正方体或长方体纸盒剪开,通过观察展开图来突破这一难点。
基于以上分析,考虑到五年级学生的认知水平,我把本节课的学习目标定为以下两点:
1、能说出长方体和正方体表面积的意义,并归纳出计算方法。
2、能用长方体和正方体表面积的计算方法计算出一个长方体或正方体的表面积。并能解决生活中的一些实际问题。
根据学习目标的设计和我班学生的具体情况,本节课学习重点是:
1、重点:说出长方体、正方体表面积的.计算方法,并会解决有关的实际生活问题。
2、难点是:根据给出的长方体的长、宽、高确定每个面的长和宽是多少。
为了突出重点,突破难点,从而实现学习目标,在本课中我主要采用如下学习方法:动手操作法,观察发现法,自主探究法,合作交流法,让学生在剪一剪,说一说等活动中明白长方体、正方体表面积的意义,并归纳出表面积计算方法。
教具、学具准备:课件、长方体、正方体纸盒、剪刀、火柴盒、直尺。
二、评价任务的设计
为了检测目标的达成,我设计了以下的评价方案:
任务1:通过观察长方体或正方体纸盒能说出长方体或正方体表面积的意义。
任务2:通过剪一剪,说一说等活动发现每个面的长、宽与长方体长、宽、高的关系,能说出长方体和正方体表面积计算方法。
本节课我以“四了”教学模式为宗旨,设计了四个环节,下面我说一下本节课的学习流程:
三、说教学流程:
(一)巧设情景,质疑引入:
学生学习的积极性、主动性往往以自己的兴趣为转移。本节课我结合小明为妈妈买了一份生日礼物。可他觉得这件礼物的盒子不够精美,你们能不能给小明出主意?想知道这张包装纸的大小吗?导入新课。这一情境的设计意在激发学生的求知欲,同时感受到一种人文情怀。
(二)自主探究、感悟新知
在教学中让学生通过一系列实践操作活动,经历长方体、正方体表面积概念的形成过程,独立去探索表面积的计算方法。
(1)动手操作、探究概念
《数学课程标准》中明确指出:“有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上”。对于学生来说,长方体和正方体每个面面积的计算已不是难点,难在如何从立体图形中找到每个面所对应的长方体的长、宽、高。为了突破这个难点,我设计了:
1)复习旧知,巩固强化。教师先拿出长方体纸盒对长方体的长宽高,以及面之间的关系进行复习巩固为求表面积进行铺垫。
2)学生拿出准备好的长方体纸盒剪开,然后将自己剪开的长方体纸盒展开,标出“上、下、前、后、左、右”6个面的位置。使学生明确表面积的定义:长方体或正方体六个面的总面积就是它的表面积。为进一步求表面积作好铺垫。
3)讨论探究让学生观察展平的长方体图,分小组带着问题进行讨论:
A、一个长方体剪开的每个面是什么形状?
B、展开后哪两个面是相对的面,有几组相等的面?
C、上下、左右、前后各个面的长和宽分别是原长方体的什么?让学生通过手动、口说、眼看、脑想发现长方体每个面面积的计算所需数据。
4)教师课件演示将长方体纸盒剪开,学生说出每个面的算法。
5)总结归纳用文字的形式总结出长方体表面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2,这样使学生从循序渐进中感受到学习的乐趣和成功的喜悦。
2、小组合作探索正方体表面积的计算方法
在明确了长方体表面积的计算方法之后,放手让学生通过合作自己去探求正方体表面积的计算方法,并总结出正方体表面积=棱长×棱长×6
(三)综合实践、学以致用
数学来源于生活,又服务于生活。本节课我设计了有梯度的三类练习题。
1、基础练习:
引导学生练习书本中例题1和例题2加深了学生对公式的感性认识。
2、巩固提高
实际生活中,经常遇到不需要算出长方体或正方体六个面的面积,我通过两道求5个面面积的练习题(课本33页做一做,35页第6题)进行了巩固。在此基础上请学生说说解这种题时要注意什么,并举出在日常生活中,做哪些事与求长方体、正方体的部分面积有关。使学生懂得具体问题要具体分析的思维方法。
3、拓展延伸
因学生个体的差异,我让学生同桌合作,测量火柴盒的长、宽、高,并计算做这样一个火柴盒需要多少纸板?学生经过动手测量,体会到了所学知识与现实生活的必然联系,同时在量一量,算一算中培养了学生的合作学习的意识。
(四)全课小结:谈谈你在本节课中收获到了什么
课堂小结是对本节课所学知识的归纳和总结,加深学生对知识的巩固理解。也是对学生情感态度的肯定。
(五)说板书
长方体和正方体的表面积
长方体或正方体六个面的总面积,叫做它的表面积。
长方体表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
此板书力图全面而简明的将重点内容展示给学生,便于学生理解和感知所学数学知识,增强识记效果。
综上所述,本节课,我主要采用了动手操作、自主探索和合作交流的学习方式,充分发挥学生的主体作用,培养了学生的探索精神。以上是我对长方体和正方体的表面积的个人看法,有什么不当之处请各位评委和老师们批评指正。谢谢!
长方体的表面积课件(篇10)
长方体的表面积
园南小学
方莺
教学内容:课本第41、42页 教学目标: 知识与技能:
会求长方体的表面积。过程与方法:
通过动手切一切或剪一剪,引导学生通过对长方体展开图的探究得出计算长方体的表面积的方法。情感与态度:
在学习中引导学生学会合作,增强学习兴趣。教学重点:长方体的表面积的推导过程。教学难点:长方体的表面积的推导过程。教学准备:多媒体课件。
教学过程:
一. 导入阶段:
1.请学生利用受中的长方体纸盒,请将这个长方体纸盒沿着棱剪开。
(学生操作)
我们将长方体沿着棱剪开,就得到了一个长方体表面的展开图。(出示学生得到的长方体表面的展开图。)
[学生通过操作得到长方体表面的展开图,由于沿着不同的棱剪开,就得到的长方体表面的展开图也不同,因此会有多种展开图。]
二. 中心阶段:
1. 引导学生观察得到的长方体的展开图,思考:长方体表面的展开图有什么特征?
长方体表面的展开图有三组相同的长方形面组成,共有6个面。
2. 想一想可以怎么求这6个面的面积总和。方法(1):先分别求出前面的面积,再求出上面的面积,再求出左面的面积,然后将这3个面的面积相加再乘以2,就是这6个面的面积总和。
方法(2):先分别求出前后两个面的面积和,再求出上下两个面的面积和,再求出左右两个面的面积和,最后将它们相加,就是这6个面的面积总和。
3. 请你试着求一求你手中的长方体6个面的面积总和。注意:先测量棱长的尺寸,再计算,取整厘米数。(学生计算)
4. 刚才我们计算的就是长方体的表面积,那什么是长方体的表面积?长方体的表面积可以怎么求呢?书上有具体的介绍,请打开书,翻到P41,看书回答:(1)什么是长方体的表面积?
(2)长方体的表面积的计算公式是什么?
(1)长方体有三组相同的长方形面,共六个面,六个面的面积总和称为长方体的表面积。
(2)长方体的表面积计算公式:S=2(ah+ab+bh)
[学生通过对自己手中的长方体表面的展开图的观察,自主探究,得出了什么是长方体的表面积。长方体的表面积可以怎么求的结论。最后通过看书规范自己的结论。]
三. 练习阶段:
1. P42/1 可以请学生利用附页2中的图形折一折,加深理解,怎样的图形可以折成长方体,可以让学生适当地进行记忆。
2. P40/2 让学生独立完成,注意书写格式的规范。
解:S=2(ah+ab+bh)
=2×(6×8+6×4+4×8)=2×(48+24+32)=2×104 =208(平方分米)
答:长方体的表面积是208平方分米。
3.计算下面正方体的表面积。
解:S=2(ah+ab+bh)
=2×(7×3+7×2+2×3)=2×(21+14+6)=2×41 =82(平方米)
答:长方体的表面积是82平方米。
解:S=2(ah+ab+bh)
=2×(2×10+2×1+1×10)=2×(20+2+10)=2×32 =64(平方分米)
答:长方体的表面积是64平方分米。
4.P40/3 可以先让学生独立完成,再利用多媒体讲解,使学生形象生动地解决问题。
[练习时让学生适当地借助直观、现象的学具,帮助解决问题。]
四. 总结:
长方体有三组相同的长方形面,共六个面,六个面的面积总和称为长方体的表面积。
长方体的表面积计算公式:S=2(ah+ab+bh)
长方体的表面积课件
您要的信息我已经为您准备好了:“长方体的表面积课件”。教案课件在老师少不了一项工作事项,就需要我们老师要认认真真对待。教案是教师教学个性化的重要依托。文章内容仅供参考!
长方体的表面积课件(篇1)
设计说明
1.加强动手操作,促进学生的思维发展。
因为数学知识具有抽象性,所以要多引导学生在操作中思考,培养学生掌握技能技巧,促进学生的思维发展。本节课的教学设计在让学生理解长方体、正方体表面积的意义时,先让学生动手操作,“解剖”长方体和正方体,展示出长方体和正方体各自的6个面。然后通过比较分析,深刻地体会长方体或正方体各自6个面的面积之和就是这个长方体或正方体的表面积。
2.合作探究,实现自主发现。
合作探究是学生学习数学的主要方式之一,它能促进学生对抽象的数学知识的理解。在学生感知了表面积的意义之后,放手让学生在小组内合作交流,自主探究长方体表面积的不同计算方法,然后根据正方体的特征归纳出正方体表面积的计算方法,培养学生的优化思维和求异思维。
课前准备
教师准备PPT课件长方体纸盒
学生准备长方体牙膏盒教学过程
教学过程
⊙猜测质疑,引入新课
师:长方体和正方体在我们的生活中应用得非常广泛,老师也收集到这样两个纸盒(出示两个大小比较接近的长方体纸盒),怎样才能比较出这两个长方体纸盒,谁用的纸板比较多呢?(学生讨论后汇报)
设计意图:通过比较谁用的纸板比较多,使学生产生拆开纸盒研究长方体表面积的想法,从而主动探究体与面的关系,同时引发学生的争论,使其主动思考,寻求解决问题的方法。
⊙演示操作,形成表象,建立概念
1.感受表面积的意义。
(1)把长方体牙膏盒沿棱剪开并展开,分别用“上”“下”“前”“后”“左”“右”标明6个面,并让学生观察后回答:
①长方体哪几组面的面积相等?
②长方体每个面的长和宽与长方体的长、宽、高有什么关系?
(学生观察后汇报)
师明确:长方体上、下两个面的面积相等,每个面的长和宽就是长方体的长和宽;前、后两个面的面积相等,每个面的长和宽就是长方体的长和高;左、右两个面的面积相等,每个面的长和宽就是长方体的宽和高。
(2)什么叫长方体的表面积?
(板书:长方体6个面的总面积,叫做它的表面积)
设计意图:通过亲自动手操作剪开并展开长方体实物,让学生真正参与获取知识的过程。在实际观察中让学生充分感知并建立表面积的表象,从而发现并归纳出表面积的意义。
2.探究求长方体表面积的计算方法。
(1)回忆。
师:同学们,你们还记得长方形的面积计算公式吗?
预设
生:长方形的面积=长×宽。
(2)议一议。
长方体上、下面的面积=()×();
长方体前、后面的面积=()×();
长方体左、右面的面积=()×()。
(3)总结长方体表面积的计算方法。
方法一长方体的表面积=长×宽×2+长×高×2+宽×高×2,用字母表示为S=2ab+2ah+2bh。
方法二长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示为S=(ab+ah+bh)×2。
长方体的表面积课件(篇2)
教学重点:让学生掌握长方体表面积的计算方法,并能运用所学知识解决实际问题。
教学难点:根据长方体的长、宽、高,确定每个面的长、宽各是多少。翻
五、教法、学法。
为了使数学知识、思想和方法在学生的数学实践活动中得到理解与发展,这节课我主要采用小组合作学习的形式,辅以“情境探究”法、“观察法”、“演示法”、“比较法”等,实现师生互动,生生互动,有计划地对学生进行思维训练,进一步激发学生学习数学的热情。翻
六、教学准备:多媒体课件,长方体纸盒、剪刀。
七、教学设计
本着让学生“主动参与、乐于探究、勤于动手、学有所得”的理念,我设计了如下教学过程:
第一个环节:创设情景,激趣导入。
上课伊始,我就创设如下情景:(今天是玲玲妈妈的生日)玲玲:“妈妈,生日快乐!”妈妈:“真乖,礼物包装得真精美!妈妈考考你,包装这份礼物时,至少要用多大的彩纸呢?”我顺势把问题抛给学生,从而引出课题——长方体的表面积。
这样的设计意图赋于教材以生活的气息,让学生切身感受数学就在身边,激发学生强烈的求知欲望。翻
第二个环节:实践探索、获取新知。(设计了2个活动)
第一个活动:独立感知——建立长方体表面积的概念。
我请学生闭上眼睛,触摸长方体的各个面,感知“表面”的含义,引导学生概括出长方体表面积的意义。
这一做法目的是让学生借助实物,建立表面积的表象,使抽象的概念形象化、具体化。翻
第二个活动:合作交流——探索长方体表面积的计算方法。
《新课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”开放的'情景和问题,学生往往会有更宽广的视野和活跃的思维。所以在这个教学环节,我大胆地放手让学生开展小组合作学习。为每组准备了一个大小不一的长方体,让他们利用这个长方体,通过看一看、剪一剪、拼一拼,并结合它的基本特征和表面积的意义,探索长方体表面积的计算方法。期间我到学生的活动中去,指导他们的实践,倾听他们的发言,鼓励他们积极思考,引导他们想出更多更好的方法。学生的思维是活跃的,老师及时的点拨,更能激起学生思维的火花。
大约经过10分钟的师生间、生生间的交流、观点的交锋和智慧的碰撞后,各小组汇报,估计情况如下:
有的小组直接观察立体图,有的小组沿着棱把长方体纸盒展开,无论哪一种探究方式,都比较容易发现以下三种方法:第一种:把长方体6个面的面积相加;第二种:(电脑演示)用上下面的面积加前后面的面积再加左右面的面积,从而得到:长方体的表面积=长×宽×2+长×高×2+宽×高×2;第三种:上、前、左面的面积和乘2,从而发现:长方体的表面积=(长×宽+长×高+宽×高)×2.
接着,我让学生通过分析、比较,选择他们最喜欢的方法,并确定最简算法,使计算优化。教材蕴含着许多有待学生发现的奥秘,因此我给学生提供足够的时间和空间去探索,去发现问题、解决问题,经历知识的产生、形成过程,实现不同的人在数学上得到不同的发展这一理念。
第三个环节:应用新知,培养能力。(我设计了三个层次的练习)
第一层:基础练习,照顾全面。
学生独立完成“做一做”中的1---4题关于关于长方体表面积的基本练习,让他们通过说理、比较,进一步巩固知识,为解决下面的变式练习作好铺垫。
第二层:回应情景,发散思维。
这时,我又巧妙地请出玲玲,激发学生积极参与解疑。玲玲:“包装这份礼物时,至少要用多大的彩纸呢?同学们,帮我算算吧!看谁算得快,算得妙!”。同时出示下面的图:翻
这是一个比较特殊的长方体,这一题既回应了情景,又打破了学生思维的定势。使学生明白:当长方体有两个相对的面是正方形时,可以用长方形的面积乘4加正方形的面积乘2来计算,从而让学生知道计算长方体的表面积的方法是很多的,培养了学生从多角度思考问题的能力。我还及时地教导学生要学会感恩,懂得尊敬长辈、关心他人。翻
第三层:走进生活,深化理解。课本27---28页的5---7题类似于制作一个没有盖子的鱼缸用多少玻璃,粉刷教室的屋顶及墙壁用多少涂料,这样的联系实际生活的问题,
我先让各学习小组通过讨论、交流,找出制作鱼缸和粉刷教室要算的面有哪几个,再进行计算,然后通过评讲,使学生认识到:生活中,经常会遇到像这种不需要算出长方体6个面总面积的情况。紧接着,我让学生举出类似的例子。我带领学生走进生活,探索现实中的数学,培养他们“用数学”的意识和能力。练习内容紧贴生活,训练由浅入深,既巩固了知识,又培养了能力,突出了在应用中学数学。翻
第四个环节:评价体验,归纳提升:我让学生谈谈这节课有什么收获,并进行学习评价。
我让学生畅所欲言,及时梳理知识,体验学习的成功与快乐。然后,我结合板书进行总结,帮助学生构建起知识的框架,使知识条理化、系统化。翻
第五个环节:作业——拓展创新,课外延伸。
欢度国庆节,超市举办“买一送一”的酬宾活动,为了吸引顾客,想用彩纸把两盒杏仁饼包装在一起。你知道有几种包装方法吗?想一想,哪种方法最省包装材料?课后,学生通过实践,丰富了感知,形成了能力,主动从数学的角度探求解决问题的策略,进一步体验数学的价值。翻
八、板书
我的板书力求简洁,明了。
整个教学设计,我以学生的发展为本,鼓励学生积极参与课堂活动,亲身经历知识的形成过程,感受数学生活化,展示数学的魅力,实现“人人学有价值的数学”这一目标。
我的说课完毕,谢谢大家!
长方体的表面积课件(篇3)
教学目标:
1、通过动手操作,理解长方体的表面积的意义,由此建立表面积的概念。
2、能根据现实情景和信息,通过动手操作、小组合作、观察思考等方法,去探求长方体的计算方法,初步培养学生的探求意识和探求能力。
3、使学生感受数学与生活的密切联系,培养初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教学重点:
理解长方体的表面积的意义,建立表面积的概念。
教学难点:
掌握长方体的表面积的计算方法。
教学流程:
一、复习旧知,引入新课
1、复习长方体的特征。
师:同学们,我们上节课已经认识了长方体,知道它们是由6个长方形围成的立体图形。那么它们都有哪些特征?
生:长方体有6个面,12条棱,8个顶点,相对的面完全相同(特殊情况有两个相对的面是正方形),相对的棱长度相等。
2、师:同学们说得真好,都已经掌握了长方体的特征。那么今天我们继续来研究长方体,一起来探究一下长方体的面。
二、实践操作、探究新知
1、教学长方体表面积的概念。
师:现在老师手中有一个长方体纸盒,昨天同学们回家也都做了一个,刚才我们说长方体有6个面,他们分别是,(边说边指),那么如果我们沿着长方体的某些棱剪开,再展开,会是什么形状呢?
接下来学生动手剪(强调要求)
师:请同学们仔细观察,展开后,你发现了什么?
生:我发现原来的立体图形变成了平面图形。
生:我发现长方体展开后还是由6个长方形组成的。
师:同学们观察得真仔细!课件演示(实物展开后贴在黑板上)
师:同学们,你们现在还能像课件中一样找到刚才指出的前面吗?后面又在哪里呢?你还能找出上、下、左、右分别在什么地方吗?
生:能。
师:那么请你们在自己的长方体展开图中标出上、下、左、右、前、后。
师:观察长方体展开图,回答下面的问题
(1)我们知道长方体有6个面,哪些面的面积是相等的?
生:前后面,左右面,上下面是相等的。
师:为什么?
生:长方体相对的面完全相同。
(2)每个面的长和宽与长方体的长、宽、高有什么关系?(同桌合作)
生:上、下每个面的长和宽是长方体的长和宽,每个面的面积是长x宽;前、后每个面的长和宽是长方体的长和高,每个面的面积是长x高;左、右每个面的长和宽是长方体的高和宽,每个面的面积是宽x高。
师:同学们,像这样我们把长方体6个面的总面积,叫做长方体的表面积。
(板书:表面积)
(2)计算长方体的表面积。
师:那么怎样求长方体的表面积呢?
小组合作:1,先独立思考,记录下自己的方法。
2,小组内交流,探讨哪种方法更简便。
学生作业展示:长x宽x2+长x高x2+宽x高x2
或者(长x宽+长x高+宽x高)x2分别解释
教学例1.
出示例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?(课件出示)
问题:要求至少要用多少平方米的硬纸板,实际上就是求这个长方体包装箱的什么?
生:实际上就是求这个长方体包装箱的表面积。
根据上面咱们总结出的公式来求一下表面积
方法一:0.70.52+0.70.42+0.50.42=1.66(平方米)
方法二:(0.70.5+0.70.4+0.50.4)2=1.66(平方米)
(3)通过刚才的操作与例题,你觉得计算长方体的表面积需要哪些条件,又该如何计算呢?归纳总结
三、深化提高,综合应用
1、完成教材第25页练习六的习题。
先让学生独立完成,再组织交流。
2、完成教材第24页做一做。
(1)指导学生读题,理解题意,让学生发现本题中没有底面这条信息很重要。
(2)先让学生独立完成,再组织交流。
四、归纳知识,总结学法
师:同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。
长方体的表面积课件(篇4)
《长方体和正方体的表面积》临床分析观察分析报告
教学是一门艺术,而课堂提问是组织课堂教学的重要环节,是对学生进行思维训练和口语训练的重要手段。精彩的提问是诱发学生思维的发动机,能开启学生智力的大门,打开学生滔滔不绝的话匣子,有利于提高课堂教学效率和师生情感的交流。因此。课堂提问的成功与否,关系到单位时间内教学的效果。如果能够在教学中科学地设计并进行课堂提问,就能优化课堂结构,真正发挥教师的主导作用和学生的主体作用,从而展示教师的教学艺术,显示教师的教学魅力。
本学期九月十八日,我自己上了一堂六年级的数学课《长方体和正方体的表面积》,对本堂课的提问(共提问25次)分析如下:
1.提出问题的类型部分:①学术的:客观事实(19次);②学术的,观点性(4次);③非学术的(2次)。
2.需要作出回答的类型:①思考性问题(9次);如通过动手摸长方体的各个面,提问:什么是长方体的表面积?、你有什么办法能一眼全看到长方体的六个面?等带有思考性的问题。②事实性问题,反馈性提问流于形式,教师诊断效果失真。这种提问如长方体有几个面?、分别叫什么?总结时的提问什么是长、正方体的表面、长方体和正方体的表面积是如何计算的?等记忆性的反馈提问,学生回答的也只能是一些浅层的记忆知识,并没有表明他们是否真正理解,这样的提问,无法有效地诊断学生的知识缺陷,获得真正的反馈信息,从而不利于教师调控教学过程(5次);③选择性问题比较少(1次)。无盖的正方体盒子要用多少平方厘米的纸板?哪一种算式是正确的?①326②325,让学生通过比较明白一个事实,无盖就是少了一个面,因此选择第2种。
3.挑选回答的人:①提问前点名(3次);②提问后请自愿回答的人(18次)。③提问后请不自愿回答的人(4次)。
4.在提问之后的停顿:①叫一位学生前,先停顿几秒(20次);②叫一位学生前,几乎没有顿(5次)。
提问后停顿一下,让学生回答,让学生有一定的思考空间,有利于学生对所提问题的思考。而没有停顿或先点名后提问,学生无时间思考。这样的提问,虽然不利于学生冷静地思考问题,达不到提问的应有作用,但是我的意图是要提醒学生要专心听讲,当然这样整堂课也出现了5次,。
5.陈述问题时的语调和举止:①问题表现出挑战和刺激性(3次);实事求是地提出问题(22次)。
本节课教学本着让学生自主探究活动贯穿于课的始终的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生学习兴趣,培养了学生思维能力和实践操作能力。学生从本质上理解了表面积的概念,而且学会了如何根据实际情况求长方体、正方体的表面积,使学生真正地融入到课堂教学之中,体现学生本身的学习自主和主人翁感。
在实际教学中,教师往往不太注意课堂提问的艺术和技巧,影响了学生的积极思维和学习效果,使课堂提问产生一些误区,恰当的提问可以启发学生的积极思维,按照教学目的引导学生的思路,帮助他们一步一步掌握教学要点,理解教学内容,对活跃教学气氛也有一定作用。提问是为了启发,但提问不等于启发,动不动就问,尽管课堂气氛显得很活跃,但是一堂课上完了,学生不一定收到最佳效果,在提问过程中,还要掌握一定的原则和方法。
一、提问的原则
1.科学性原则。教师首先应认真钻研教材,把握知识要点,设计的提问既要无知识性错误,又要做到难易适中,循序渐进;既要符合学生的认知水平和认知规律,又应启发学生开动脑筋,积极思维,调动学生的学习积极性。
2.层次性原则。美国心理学家华莱士指出,学生显著的个体差异、教师指导质量的个体差异,在教学中必将导致学生创造能力、创造性人格的显著差异。因此,教师调控教学内容时必须在知识的深度和广度上分层次教学,尽可能地采用多样化的教学方法和学习指导策略;在教学评价上要承认学生的个体差异,对不同程度、不同性格的学生提出不同的学习要求。因此,在课堂上设计不同层次的问题,要考虑到不同层次的学生要充分考虑学生的差异,使不同层次的学生都有答问的机会。教师所提的问题,对优生可合理提高,对普通生可逐步升级,对后进生可适当降级,从而使全体学生都可获取知识营养,满足胃口。提出问题后,宜留一定时间让学生思考,然后或个别解答,或小组代表回答,要充分考虑学生的差异,使不同层次的学生都有答问的机会。高深或灵活性大的问题问优生,优生经过思考回答出来,有助于启发全体学生的思维;基础题、综合题的提问是了巩固教学效果,问题的设计要考虑成绩中等的学生,这样做可以吸引大多数学生的注意,调动他们的积极性。在学生回答问题时,还要十分注意学生回答问题的成就感,多思维互动,培养学生有意义的交际能力,多渠道的信息交流。对答问的评价,要及时、准确、积极。评价要及时,要指出其正确与否,评价可教师评价,也可适当放手,让学生评。要体现激励机制,以调动学生学习积极性为根本,从而提高答问兴趣及质量。好的评价能使师生的思维融为一体,使教学活动有序和谐,学生能最大限度地参与教学过程。
3.兴趣性原则。兴趣是最好的教师。心理学实验告诉我们,问题,特别是精巧问题,能够吸引学生集中精力,积极思维,触动感情,提高兴趣。因此,提问的设计不仅要以知识点的落实为依据,还要善于在解决问题中提出问题,创设境情,以激发学生的好奇心和求知欲,使他们积极投入到学习活动中。
4.双边性原则。课堂提问是一种最直接的师生双边活动。它常常是教师通过最初的提问引导出学生最初的反应和回答,再通过相应的对话和交流,引出教师希望得到的答案,并对学生回答予以分析和评价。课堂提问的过程是师生之间相互尊重、彼此沟通的双边活动。一方面要求教师全神贯注地介入双边活动中,通过重复、追问、更正、启发、评价等手段,逐步引导学生向更新领域、更深层次去思考、去探索;另一方面,也要求学生自己提出问题,自己尝试解决问题,可以采用角色转换的方式,让学生当一回老师,以营造一种全新的课堂教学氛围。
二、提问的方法
课堂提问的方法大致有:直问法、激问法、比较式提问法以及联系式提问法。
直问法即对学生直接提问,这种方法往往用于概念的提问,其目的在于让学生对概念有更清楚的认识。
激问法可以鼓励学生进行积极思维,发展思维,提高学习能力。
比较式提问法有利于启发学生通过分析对比,找出不同认知对象的结合点和不同点,对问题的认识进一步加深,并能强烈地感受到知识对象之间的联系和区别。
联系式提问法多用于复习中,运用知识的迁移性,使学生不断地积累知识,达到温故而知新的目的。
总之,提问的方法多种多样,在运用的时候应根据不同的教学内容,不同的年级灵活交替运用,教师要设计好提问形式,真正地发挥启发式提问在课堂教学中的重要作用。
长方体的表面积课件(篇5)
课题二:正方体表面积的计算以及长方体和正文体表面积的实际应用
教学要求1、根据正方体特征,推导出正方体表面积的计算方法。2、学会解决实际生活中有关长方体和正方体表面积的计算问题。3、培养学生思维的灵活性。
教学重点正方体表面积的计算方法。
教学用具教师准备:一个正方体纸盒和例3的实物模型、投影仪;学生准备:一个正方体纸盒。
教学过程
一、创设情境
1.看图并回答。(投影显示)
(1)什么是长方体的表面积?
(2)怎样计算这个长方体的表面积?
2.看看各自准备的正方体回答问题。
(1)什么是正方体的表面积?
(2)正方体6个面的面积怎样?
(3)如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?
师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。(板书课题)
二、实践探索
1.小组合作学习----正方体表面积的计算。
①题中的棱长就是每个面的什么?
②你能算出这个正方体的表面积吗?
③小组合作,寻找计算方法。
336或者326
=96=96
=54(平方厘米)=54(平方厘米)
说明:上面两种做法都对,32表示2个3相乘。
2.教学计算长方体和正方体某几个面的面积。
在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中某几个面的面积,如:投影显示例3,拿出实物模型。
(1)帮助学生分析题意。
①售米的木箱是什么体?
②上面没盖就是没有哪一个面?
③要求的问题,实际上是算哪几个面的面积之和?
(2)再让学生分小组讨论解答方法,只列式不计算。
(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。
三、课堂实践
做第27页的做一做,先让学生列出解答的算式,并讲一讲自已是怎样想的,确定正确后算出结果。
四、课堂小结。
学生小结今天学习的内容。
五、课堂实践
做练习六的第5、6、7题。
长方体的表面积课件(篇6)
一、设计思想
浙江省义务教育教材第十册P19-20,长方体和正方体的表面积是在学生已经掌握了一些简单的平面图形知识的基础上,过渡到初步的立体图形上学习的。本节课的学习目标是让学生进一步认识长方体和正方体的特征,掌握长方体和正方体表面积的计算,体现立体平面立体螺旋上升、循序渐进的教学思想,并通过平面图形和立体图形的联系沟通,培养和发展学生初步的空间想象能力。课堂教学是素质教育的主渠道,素质教育是以全面提高全体学生的基本素质为根本目的,以弘扬学生的主体性和主动精神为主要特征,注重开发学生的智慧潜能,注重形成人的健全个性。因此在小学数学课堂教学中,引导学生主动参与,自主探索,锤炼思维,培养能力,发展智力,浸润情感态度是素质教育的应有之义,长方体和正方体和表面积一课,正是从这一思路出发预设、生成教学过程的。
1、从生活实际引入新课
创设一个能够吸引学生的、源于生活的、有趣的、有用的、可操作的、可探索的情景,有利于激发学生的学习兴趣和愿望,使学生处于积极主动的学习状态,有利于学生自主探索。新课标强调要让学生在现实情境中和已有知识的基础上体验和理解数学知识要提供丰实的现实背景任何知识源于生活又服务于生活。生活中处处有数学,让现实的生活数学走进学生视野,使生活数学与数学问题有机地结合起来,使学生体会在生活中做数学的乐趣。设计时应从生活实际出发,引导学生明确学习求长方体、正方体表面积的必要性,以激发学生的求知欲。
2、按知识形成发展过程展开新课
知识的形成发展是有层次的,且与旧知识紧密相连。新课展开必须以学生原有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。为此,新课的组织展开以有利于教材结构与学生的认知结构产生同化,有利于学生主动建构为目的。
3、运用现代化教育手段,显现知识结构
学生计算长方体、正方体表面积必须具有较强的空间观念,这是教学的难点。为此,借助于实物投影、模型、多媒体课件,让学生观察、触摸、拼拆、抽拉、展示,全方位感知,培养空间观念,寻找知识的结合点,让各种现代化教学手段协同互补在提高课堂教学效率与质量上发挥更好的媒介作用,实现信息技术与数学教学的整合。
二、课堂实录
1、复习准备
师:(出示长方体、正方体模型)长方体、正方体各有几条棱、几个面、几个顶点?
生:长方体、正方体都有6个面,12条棱,8个顶点。
师:长方体的面有什么特点?
生:长方体有6个面,相对的面面积相等。
师:长方体每个面相邻的棱各是哪两条?
生(甲)手势表示:上面或下面长、宽(板书)
生(乙)手势表示:前面或后面长、宽(板书)
生(丙)手势表示:左面或右面宽、高(板书)
2、引进新课
师:老师想用铅画纸做这样一个长方体纸盒,需要多少材料,实际上就是求什么?
生(甲):铅画纸的面积是多少?
生(乙):长方体纸盒6个面的总面积。
师:每个物体都有表面和表面积,长方体的表面积的指长方体几个面积的总面积?
生:长方体的表面积是指长方体六个面的总面积。
师:对。长方体6个面的总面积,叫做它的表面积。
师:谁能上来,摸一摸老师手中长方体的表面。
师:请同学们拿出准备好的长方体或正面体纸盒,摸一摸它的表面。
师:谁能用一个句话说什么叫正方体的表面积?
生:正方体六个面的总面种叫做它的表面积。
师:那到底什么是长方体和正方体的表面积呢?谁能用一句话概括出来?
生:长方体或正方体6个面的总面积,叫做它们的表面积。(板书)
师:真能干!把长方体或正方体纸盒的表面展开,看一看得到的是什么图形?把组合图形恢复到原来的长方体和正方体。(课件演示展开、复原全过程)
师:刚才大家通过观察、触摸、拼拆,知道了表面积的意思,表面积是有大小的,下面我们来研究长方体和正方体表面积的计算方法。长方体和正方体表面积的计算。(补充板书课题)
3、探究长方体表面积计算方法
师:请直觉判断这个长方体和方这个正方体的表面哪个大?(多媒体课件演示)
生(甲):长方体表面积大一些。
生(乙):正方体表面积大一些。
生(丙):长方体和正方体的表面积一样大。
师:现在有三种不同意见,到底谁的判断是正确的呢?我们先一起来学习研究长方体表面积的计算方法。
师:谁会求为个纸盒的表面积?(投影出示题目与图形)
生(甲):S=542+532+432
生(乙):S=(54+53+43)2
师:每一步分别求出的是什么?
生(甲):542是长方体上下两个面的面积。
生(乙):532是长方体前后两个面的面积。
生(丙):432是长方体左右两个面的面积。
生(丁):542+532+432的和就是长方体的表面积。
生(戊):54、53、43分别是上面、前面、左面的面积,因为长方体相对的面面积相等,所以再乘2就是长方体的表面积。
师:大家都说得很好!那么你认为哪种方法更简便些?
生:第二种方法简便。
师:计算长方体的表面积必须知道哪些条件?
生:必须知道长方体和长、宽、高和长方体的每个面的长、宽有什么关系?
生(甲):上面、下面长方形的长和宽相当于长方体的长和宽。
生(乙):前面、后面长方体的长和宽相当于长方体的宽和高。
生(丙):左面、右面长方体的长和宽相当长长方体的宽和高。
师:长、宽、高在计算时有什么规律?怎样计算长方体的表面积?(四人小组讨论、交流、汇报)
生(甲):长、宽、高分别使用了二次。
生(乙):可能用长宽2+长宽2+宽高2来计算长方体的表面。
生(丙):用(长宽+长高+宽高)2来计算长方体的表面积简便些。
师:试一试,谁能计算出这个长方体的表面积?(课件演示图形)
生(甲):(205+205+55)2=450cm2
生:因为这个长方体有四个面的面积是相等的,所以可以乘4。
长方体的表面积课件(篇7)
一、创设情境,提出问题
师:出示一个长方体的礼品盒。问这个礼品盒是什么形?(长方体),长方体、正方体各有什么特征?
师:新年到了,老师想把这个礼品送给我一个长辈,我想要把这个礼品盒包装一下,你们能帮我算一算老师至少要准备多少彩纸吗?
二、学生小组合作探究。
如果你们小组有困难可以参考合作提示:
1、讨论,要求需要多少彩纸就是要求什么?
2、怎样求,列出算式,想想,还有不同的方法吗?
3、结合生活实际想想还需要考虑什么问题?
三、交流,汇报
四、小结,提升
1、师:要求需要多少彩纸就是要求什么?
每个物体都有表面和表面积,长方体的表面积是指长方体几个面积的总面积?长方体6个面的总面积,叫做它的表面积。
2、师:真能干!把长方体或正方体纸盒的表面展开,看一看得到的是什么图形?把组合图形恢复到原来的长方体和正方体。(课件演示展开、复原全过程)
3、汇总小结长方体表面积计算方法
师:计算长方体的表面积必须知道哪些条件?
学生回答后逐步小结完整:
上面、下面长方形的长和宽相当于长方体的长和宽。
前面、后面长方体的长和宽相当于长方体的长和高。
左面、右面长方体的长和宽相当长长方体的宽和高。
用长宽2+长宽2+宽高2来计算长方体的表面积。
用(长宽+长高+宽高)2来计算长方体的表面积简便些。
4、在实际生活中我们还需要考虑粘贴部分问题
五、简单应用
一个长方体长5分米,宽4分米,高3分米求这个长方体的表面积
六、拓展
1、课件演示,将刚才的长方体抽拉成正方体
2、学生尝试计算
3、小结,
师:求正方体表面积都必须知道什么条件?
55表示正方体一个面的面积。而正方体六个面面积都相等,所以求出一个面的面积后,乘6就得到了正方体的表面积。
师:谁来说说计算正方体的表面积的方法?
七、应用知识,解决问题
1、口答:一个正方体的棱长是2厘米,表面积是多少平方厘米?
2、一节烟囱长4米,口径是一个边长3分米的正方形,做4节这样的烟囱,至少需要多少铁皮?
3、一个火柴盒长4厘米,宽2.5厘米,高2厘米,如果材料的厚度不计,做这样的一个火柴盒的外盒和内芯,共需材料多少平方厘米?
长方体的表面积课件(篇8)
教学目标
1、能比较熟练地计算长方体和立方体的表面积。2、能根据实际情况,灵活地运用所学知识,解决实际问题。
教学重点、难点
重点:长方体、正方体表面积的计算方法。
难点:
教具、学具准备
教学过程
备注
一、复习旧知:
1、长方体和正方体的表面积指的是什么?
2、长方体和正方体的表面积怎样求?
二、练习:
1、计算下面长方体和正方体的表面积:
(1)长2.8分米,宽1.5分米,高4分米
(2)棱长3.2米。
2、长方体的长8厘米,宽5厘米,高3厘米,求它的前后左右四个面的总面积。
3、做10个不带盖的立方体铁盒,棱长15厘米,至少要用铁皮多少平方厘米?
4、把3个棱长都是1厘米的立方体拼成一个长方体,这个长方体的表面积是多少平方厘米?
5、一间教室长8米,宽5米,高4米。要粉刷教室的顶棚和四壁,除去门窗面积24平方米,粉刷的面积是多少平方米?如果每平方米用涂料0.25千克,一共要涂料多少千克?
6、P10思考题
三、反馈:
四、作业:
课后反思:在教学:长方体和正方体表面积后,我要学生测量一下教室的长和宽,及门窗黑板的长和宽,然后利用所学的知识,测算教室要粉刷的面积。通过学生具体搜索信息,并多信息加以分析,找出解决问题的办法,整个过程都是学生学习长方体表面积的真实体验。有利于学生数学知识的理解、消化。
长方体的表面积课件(篇9)
第三课时长方体和正方体的表面积(1)
教学内容:教科书P15页例4,完成试一试、练一练及练习四1-5题。
教学要求:
1、使学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
教学重点与难点:
理解并掌握长方体和正方体的表面积的计算方法。能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
学前准备:长方体模型、框架,课件、长方体形状的纸盒等
教学过程:
一、复习准备
谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体和正方体的知识。
出示长方体和正方体纸盒。
提问:长方体有几个面?这几个面之际有什么关系?他们可以分为几组?正方体呢?
二、探究新知
1、探究长方体表面积的计算方法。
(1)出示问题:如果告诉你这个长方体纸盒的长宽高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?
追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?
在交流中明确:只要算出这个长方体六个面的面积之和就可以了。
(2)启发:请你借助自己手中的长方体模型思考,根据长方体的特征,可以怎样计算这六个面的面积之和?
(3)学生独立列式,指名汇报,是根据学生回答进行板书。
(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长宽高正确找出3组面中相关的长和宽)
(5)提出要求:用这两种方法计算长方体6个面的面积之和,都是可以的,请用自己喜欢的方法算出结果。
2、探究正方体表面积的计算方法。
(1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少需要多少硬纸板的问题,如果纸盒是正方形的你还会解决同样的问题吗?
(2)学生独立尝试解答。
(3)组织交流反馈,提醒学生根据正方体的特征进行思考。
3、揭示表面积的含义
谈话才我们刚才我们在求长方体或正方体纸盒致少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体或正方体6个面的总面积,叫做它的表面积。
三、应用拓展
1、做练一练
先让学生独立计算,再要求学生结合自己的列式和题中的直观图具体说明思考的过程。
2、做练习四第1题
让学生看图填空,再要求同桌互相说说每个面的长和宽,并核对相应的面积计算是否正确。
3、做练习四第2题
让学生独立依次完成体重的两个问题,适当提醒学生运用第(1)题的结果来解答地(20)题。
4、做练习四第51题
先让学生根据表中列述的数据进行判断,并说明判断的理由,再让学生独立计算,并将结果填入表中。
最后引导学生比较求长方体的表面积与正方体的表面积的过程和方法,说说求长方体和正方体的表面积各要注意什么?
四、全课小结
同过今天的学习你有什么收获?什么是长方体或正方体的表面积?可以怎样计算长方体或正方体的表面积?长方体表面积的计算方法与正方体的表面积的计算方法有什么联系?
五、作业:练习四第3、4题
组合图形的面积课件优选十五篇
教师范文大全编辑细心挑选后发现“组合图形的面积课件”是一篇非常棒的文章。老师职责的一部分是要弄自己的教案课件,当然教案课件里的内容一定要很完善。老师上课时要依据教案课件来实施。相信自己这篇文章会给您一些有益的参考!
组合图形的面积课件【篇1】
组合图形面积教学设计
教学内容:北师大版小学数学教材五年级上册第75—76页。
教材分析:《组合图形面积》是北师大版五年级第五单元的第一课,学生在三年级已学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形,三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的民展,也是日常生活中经常需要解决的问题,在些基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。
学情分析:本课的授课对象是五年级的学生,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也掌握一些解决基本图形问题的方法,作为五年级的学生应进一步提高知识的综合运用能力,在学习中去探索掌握解决问题的思考策略。
教学目标:
1、在自主探索活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。教具:多媒体教学课件 学具:七巧板图片 教学过程:
一、情景导入
师:同学们一定都玩过七巧板吧?今天呀老师也为同学们带来一幅用七巧板拼成的画,请同学们看:(出示幻灯片:一架通过各种简单图形拼组成的飞机)
师:你们觉得它像什么?你能看出它是由哪些图形拼成的吗? 生:发言回答。
二、认识组合图形
师:有的同学已经跃跃欲试想自己动手拼了,那好现在就请同学们拿出你准备好的七巧板,小组内的同学可以互相合作,拼出一幅美丽的图案吧? 生:动手拼图,老师巡视指导
师:现在请拼好的同学把你的作品贴到黑板前,展示给同学们看。(设计意图:根据学生已有的知识经验和生活经验,让学生用七巧板来做游戏,让学生拼一拼,目的是想通过这样的活动使学生明白组合图形是由多种平面图形组成的,可以有多种不同的组合方法等。这样做不但使学生热情高涨,兴趣浓厚,而且增加了神秘感,也具有挑战性,同时,使学生在头脑中对组合图形产生感性认识,更为下一步探究组合图形面积做好铺垫。)
生:汇报拼成的图形是由哪些基本的平面图形组成的。
师:请同学们仔细观察,这些美丽的图案有没有什么共同的地方呢? 生:通过观察回答:发现这些图形都是由简单的几个图形拼出来的。师:对。我们就把像这样由两个或两个以上的简单图形组成的这个大的不规则图形叫组合图形。
师:那现在同学们,我想求这个组合图形的面积,应该怎么办呢? 生:只要把这几个简单图形的面积加在一起就可以了。
师:真不错,那这节课我们就一起来学习求组合图形的面积。(师板书:组合图形的面积)
三、探索计算方法
1、观察图形估算面积
师:现在请同学们观察这个组合图形里边还藏着这样一个不规则的图形,这个图形的面积怎么求呢?
(幻灯出示:在飞机图形里出现不规则图形,让学生直观观察到这个不规则图形)师:现在老师给你这个图形的数据,你能估一估这个不规则图形的面积吗?说说你是怎样想的? 生:进行估算。汇报。
(设计意图:这一环节的设计主要是想培养学生的估算意识。同时让学生理解这个图形不是简单图形,不能直接估计它的面积,也为下一步计算组合图形面积做一个很好的铺垫)
2、自主探索,计算面积。
师:同学们都说出了自己估算的理由,而且这里边同学也提到了我们以前学过的方法,那你估算的数据到底接不接近真实的数据呢?我们就一起动笔来计算一下好吗?
学生活动:学生独立解决组合图形面积计算问题。
师:深入到学生当中去,了解学生活动探索情况,对于有困难的学生给予帮助指导,对于完成比较快的学生老师给予评价,然后鼓励学生再想出其他的办法。
3、小组合作,分享方法。(1)小组内交流计算方法:
师:老师刚才发现同学们的方法都很有自己独到的见解,那现在就请小组内同学互相交流一下自己的想法,然后再互相点评一下好吗? 学生小组内互相交流,老师深入到小组当中去参与他们的活动,并给予适当的指导。
(2)全班交流计算方法:
师:好通过刚才小组内的交流同学们一定对自己的计算方法有了更深一步的见解,那现在就请同学们向全班同学汇报一下你的想法好吗? 生汇报,老师做小结:刚才同学们在汇报的过程出现了两种方法,一种是分割法,一种是添补法,那这两种方法有什么特点呢?请小组内同学讨论一下好吗?
小组内讨论并汇报。
老师小结:分割法:当我们用分割法时,分割的图形越简洁,其解题方法就越简单,要考虑到分割的图形与所给条件的关系。有些图形分割后找不到相差的条件就不行了。
添补法:当我们添补上一块之后,能根据给定的条件求出添补之后图形的面积,那我们就可以尝试一下,否则这种方法就是行不通的。(3)比较、反思方法
师:通过同学们刚才的回答,老师发现你们可以灵活的运用解题的方法真是太好了,那在本题当中你更喜欢哪一种方法呢?说说你的理由。师小结:求一个组合图形面积的时候,因为分割、添补的方法不同,计算步骤也不同,但最后的计算结果应该是相同的。
(设计意图:在学生解决组合图形面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立思考、自主探索、培养了能力。这时,为每个学生提供数学活动的时间和空间,鼓励学生用不同的方法进行计算,开拓学生的思维,并引导学生寻找最简单的方法,实现方法的比较,同时也是反思自己的方法和学习别人方法的一个很好时机,通过学生的探索、交流、讨论、优化、使学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念。这里体现了多种学习方式并存,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。)
四、实际应用,拓展提高
(设计意图:通过前面学过的知识,同学们已经有了知识的储备量,再回头做这样的题,兴趣高涨,分割和添补法有一定的综合运用,但是当老师给定数据的时候,同学就又会重新审视自己的方法,看哪一种更适合这道题的解题方法,发现解题的方法,又是一个比较的过程。)
(设计意图:这道题又是对上一题的补充,拓展,同学们都能用分割法把这道解出来,但是又添补法时到底能不能解决这道时,同学们就会发出疑问,可是当老师适当的进行点拨之后,就会是另外一种情况,整体代法的介入不仅是对这道题的一个有效的补充,而且也为六年级求圆的面积时做下一个伏笔,现时也充分体现了算法多样化的教学理念。)
(设计意图:这道题是通过本节课知识的学习发展了学生的空间观念,也为下册学习长方体表面积做了一个铺垫。同时也能够让学生更灵活运用自己所学过的方法来解决这个类型的题。)
五、总结收获,反思提升 师:通过本节课的学习,你有什么收获?
引导学生说说学会了哪些?怎样学会的?还有哪些问题?让学生体会独立思考和相互学习都很重要,也就是自主探索,合作交流等不同的学习方式同样可以有所收获。(设计意图:总结的目的是让学生对本节课的内容进行一下回顾,因为是高年级了,所以老师应该引导让学生在总结上有所提升,在知识方面,还有数学方法和数学思想方面都应该有收获的。)
六、作业 1、书中76页的试一试 2、书中76页的实践活动。
(设计意图:布置了两个分层作业,第一个作业是一个基础题,每名学生都应该认真独立完成。第二个作业是实践活动,这样的作业给学生一个更大的发展空间,学生都认识中队旗,但如果想计算出它的面积,学生可能对于它的数据不是很了解,学生想了解到准确的数据,可能会对过同伴互助,或者是向大队辅导员请教,有的学生可能问家长,还有的学生可能通过网络去了解等等,这样的作业能有效地培养学生解决实际问题的能力。)板书设计:
组合图形的面积
分割法:求和
添补法:求差(特例除外)(设计意图:这节课的重点是怎样求组合图形的面积计算方法,这样的板书可以直地体现出本节课求面积的方法,而且也揭示了知识的内在规律入相互间的联系与区别,有效地组织了学生的有意注意及思维导向)
组合图形的面积课件【篇2】
教学目标:
1、通过尝试、讨论、反馈、学生讲解、教师点拨,使学生学会用割、补等方法把一个组合图形划分为几个已经学习过的图形,从而计算出组合图形的面积。
2、培养学生的合作能力和自己学习的能力。
教学重点:学会计算组合图形面积的分析方法。
教学过程:
一、复习引入
1、让学生举例说一说我们学过哪些平面图形的面积,各是怎样学习的(推导过程)。
长方形面积=长宽正方形面积=边长边长
平行四边形面积=底高三角形面积=底高2
梯形面积=(上底+下底)
高2
2、引入:学样要造一个专用的活动室,由于受地形的限制,平面图形如下:虽然这个活动室的工程不大,但要有质量保证,因而进行了工程招标。在招标之前先要进行面积计算,以便在招标时提供底价。现在有个难题:这个平面图形不是我们学过的简单的平面图形,你能不能动动脑筋,把它的面积算出来。
48
10单位:米
14
二、合作学习,自主探索。
1、让学生4人一小组进行讨论、试做,看哪组的方法最多。
2、反馈:让学生把自己的做法向大家介绍。做法可能有以下几种:(并说出想法)
(1)
84=32(平方米)
(8+14)(10-4)=66(平方米)
32+66=98(平方米)
(2)
108=80(平方米)
(14-8)(10-4)2=18(平方米)
80+18=98(平方米)
(3)
1410=140(平方米)
(4+10)(14-8)2=42(平方米)
140-42=98(平方米)
(4)
(4+10)82=56(平方米)
14(10-4)2=42(平方米)
56+42=98(平方米)
3、小结:刚才我们求的这个平面图形是由两个基本的平面图形拼成的,叫组合图形,这些图形不能直接求面积,需要把它们划分成几个已经学过的图形,分别计算它们的面积,再求出这个组合图形的面积。
三、练习
1、求下面图形的面积(单位:厘米)
1832
625
286
1512
4
24
2、求下面阴影部分的面积。
16220
10阴影8210
52530
20阴影阴影
640
3、提高题
(1)求下列图形中阴影部分的面积(单位:分米)12
7
55
阴影阴影
5
20xx12
24
(2)一个长方形长4厘米,宽3厘米,A为长方形内的任意一点,求阴影部分的面积。
阴
A
影
四、总结。
建议:1、讲清楚多边形的概念;
2、小结时重点点出割、补两种思路;
3、重视比较,以得出最简洁的方法。
组合图形的面积计算练习教学设计
组合图形的面积课件【篇3】
我说课的内容是《组合图形面积》。下面我从设计理念、教材、教法学法、教学流程、板书设计、学习评价这几个方面来给大家汇报一下。
一、说教材
1、教材分析
《组合图形面积》是义务教育课程标准实验教科书,北师大版五年级上册第五单元的第一课,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课是这两方面知识的发展,也是日常生活中经常需要解决的实际问题。在此基础上学习组合图形,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。
2、学情分析
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。所以在探索组合图形面积的计算方法时,我通过自主探索、小组合作交流等方式达到方法的多样化。重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。因此我设计本节课的教学目标如下:
3、教学目标
⑴、在自主探索的活动中,归纳计算组合图形面积的多种方法。
⑵、能根据各种组合图形的条件,有效地选择计算方法进行解答,并能解决生活中相关的实际问题。
⑶、培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。
⑷、进一步渗透转化的教学思想,提高学生运用新知识解决实际问题。
4、教学重、难点
针对五年级年级学生的年龄特点和认知水平我确定本节课的教学重点为:
教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形的计算方法。
教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,割、补成学过的图形,选择最适当的方法求组合图形的面积。
二、说教法、学法
1、说教法
(1)多媒体教学法
在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的积极性,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是转化图形的几种方法通过课件的演示,学生一目了然,直观形象,更好的突出了教学重点、突破了教学难点。
(2)自主探索和合作交流教学法
动手实践、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。
2、说学法
(1)自主观察思考
学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。
(2)小组合作学习
小组合作学习能够帮助学生在有限的时间里,通过与他人的交流与合作,获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。
(3)学习归纳
改变了以往的教师总结为学生自己归纳总结,相对来讲学生收获的不仅仅是知识还有更多的学习经验。
三、教学流程
为完成本节教学目标,突出教学重点,突破教学难点,根据小学数学新课程标准强调的数学与现实生活的联系,我在教学本节课时从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。所以制定了以下教学环节:
(一)、创设情境、复习引入
(二)、自主探索、合作交流
(三)、 综合实践、学以致用
(四)、总结收获、小结全课
(五)创设情境,复习导入
1、拆礼物,复习面积公式
让学生拆开老师给大家的礼物袋,看看里面是什么礼物,学生会立刻认识到正方形、长方形、平行四边形、三角形、梯形,从而复习正方形、长方形、平行四边形、三角形、梯形的面积公式,为确保正确的计算组合图的面积打下基础。
2、拼一拼 说一说
学生利用这些图形,选几个图形,拼一个自己喜欢的图案,请个别学生把他们的作品拿到黑板上,展示给大家看,大家共同欣赏,请同学说说看你拼的图案像什么?是由哪些基本图形组成的?从而明确组合图形是由几个基本图形组合而成的.
(这一环节设计的目的是 让学生在拼一拼,看一看,说一说的过程中充分调动多种感官参与到学习中来 ,在浓厚的学习氛围中感受到知识来源于生活. )
由此揭示课题:组合图形面积(板书)
(二)自主探索、合作交流
1、出示主题图
由老师拼的一个图形,引导学生观察,看看像什么?学生会说像我家客厅的地面的形状,老师再次引出,我家客厅的地面形状也是这样的(出示PPT1),最近我家的房子正在装修,正计划铺地板呢?我量了一下,(出示PPT2)给出数据信息,提出问题,你能根据这些信息帮我算一算我该买多少平方米的地板呢?(在解决这一生活问题环节中,给学生足够的时间和空间,让学生积极主动地参与到学习中,通过自主探索,小组交流,获取更多的解题方法,让他们在小组活动中都有成功的体验和经验的收获)
2、小组汇报学习情况
汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:
(1) 将组合图形分割成两个长方形
(2) 将组合图形分割成一个正方形和一个长方形
(3) 将组合图形分割成两个梯形
(4)将组合图形填补上一个小正方形,使它成为一个大长方形,再用大长方形的面积减去小正方形的面积。
(5)将组合图形分割成两个长方形和一个正方形(或则其他情况)
(学生汇报时,其他同学一边倾听,一边与自己的思路进行比较,一边质疑,一边引起集体的讨论,并及时发现错误及时纠正过来。汇报结束后,再让学生对小组成员的汇报情况作评价,最后其他小组作补充汇报 )
3、师生总结分割法添补法并提升方法的优化性。
接下来让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”和”添补法”这两种计算方法,并且让学生明确,在分割组合图形时,分割图形越简洁,解题方法越简单。无论是分割还是添补,都是要把组合图形转化为我们学过的基本图形,这样就很容易计算出它的面积了。
(三)综合实践、学以致用
为了巩固新知,又突出本课的教学难点,我紧接着装修的问题情景,设计了给门刷油漆的这一练习,先让学生自主独立的解决,学生就会想到用添补法和分割法来解决,但是此问题若用分割法,就求不出这扇门该刷油漆的面积,从而提醒学生有些图形分割后,找不到相关信息,就是失败的,这样做很自然的就突破本节课的教学重点和难点。
接着为了巩固这一难点,我又设计了一个判断题,淘气、笑笑、小明、和小丽,他们也正在求一个组合图形的面积,请你看一看,想一想,他们的做法都能求出这个组合图形的面积吗?你最喜欢谁的做法,为什么?让学生通过观察他们这四位同学的转化方法和这个组合图形所给的数据信息,来判断出,有的方法能够求出这个组合图形的面积,但是有的方法会因为没法得到一些关键数据信息而不能求出这个组合图形的面积,从而提醒大家要灵活应用所学的知识解决生活中的各种问题。
(四)总结收获、小结全课
同学们,今天,我们共同探索学习了什么知识?你有什么收获,或者有什么心得?(学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结.也可以评价他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展)。最后,我鼓励学生利用今天所学的知识,解决上课开始时,自己设计的组合图形的面积,由课内延伸到课后,让学生把掌握的知识拓展到实际生活中去,引导学生对学习内容进行梳理,将知识系统化、条理化。对在获取新知中体现出的数学思想方法策略进行反思,从而加深对知识的理解。
本节课,我紧密联系学生的实际经验,向学生展示了生活中的组合图形,并联系实际生活情景,从中提出数学问题,并加以解决,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣,也培养了学生提出问题,解决问题的能力。
四、板书设计
组合图形面积
主题图
S=ab 分割
S=aa 转化 基本图形
S=ah 添补
S=ah÷2
S=(a+b)h÷2
(板书设计简洁,重点难点突出,一目了然。)
五、学习评价
把师评、互评、自评相结合,注重对学生动手能力、语言表达能力,思维能力,学习热情的评价,充分发挥了评价的激励作用。
组合图形的面积课件【篇4】
依据新课标的要求,我对教学目标稍加调整,确定本节课的教学目标如下
1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。同时通过各活动培养学生的空间观念。
本节课的教学重点是在探索活动中,理解组合图形面积计算的多种方法。教学难点是渗透转化的教学思想,运用新知识解决实际问题的能力。
为了达成本课的教学目标,我依据《课程标准》的精神,强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。教学中凸显课堂提问的有效性,注意提问语言指向明确,精炼准确,注意提问的层次性,把握追问的时机,同时留给学生充分的思考时间和空间,鼓励每个学生参与学习过程,注重学生之间交流,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
鉴于以上想法,我制定了创设情境,引入课题自主探索,合作交流实际应用,拓展延伸回顾反思,总结提高为结构的教学模式,主要通过以下教学流程来实施
组合图形的面积课件【篇5】
1、掌握组合图形面积计算的方法,并能正确进行计算,数学教案-《组合图形的面积计算》教学设计。
2、培养学生识图的能力和综合运用有关知识的能力。
能正确将一个组合图形进行分解,让学生学会这类题目的思考方法。
以“妙”调趣,导入新课。让学生以原有的知识为基础,通过学生亲手的“拼”、“剪”将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。
思考:
抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。
设问:
你们觉得哪个谜语好猜?为什么?
因为第二个问题有了第一个问题作基础,所以就容易些。
用猜谜语的形式让学生来明事理,从而导出新课。
今天我们要学习组合图形的面积计算,你们觉得以什么为基础好?
2、复习:
长方形、正方形、平行四边形、三角形、梯形的面积计算公式。
巩固以前所学几种平面图形的面积计算方法。
2、巩固长方形、正方形、平行四边形、三角形、梯形面积的计算方法。
你们有什么好办法来求出这个组合图形的面积?
思考、讨论:
分小组思考讨论,这个图形的面积应该怎样计算?
以学生为主体,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。
巡视:
通过剪一剪、拼一拼来计算图形的面积:
1、让学生亲手参与学习,让学生明白能将组合图形进行分解。
小组推荐一位学生为代表将本小组的方法介绍给全班。
⑴、沿虚线剪下,将组合图形分割成一个三角形和一个长方形。
⑵、分别算出两个图面积。
⑶、将两个图形的面积相加,就是组合图形的面积。
⒈让学生通过拼剪与讨论,将组合图形进行分解。
⒉让学生学会倾听同伴的意见,并能结合自己的想法进行评价。
“底”、“高”和“长”、
“宽”进行计算。
⑵、观察计算组合图形面积的一般步骤。
⑶、明确80(㎡)、18(㎡)分别指什么?
让学能根据图形关系,推算出图中的隐蔽条件。
让学生明确计算组合图形面积时的一般步骤和格式。
小组发表自己的解题方法。
巩固、明确:
通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的'面积。
让学生明确,解组合图形的面积,方法不是唯一的。
掌握组合图形面积的计算方法。
布置巩固练习:
选一种你最喜欢的方法进行计算,并将题目的解题过程写下来。
进一步巩固组合图形面积的计算方法以及书写时的注意点。
通过学生的独立练习,让学生明确在书写时的注意点以及熟悉解题的步骤。
1、出示课堂练习:
培养学生综合运用有关知识的能力。
结束语:
通过这节课对组合图形面积的学习,今后在解这样的题目时,你有什么心得或对其他同学有什么建议?
即发挥了学生的主动性,又将本堂课的内容进行了总结。
巩固本节课所学的内容。
组合图形的面积课件【篇6】
教学目标
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的'条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
教学重难点
教学重点:探索组合图形面积的计算方法。
教学难点:根据组合图形的条件,有效地选择计算方法。
教学过程
一、复习:课件出示:
师:下面这些物体里有哪些图形?
说一说生活中哪些地方有组合图形。生畅所欲言。
师:三角形的面积计算方法是底乘以高除以2,这里的除以2你是怎么理解的?
师小结:我们把三角形面积的转化成平行四边形来推导出三角形的面积计算方法的。
二引入新课。
1、过渡:刚才的图形我们都是可以通过公式可以直接计算的,那这样的图形能直接计算吗?
师:这个问题,能用你学过的知识想办法解决吗?
小华家新买了住房,计划在客厅铺地板(客厅形状如图)。请你估计他家至少要买多大面积的地板,再实际算一算。
布置自主探索任务:
明确探索的要求;(把想法画在图上,并试着求出地板的面积)
交流要求:想好办法的同学,把你的想法告诉你的同桌,比较两的想法有什么不同。
提示:实在有困难的同学,可以与同桌进行合作。
2、生独立尝试,师巡视,并发现典型。
3、反馈:
师:谁来展示你的解决办法?
(实物投影展示,辅助学生说清楚:想法与解法。及中间数据的来源等。)
补充的知识有:用虚线画辅助线;将学生的“割”明确为“分”(画辅助线)。
可能出现的答案有:
将你的想法画在图形上,并试着求出图形的面积对于出现补的方法,在学生说的同时,用实物模型来演示补的过程及说明算法。
出现又割又补的知识,让学生展示,并帮助理解,但最后不再统一展示。
4、归纳:师:同学们,刚才咱们想出了这么多的方法,算出地板的面积是33平方米,我们一起来给这些方法来分分类吧,你会怎么分呢?分一分,补一补。
师:我们可以把这个图形通过分一分,也可以说是这个图形是如图1由一个小长方形与一个大长方形组合成,或如图3由两个梯形组合而成,或如图4由一个长方形与一个正方形组合而成。像这样的图形,我们一般称之为组合图形。(板书:组合图形)
今天,我们学的是组合图形的面积。(板书:的面积)。
师:求这个客厅的地板问题,同学们想出了各种各样的方法,这么多的方法,你个人更喜欢哪些方法呢?
(生可能会说到:分成的图形个数少比个数多要简单些与分成长方形、正方形要比梯形在计算上要简单些。)
师:同学生,刚才我们通过求客厅的地板问题解决了求组合图形的面积问题,在这么多的方法中,还是有一些方法,相对更简单些。比如,分成两个图形的比分成三个图形的要相对简单些;同样分成两个图形的,分成长方形、正方形的比分成梯形、三角形的在计算上相对又要简单些。
三、练习。
过渡:所以,我们在解决这类问题时,可以考虑要尽量的(简单些)好,下面我们带着这样的想法,来看这个问题。课件出示:
右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
等生读明白题意后,布置练习纸。生独立尝试,师巡视,收集典型。反馈:将学生的典型作品,投影展示。可能的情况有
可能出现的其它问题有:请你来评价一下这两种方法。
(分成了不是已学过的图形)
(分得过细,数量上过多)
将下面图形分成我们已学过的图形
过渡:一个问题,同学生想出了这么多而又简单的方法,真是了不起。下面请看这里。
新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?
做一面中队旗用多少布?
在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
有一块正方形空心地砖,它实际占地面积是多少?
学校校园里有一块长方形的地,想种上红花、黄花和绿草。一种设计方案如下图。你能分别算出红花、黄花、绿草的种植面积吗?
请你也设计一种方案,用上我们学过的图形,并求一求每种植物的种植面积。
师:看来,求组合图形的面积,并不是所有的方法都可以的,有时,我们还得根据条件选择合适的方法。
四:总结。
1、学习了这一课,你学会了什么?
2、最后,我们来轻松一下。
组合图形的面积课件【篇7】
教学目标:
使学生初步了解组合图形面积计算的方法,会计算一些较简单的组合图形的面积。
教学过程:
一、复习
1、提问:是什么?面积怎么计算?(生答师板书出面积公式)
2、这些图形的面积我已经会算了,但在实际生活中,有些图形是由几个简单的图形组合而成的。这种组合图形的面积该怎么计算呢?今天我们来学习这个内容。出示课题:组合图形面积的计算
二、新课教学
1、教学例题
师:组合图形就是由我们学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有时需要计算这些组合图形的面积。例如房子侧面墙的形状是这样的:(出示图)
⑴、计算这个图形的面积我们学过吗?
⑵、小组讨论能否把它分成几个我们学过的图形?
⑶、汇报:这个图形分成了一个三角形和一个正方形,它的面积就是这两个图形的和。
⑷、学生在书上完成,集体订正。
⑸、小结:在实际生活中见到的物体,有很多是由我们学过的这些基本图形组合而成的。计算组合图形的面积,应鸹把它分成简单图形,分别计算各块的面积,再把它们合起来就行了。
2、试一试
90页做一做
⑴、看图,说说这个图形由哪些图形组合成?
⑵、独立练习
⑶、订正
三、巩固练习
第二题出示中队旗
小组讨论有几种解法。
独立做
汇报:说说你的想法。
第四题理解题意
独立思考,小组交流
做出来
四、作业
练习二十一(1、2)
板书设计:
组合图形的面积计算
教后感:
组合图形的面积课件【篇8】
一、说教材分析:
《组合图形的面积》是五年级第五单元的第一课。学生在三年级已学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题。在此基础上学习组合图形,一方面可以巩固已学的基本图形的知识,另一方面则能将所学的知识进行综合,提高学生综合能力。教材在内容呈现上主要突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。
本课的授课对象是五年级的学生,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也已掌握一些解决基本图形问题的方法。 根据学生已有的生活经验,通过直观的操作,对组合图形的认识和了解不会很难。尤其是在转化思想的渗透,学生在探索组合图形面积的计算方法时,应该能通过自主探索、合作交流,达到方法的多样化。但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法上、数学思想方面有所发展。
根据新课标的要求及教材的特点,充分考虑到五年级学生的心智水平,并在对教学效果进行全面预测的基础上,确立如下教学目标:
(1)在自主探索的活动中,了解并掌握计算组合图形的多种方法。
(2)能够根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
(3)能运用所学的知识,来解决生活中有关组合图形面积的实际问题。
让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
结合装修房子的情境,让学生感受学习组合图形面积的必要性,再学生探索、解决的过程中激活学生思维,通过师生互动、生生互动,学生动手操作、合作交流,让学生在活动中得到积极体验数学在生活中的必要性,从而产生积极的数学学习情感。
四、说教学重、难点:
为了更好的达到目标,考虑到学生掌握新知的能力,从而确定本节课的教学重难点。
1、教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算
2、教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。
五、说教学理念:
新课标指出:数学教学应联系现实生活,获得积极情感的体验。培养学生的创新精神和应用意识。本节课,首先采用情境导入法,创情境导思维使学生乐学。拼图游戏,通过拼一拼、画一画、猜一猜、说一说导出组合图形的意义。装修房子激发学生的学习兴趣,提高学习效果。
在教学中时刻运用引导式教学,在教学中教师要激发学生的学习动机,使之对学习产生浓厚的兴趣,师精导、生巧学,以学论教,扶放结合。由学生小组合作共同探索问题的解决方法时,当学生想出各种不同的方法时,引导学生自己比较方法的异同点,并进行归纳,同时在此基础上懂得根据条件选择合适的方法来解决问题。
六、说教学设计:
为了能更好的凸显有效教学的教学理念,高效的完成教学目标,特结合普遍学习特点,设计如下环节:
为了更好的认识组合图形的概念,注重新旧知识的迁移,先复习学生熟悉的几种平面几何图形,进而介绍组合图形的概念。
创设老师家装修遇到困难请同学帮忙的情境,出示计算老师家客厅面积的问题,先让有方法的同学们说说自己的计算方法,在学生们都明白之后,随后就可以组织小组探索有没有其他方法,然后在全班将多种方法进行展示。
在全班交流时引导学生比较方法,让学生观察哪些方法有相同之处。,引导学生分析、比较各种方法的区别与联系。近而让学生对分割法和添补法进行讨论,让学生明确分割法就是将分割的基本图形进行相加,而添补法就是从大图形中减去添上来的小图形。最后让学生知道计算组合图形的面积有多种方法,只要同学们认真观察,多动脑筋,选择自己喜欢而又简单的方法进行计算就可以了。
学生认知是由浅入深的,通过动手实践,他们已经知道:组合图形的面积可以通过分割、添补成我们所学过的平面图形的方法得到,抓住这个重点,组织学生理解,突破教学重难点,完成了本节课的教学目标,真正做到了有效教学。到此,教学中仍然借助装修房子的情境,给出凉台的平面图,让学生根据已知数据计算面积,这样通过自主探究的学习方式充分调动了学生学习的积极性,让学生真正成为学习的主人。
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。本着重基础、验能力、拓思维的原则,延续着本节课的装修房子情境设计层次练习。教师出示天花板的平面图,让通过学生小组合作共同探索总结出多种方法解决问题,在巩固组合图形面积计算方法的同时,学生也获得了成功的喜悦。
最后,开放练习,把时间留给学生,让他们通过本节课学习的计算组合图形面积的方法来计算出拼图游戏时自己所拼的组合图形的面积!让学生真正做到学以至用!
设计以上练习可以让学生更深入理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。真正做到有效练习!
组合图形的面积课件【篇9】
教学目标:
⑴使同学认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。
⑵通过操作、探索、发现、交流等活动,初步培养同学合作意识和创新意识,进一步发展同学的空间观念和交流能力。
⑶通过学习,提高同学对数学的好奇心和求知欲,学会从数学角度认识世界、解释生活,感受数学的魅力。
⑴剪圆环活动。
出示一个同心圆环;
让同学用一张白纸剪出同样的一个圆环。
⑵说剪圆环的过程。
让同学介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减小圆面积。
出示例10和图。
师问:从题中你获得哪些信息?要计算它的面积,你有什么好的方法?在小组中说说你的想法。
同学汇报和交流方法。
同学自主尝试练习。
交流解答过程。
同学交流(同学作品放在视频投影仪上向全班介绍):圆环面积的计算方法,大圆面积-小圆面积;圆环面积的计算步骤,可先算大圆面积,再算小圆面积,最后用减法算圆环面积;全班介绍,教师板书解答的全过程。
2、教学“试一试”
出示题目和图形,理解题意。
同学独立计算。
交流解题方法,注意提醒同学半圆的面积必需把整圆的面积除以2。
3、教学“练一练”
考虑:
(1)求涂色局部的面积,需要计算哪些基本图形的面积?
(2)计算这些基本图形的面积分别需要哪些条件?
(3)第一个图形,两个基本图形有什么练习?第二个图形呢?
(4)同学独立完成,并全班交流。 反馈时,注意加法求组合图形面积和减法求组合图形的不同。
三、巩固练习。
1、完成练习十九第6题。
先说说每个组合需要丈量途中哪些线段的长度?再让同学独立完成。
完成后展示同学作业 ,并交流方法。
2、完成练习十九第7题。
同学根据图形作出直观的判断,并说说直观判断的方法。
同学通过计算检验所作出的判读。
3、完成练习十九第8题。
(1)观察图,理解题意。
(2)指导分析。
4、完成练习十九第9题。
师问:你能估计出每种花卉分别所占图形面积的几分之几吗?指导用画出辅导线的方法,来估计每种花卉所占圆形面积的几分之几。
同学独立计算每种花卉的种植面积。
完成后交方法。
师:通过今天的学习,你有什么收获?说说缓刑的面积可以怎样求?在计算组合图形的面积时需要注意什么?
练习十九第6题、第8题.
组合图形的面积课件【篇10】
本节课的内容是在学生学习了平行四边形、三角形、梯形面积计算的基础上进行教学的。通过计算组合图形的面积,有利于综合利用平面图形面积计算的知识,进一步发展学生的空间观念。
成功之处:
多种方法解决问题,发展学生的创造性思维。在例4的教学中,首先让学生观察房子侧面墙的形状是有哪几个基本图形组合而成的,然后让学生独立解决问题,学生对于这类问题没有感到困难,非常轻松的解决了问题,从而得出第一种算法:(1)组合图形的面积=三角形的面积+正方形的面积:
接着教师抛出问题,你还有不同的解决问题的方法吗?一石激起千层浪,学生通过教师的.发问引起思考,从而出现了如下算法:
(2)组合图形的面积=2个梯形的面积:
(3))组合图形的面积=长方形-2个三角形的面积:
这样通过思维的碰撞,产生出智慧的火花,同时也揭示了组合图形面积的计算方法:一是分割法:把一个组合图形分割成几个简单的规则图形,分别算出各个图形的面积,最后求出它们的面积的和。二是挖空法:把多边形看成是一个完整的规则图形,计算它的面积以后,再减去空缺部分的面积。三是割补法:就是把图形的某一部分割下来补到另一部分上,使它变成一个我们已学过的几何图形,然后再进行计算。四是折叠法:把组合图形折成几个完全相同的图形,先求出一个图形的面积,再求几个图形的面积之和。
不足之处:
学生对于多种方法的应用还存在不灵活的现象,个别学生出现拆分的图形的数据不完备,导致出现错误。
再教设计:
基本方法掌握,主要从和与差的两种方法教学会比较好一些。
组合图形的面积课件【篇11】
一、教材分析:
1、教材解读:《组合图形面积》是北师大版五年级上册第五单元的第一课,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课是这两方面知识的发展,也是日常生活中经常需要解决的实际问题。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。
2:教学目标:
(1)知道什么是组合图形的面积。
(2)会用不同的方法计算组合图形的面积。
3、教学重、难点
教学重点:理解和掌握计算组合图形面积的多种方法。
教学难点:将组合图形分割成一些基本图形。
二、学情分析:
本课授课对象是五年级学生,是在学生掌握了长方形、正方形、平行四边形、三角形、梯形的面积计算基础上学习的。学生已经具备了自主学习的能力,应进一步提高知识的综合运用能力,在自主学习中探索解决问题的策略。
三、教学模式:
“昨天的改变,就是为了今天的收获”,对于“小组合作学习模式”的应用,从开始的抵触到现在的熟练驾驭、以及效果的呈现都全方位的诠释了“小组合作学习模式”的优化。因此,本节课通过运用多媒体课件辅助教学,采用赛创意——展示——想方法——质疑——总结的教学模式,引导学生自主学习、展现自我。
四、教学设计
为完成本节教学目标,突出教学重点,突破教学难点,我在教学本节课时从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。所以制定了以下教学环节:
(一)赛创意
设计意图:课前学生利用七巧板拼喜欢的图案,然后把他们的作品展示到电脑上,大家共同欣赏,一来重视了学生的劳动成果,二来体现多媒体的灵活应用,最主要的还是为理解组合图形的概念做铺垫,从而明确组合图形是由几个基本图形组合而成的,同时评比出最有创意小组,激励学生后面的学习。
(二)比记性
回忆基本图形的面积计算方法,为组合图形面积的计算做了铺垫。
(三)想方法
设计意图:是本节课的教学重点,首先提出第一任务:估一估,客厅的面积大约是多少平方米?第二个任务:想一想,算一算,智慧老人家客厅的面积有多大?要求:先用自己的方法尝试计算,然后和你的同桌交流你的计算方法;最后在小组内交流,并归纳出你们组的不同计算方法。
以小组合作的方式让学生自己解决问题,归纳计算方法,合理选择。
(四)展成果
为了巩固新知,又突出本课的教学重难点,我紧接着设计了一个既可以分割又可以添补的题型进行练习,目的告诉学生:组合图形转化成基本图形既要简单、易算又要可算。接着又让学生完成练一练第一题,先让学生自主独立的解决,在一起谈想法。最想说明的问题就是练一练的第四题,学生就会想到用添补法和分割法来解决,但是此问题若用分割法,就求不出这扇门该刷油漆的面积,从而提醒学生有些图形分割后,找不到相关信息,就是失败的,这样做很自然的就突破本节课的教学重点和难点。同时让学生知道要灵活应用所学的知识解决生活中的各种问题。
(五)谈感受
对自己说:我有什么收获?
对同学说:你有什么温馨提示?
对老师说:你还有什么困惑?
五、板书设计
板书是一节课主要内容、重难点的呈现,本节课的板书通过精心设计既能看出组合图形的定义,又能知道有哪些方法可以算出组合图形的面积,自认为这是本节课一个亮点。
六、课堂评价
听说过这样的一句话“金奖、银奖、不如老师的夸奖”。教师对学生适合恰当的评价,也许会影响孩子的一生。本节课我不想吝啬自己的评价,只要表现好的,我真心的给予鼓励,思路、方法很清晰的同学、能想到我下一个环节要说什么的白杰涛、还有今天主动举手的乔婷都是不错的。你是我的小老师、你是我肚子里的小蛔虫、这些评价很随意、但我相信孩子很乐意听。
七、资源开发
这是本节课的一个缺憾,前面的活动占据了太多的时间。特别是对组合图形在实际生活中的应用及作用未能展示与布置。
最后我说一下目标任务的达成情况:
本节课我设计了两个学习目标
(1)知道什么是组合图形的面积。
(2)会用不同的方法计算组合图形的面积。
目标达成情况是这节课最有成效的环节,学生很明确的掌握了课前提出的学习目标,再谈收获时又一次的升华到了本课的重难点。
组合图形的面积课件【篇12】
【教学内容】
义务教育课程标准实验教科书(人教版)小学《数学(第九册)》第92-93页。
【教学目标】
1、在熟悉所学图形面积计算公式的基础上,通过拼一拼、找一找、分一分,并结合生活实际,会把组合图形分解成学过的的基本图形,计算出面积。
2、能运用所学的知识解决生活中的组合图形的实际问题。
3、培养学生动手操作能力,合作交流能力和空间想象能力。
【教学重点】
初步掌握组合图形面积的计算方法。
【教学难点】
正确、灵活地把组合图形转化为所学过的基本图形。
【教学准备】
多媒体课件、学生准备各种图形的卡片。
教学过程
设计说明
(一)拼图游戏,初步感知组合图形。
师:师:课前老师发给了同学们一些图形,请你说说老师发给你的是什么图形,你能说出计算这个图形的面积公式吗?
生:自由汇报。
师:你们同桌商量下,利用这些图形拼成最美丽的图案,并说
在复习所学的基本图形面积计算的基础上,通过学生拼一拼,说一说的活动,使学在头脑中对组合图
教学过程
设计说明
一、
展
示
汇
报
,
建
立
概
念
。
说它们分别是由哪几个简单图形组合而成的。
结合学生拼出图形有针对性的展示几组组合图形,预设下图:
师:四人小组互相看一看、说一说,你们拼的这个图形分别是由哪些图形拼成的?
师总结:像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)
(二)找一找,说一说。
师:其实生活中处处都有组合图形,现在你能说出课本P92页的组合图形是由哪些简单图形组合而成的吗?
同桌互相说一说。
师:老师还搜集了一幅生活情境中的图片,(课件出示主题图)请同学们找一找,在这幅图什么地方有组合图形?
生认真观察后并指名回答。
师:我们认识了组合图形,那么你们还想学习有关组合图形的哪些知识?
学生畅所欲言......
师:这节课我们重点学习组合图形的面积。(板书:面积)
(一)小组活动,自主探索。
师:请同学们观察下刚才拼得图形中哪个组合图形最像我们
形产生感性的认识。为下面学习求组合图形的面积打下基矗
学生在对组合图形的概念初步了解的基础上,引导学生找生活情境中的组合图形,由具体的实物抽象出几何图形,学生不但加深了对组合图形概念的理解,而且对数学知识与生活的紧密联系有了一定的认识。
教学过程
设计说明
二、
在
探
索
过
程
中
,
寻
求
计
算
方
法
。
主题图中房子的侧面墙的图?(课件出示例题)
师:如何求这个组合图形的面积呢?先独立想想再小组交流。
小组讨论:①这个图形有哪些简单图形组合而成的?
②求这个组合图形的面积就是求哪几个图形的面积?
③怎样求?
小组讨论,教师巡视并指导。
小组汇报:
小组1:把组合图形分成一个三角形和一个正方形。(教师在课件中演示分的过程)先分别算出三角形的面积和正方形的面积,再相加。(板书如下)
=S三+S正
小组2:把这个组合图形分成两个完全一样的梯形。(教师在课件中演示分的过程)先算一个梯形的面积,再乘以2。(板书如下)
=S梯2
(二)引导学生总结方法。
师:想想我们刚才是怎么求这个组合图形的面积的?
学生自由回答。
师:你认为哪种方法简单呢?
学生说自己的想法。
对于例题的教学,由于学生有了新课伊始的拼组基础,每个学生对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。
引导学生根据自己小组讨论的结果,总结求组合图形的方法,让每个学生都参与数学活动。
教学过程
设计说明
三、
利
用新
知
,
解
决
生
问
题
。
师总结:在计算组合图形面积时,先把组合图形分解成已学过的图形,然后分别求它们的面积再相加。但是,方法多种多样,同学们要认真观察,多动脑筋,选择自己喜欢而又简单的方法。
师:请同学们打开数学书把例题补充完整。
(三)质疑
师:对于今天所学的新课你有什么疑难地方?计算面积时,还要注意些什么?
学生根据自己的想法回答。
以你想利用今天所学的知识,做个()学生。为主线完成以下练习。
A、助人为乐的学生。现在你能帮工人叔叔算算这个指示路牌的面积吗?(课件出示,即课本P95页6)
B、爱动脑筋的学生。要做一面这样的队旗需要多少布?你能想出几种方法?(课本P94页第2题)
(先独立思考,再小组合作交流,最后师生共同分析,提升较简
单的方法。)
C、学会欣赏的学生。欣赏利用组合图形拼成的图案及其在生活中的应用。(课件出示)
D、有创新精神的学生。利用所学过的简单图形,设计一幅美丽的图案,量出有用数据,并求出它的面积。
鼓励学生用不同的方法进行计算,并引导学生寻找最简的方法,实现方法的最优化。
以你想利用今天所学的知识做个什么样的学生。为主线出现不同层次的练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。
组合图形的面积课件【篇13】
教科书第80页的例题,完成例题下面的“做一做”和练习十九的题目.教学目的使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积.教具准备将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上.教学过程一、复习“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:s=ab“第二个图形呢?”……学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算二、新课1.教学例题.教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的.在实际生活中有时需要计算这些组合图形的面积.例如有些房子侧面墙的形状是这样的,出示小黑板,如:“这个图形的面积我们过去学过吗?”再让学生仔细观察一下.“我们虽然没有学过计算这个图形面积的公式,可是能不能把这个图形分成几个我们已经学过的图形呢?”“怎样分?”指名学生到黑板前画一画.教师标出相关尺寸.“现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?”让学生看教科书第80页上的例题,把书上的算式填完全.教师:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、三角形、平行四边形或是梯形组合而成的.计算这些图形的面积,一般是先把它分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求出整个组合图形的面积.2.做例题下面“做一做”中的题目.先让学生读题.“这块菜地可以看成是由哪些图形组合而成?”让每个学生在练习本上列式计算.做完后,集体核对.三、巩固练习做练习十九中的题目.第3题,教师出示一面少先队的中队旗.“要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?”“你是怎样做的?”可以让几个学生说一说自己的想法.一般来讲,可以有以下几种做法:计算两个梯形面积的和;一个长方形和两个三角形面积的和;一个长方形的面积减去一个三角形的面积.让学生选一种做法,量出所需尺寸,再计算出中队旗的面积.第4题,先让学生读题,再提问:“这个机器零件的横截面图的面积怎样计算?”让几个学生说一说自己的想法.“根据题目中标出的尺寸,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积)让学生在练习本上列式计算,再集体核对.四、作业练习十九的第1、2题.
组合图形的面积课件【篇14】
《课程标准》对于图形计算的要求是注重使学生探索现实世界中有关空间与图形的问题;注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、位置、大小关系及变化,发展学生的空间观念。计算组合图形面积的基础是已学的各种平面图形的特征和它们的面积计算公式。在组合图形中,有的已知条件是隐蔽的,需要学生运用已学的知识,根据图形特点,先把它找出来或推算出来,再计算面积。使学生通过观察、操作、推理等手段,感受生活中空间与图形的问题。本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到割补、转化的方法是求未知平面图形面积的重要策略。当学生真正获得了策略的知识、方法的知识的时候,就能举一反三、触类旁通。
通过这一堂课的教学,我感受最深的是:课堂教学是由学生、教师和教材组成的整体,只有发挥这个整体中各个部分及其相互关系的功能,才能取得最佳课堂教学效果。在教学中不能以教师为中心来死搬硬套教材,而应把学生推到学习活动的中心。本堂课创造性地对教材实施了“由静态的信息变为动态的过程”的再加工重组,较合理地利用了教材资源。在教学中,通过让学生观察几个组合图形,再说说分别是由哪几个基本图形组成的,从而理解什么叫组合图形。在此基础上,给出小明家的客厅,然后让学生想一想、画一画,动一动,把这个组合图形割补成我们学过的几个基本的图形。在这个教学环节中,我给学生留下充足的想象空间,使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。然后再紧紧围绕“最佳求面积的方法”这个思维策略思想,逐步展开有层次的思维训练。尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和成功。教材在这儿已经完全成为学生驾驭学习的'工具和成长的阶梯了,真正是为学生的学习服务,这也许就是教材重组的意义所在吧!
组合图形的面积课件【篇15】
本节课你有哪些收获?
组合图形的面积一节内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,进一步探讨研究图形的面积,也是日常生活中经常需要解决的问题。因此,我设计时主要是让学生自主探索,在具体的情境中领会转化的数学思想,体会并掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法解决实际问题。一是设计了“复习铺垫、激趣引入”的欣赏导入环节,引导学生欣赏组合图形的图案,给学生美的享受,使学生感受到生活中组合图形的存在,并激发学生动手操作的兴趣和欲望。二是设计了“实践操作、探究新知”的新知探究环节在“比一比、说一说”活动中与同学交流,把学生手、口、脑都用起来,体验合作探究的快乐。三是设计了“知识应用、解决问题”的知识巩固环节,学生自己探索出求组合图形面积的方法,处于一种跃跃欲试的状态,巩固了所学的知识。四是设计了“交流小结、深化知识”的知识提升环节,安排学生谈本节课学习收获,让学生在学生的发言和教师的引导中感受转化数学思想的意义,掌握求组合图形面积的方法,体验探究学习的成功。
这节课教学中,我没有教学生怎么样去求组合图形的面积,而是让学生借助学具、课件,自己去动手、去交流、去思考、去归纳,去提炼,从感受到理解,自主解决本节课中的问题,不仅学得了本节课的知识,而且领悟了用转化思想解决数学问题的数学思想,还学得了一些数学学习的方法,为今后更好的学习数学奠定了基础。
圆柱和圆锥课件系列9篇
教案课件是老师工作中的一部分,要是还没写的话就要注意了。 学生反应的积极性可以反映教学的吸引力。教师范文大全精心整理了大量资料呈现出这篇“圆柱和圆锥课件”,本文旨在为您的工作和生活提供实用的建议!
圆柱和圆锥课件(篇1)
教学目标:
1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。
2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。
3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。
教具学具:
1、教师准备大小不同的圆柱和圆锥以及其他几种形体的实物及模型。
2、学生准备圆柱和圆锥实物。
3、教师准备长方形、直角三角形和半圆形、梯形的小旗。
教学过程:
一、创设情境 导入新课
做你来说我来猜的游戏。(就是中央电视台幸运52的记时抢答)随着屏幕上出现一组漂亮的几何图形,一名同学根据已有知识在描述着它的特征,另一名同学在认真的猜着,复习长方体和正方体。然后屏幕上出现圆柱体和圆锥体,由于学生还没学圆柱和圆锥。造成下面的学生无法猜出。此时学生自然会产生想深刻认识圆柱体圆锥的特征这一要求。
(同学们知道的真不少),这节课我们再来进一步了解圆柱和圆锥。
板书课题:圆柱和圆锥的认识。
二、教学新课
㈠认识圆柱、圆锥。
1、请同学们把自己准备的实物中的圆柱形物体和圆锥形物体分开。
2、仔细观察这些物体的形状,你能在纸上把他们画出来吗?谁愿意把
自己的作品展示给大家看!
(贴出学生画的立体图)
教师:比较这几个同学的画法,你有什么想说的吗?
3、教师:刚才同学们通过观察、想象,画出圆柱和圆锥的立体图形。那
么,你还能回想一下,生活中还有哪些物体的形状是圆柱或圆锥吗?
(二)探究圆柱和圆锥的特征。
圆柱的特征.
教师:通过刚才的交流,可以看出大家对圆柱、圆锥已经有了进一步的认识,那么接下来咱们再一起来探讨圆柱和圆锥的特征。
1、请你拿起桌上的圆柱,摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。
(教师在学生交流时,深入到学生中,倾听孩子不同的见解,做到心中有数)。
2、集体交流:(学生交流时语言可能不严密,教师随时正确引导)
谁想把自己的发现告诉大家!学生交流,教师系统整理。
⑴圆柱的上下两个面是面积相等的圆,这两个圆面就叫做底面。
⑵圆柱还有一个曲面,这个曲面叫做侧面。想一想,这个曲面展开会是什么形状?想个法子试一试!
(3)上下两个底面之间的距离叫做圆柱的高。想一想,圆柱的高有多少条?
认识圆锥的特征
教师:刚才同学们用不同的方法,发现了圆柱体的特征,那么大家能不能继续努力,来寻找圆锥体的特征呢?
1、拿出桌上的圆锥形实物,摸一摸、看一看、比一比,你又有什么发现?将自己的发现与同桌交流。
2、集体交流:
⑴圆锥的底面是一个圆形,圆锥的侧面是一个曲面。猜想一下,圆锥的侧面展开又会是什么图形?试试看!
⑵从圆锥的顶点到底面圆心的距离是圆锥的高。想一想圆锥的高有几条?
三、巩固练习
同学们通过努力,找到了圆柱和圆锥的特征。下面做一组练习题看看大家对刚才的知识掌握的怎么样。请打开课本翻到48页,看第一题。
1、完成自主练习第1、2题。(注意倾听学生不同的意见,并让他们说出自己判断的理由。)
2、完成自主练习5。(利用课前准备的各种小旗)。
3、完成自主练习4,6。
四、实践。
1、让学生动手量圆柱、圆锥的高。
圆柱和圆锥课件(篇2)
圆柱与圆锥
单元目标:
1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。
使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
单元重点:
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。
单元难点:
圆柱、圆锥体积的计算公式的推导
1、圆柱
(1)圆柱的认识
教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题.
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。
3、激发学生学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)
(1)半径是1米(2)直径是3厘米
(3)半径是2分米(4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
3.圆柱的高
(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(4)讨论交流:圆柱的高的特点。
①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,测量哪一条最为简便?
老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
┌长方形
板书:沿高剪┤斜着剪:平行四边形
└正方形
强调:我们先研究具有代表性的长方形与圆柱的关系.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化成长方形?
课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.
三、巩固练习
1.做第11页“做一做”的第2题。
2.做第15页练习二的第3题。
教师行间巡视,对有困难的学生及时辅导。
3.做第15页练习二的第4题。
四、布置作业
完成一课三练P15的1、2题。
板书:
┌长方形
沿高剪┤斜着剪:平行四边形
└正方形
圆柱的底面周长→长方形的长
圆柱的高→长方形的宽
圆柱和圆锥课件(篇3)
单元教学要求:
1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2、使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3、使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:
圆柱体积计算公式的推导和应用。
单元教学难点:
灵活运用知识,解决实际问题。
(一)圆柱的认识
教学内容:
教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
教学要求:
1、使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2、使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
教学重点:
认识圆柱的特征,掌握圆柱侧面积的计算方法。
教学难点:
认识圆柱的侧面。
教学过程:
一、复习旧知
1、提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2、引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)
二、教学新课
1、认识圆柱的特征。
请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?
2、认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)
3、巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……
4、教学侧面积计算。
(1)认识侧面的形状。
教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?
(2)侧面积计算方法。
①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。
②得出计算方法。
提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)
(3)教学例1
出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。
三、巩固练习
1、提问:这节课学习了什么内容?
2、做圆柱体。
让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。
3、做“练一练”第3题。
指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。
4、思考:
如果圆柱的底面周长和高相等,侧面展开是什么形状,
四、布置作业
课堂作业:练习一第2题。
家庭作业:练习一第3题。
圆柱和圆锥课件(篇4)
教学目标:
1、使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形.
2、使学生会计算圆锥的侧面积或全面积.
3、通过圆锥的形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;
4、通过圆锥的面积计算,培养学生正确迅速的运算能力;
5、通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能力.
教学重点:
(1)圆锥的形成过程和圆锥的轴、母线、高等概念及其性质;
(2)会进行圆锥侧面展开图的计算,计算圆锥的表面积.
教学难点:
准确进行圆锥有关数据与展开图有关数据的转化.
教学过程:
一、新课引入:
在小学,同学们除了学习圆柱之外还学习了一个几何体——圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算.这些圆锥形物体的表面积是怎样计算出来的?这就是本节课“7.21圆锥的侧面展开图”所要研究的内容.
和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步学习圆锥的有关计算,不仅对培养学生的空间观念有好处,而且能使学生体会到用平面几何知识可以解决立体图形的计算,为学习立体几何打基础.
圆锥的侧面展开图不仅用于圆锥表面积的计算,而且在生产中常用于画图下料上,因此圆锥侧面展开图是本课的重点.
本课首先在小学已具有圆锥直观感知的基础上,用直角三角形旋转运动的观点给出圆锥的一系列概念,然后利用圆锥的模型,把其侧面展开,使学生认识到圆锥的侧面展开图是一个扇形,并能将圆锥的有关元素与展开图扇形的有关元素进行相互间的转化,最后应用圆锥及其侧面展开图之间对应关系进行计算.
二、新课讲解:
[幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]
前面屏幕上展示的物体都是什么几何体?[安排回忆起的学生回答:圆锥]在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?[安排举手的学生回答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高.]
[教师边演示模型,边讲解]:大家观察rt△soa,绕直线so旋转一周得到的图形是什么?[安排中下生回答:圆锥.]大家观察圆锥的底面,它是rt△soa的哪条边旋转而成的?[安排中下生回答:oa]圆锥的侧面是rt△soa的什么边旋转而得的?[安排中下生回答,斜边],因圆锥是rt△soa绕直线so旋转一周得到的,与圆柱相类似,直线so应叫做圆锥的什么?[安排中下生回答:轴.]大家观察圆锥的轴so应具有什么性质?[安排学生稍加讨论,举手发言:圆锥的轴过底面圆的圆心,且与底面圆垂直,轴上连接圆锥顶点与底面圆心的线段就是圆锥的高.]圆锥的侧面是rt△soa的斜边绕直线so旋转一周得到的,同圆柱相类似,斜边sa应叫做圆锥的什么?[安排中下生回答:母线.]给一圆锥,如何找到它的母线?[安排中上生回答:连结圆锥顶点与底面圆任意一点的线段都是母线.]圆锥的母线应具有什么性质?[安排中下生回答:圆锥的母线长都相等.]
[教师边演示模型,边启发提问]:现在我把这圆锥的侧面沿它的一条母线剪开,展在一个平面上,哪位同学发现这个展开图是什么图形?[安排中下生回答:扇形.]请同学们仔细观察:并回答:1.圆锥展示图——扇形的弧长l等于圆锥底面圆的什么?扇形的半径其实是圆锥的什么线段?[安排中下生回答:扇形的弧长是底面圆的周长,即l=2πr,扇形
弧长已知,圆锥母线已知则展开图扇形的半径已知,因此展开图扇形的面积可求,而这个扇形的面积实质就是圆锥的侧面积,因此圆锥的侧面积也就可求.当然展开图扇形的圆心角也可求.
[教师边演示模型,边启发提问]:如图7—183,现在将圆锥沿着它的轴剖开,哪位同学回答,经过轴的剖面是一个什么图形?[安排中下生回答:等腰三角形.]这个等腰三角形的腰与底分别是圆锥的什么?[安排中下生回答:腰是圆锥的母线,底是圆锥的直径.]这个等腰三角形的高也就是圆锥的什么?[安排中下生回答:高].这个经过轴的剖面,我们称之谓“轴截面”,在轴截面里包含了有关圆锥的所有元素:轴、高、母线,底面圆半径.这个等腰三角形的顶角,我们称之谓“锥角”,大家不难
给定旋转一周得圆锥的那个直角三角形,当然给定半径、母线;圆锥侧面展开图——扇形的面积、圆心角可求、因此可以说有关圆锥的计算问题,其实质就是解这个直角三角形的问题.
幻灯展示例题:如图7—184,圆锥形的烟囱帽的底面直径是80cm,母线长50cm,(1)计算这个展开图的圆心角及面积;(2)画出它的展开图.
要计算展开图的面积,哪位同学知道展开图扇形的弧长是圆锥底面圆的什么?[安排中下生回答:周长.]展开图形的半径是圆锥的什么?[安排中下生回答:母线.]
请同学们计算这个展开图的面积.[安排一中等生上黑板完成,其余学生在练习本上做].
解:圆锥底面圆直径80cm,∴底面圆周长=80πcm,又母线长50cm
=XXπ(cm2).
哪位同学到前面计算一下这个扇形的圆心角?[安排一名中下生上前,其余在练习本上做].
同学讨论一下这个扇形怎样画?[安排一中上学生回答:首先画一个
弧的扇形,r就是所要画的展开图.]
幻灯展开例题:图7—185中所示是一圆锥形的零件经过轴的剖面,它的腰长等于圆锥的母线长,底边长等于圆锥底面的直径,按图中标明的尺寸(单位mm),求:
(1)圆锥形零件的母线长l;
(2)锥角(即等腰三角形的顶角)α;
(3)零件的表面积.
图中给出等腰三角形的哪些尺寸?[安排中下生回答:高40,底边长34]哪位同学会计算圆锥形零件的母线长l?[安排一中等生上黑板,其余同学练习本上做][答案:l=43。5mm]锥角α打算如何求?[安排一中等
∠dsb的正切.]请同学们求出α.[安排一中等生上黑板,其余在练习本上做],[答案:α≈46°4′]
零件的表面积等于什么?[安排中下生回答:圆锥的侧面积加上底面圆面积.]计算圆锥侧面积所需条件已具备了吗?计算底面圆面积所需条
请同学们把表面积求出来.[s≈3230mm2]
三、课堂小结:
请同学们回顾一下,本堂课我们学了些什么知识?[可安排中下生相互补充完整:1.圆锥的特征;2.圆锥的形成及有关概念;3.圆锥的展示图;4.圆锥的轴截面.]
四、布置作业
教材p.198;练习1、2;p.200中5、6、7、8.
圆柱和圆锥课件(篇5)
教学内容:
九年义务教育六年制小学数学第十二册第48页整理与复习。
教学目标:
1.复习圆柱、圆锥体积的计算公式,加深学生对立体形体之间内在联系的认识,使学生对所学的知识进一步系统化和概括化。
2.通过实际操作,培养学生的实际能力。
3.使学生在解决实际问题中感受数学与生活的密切联系。
教学重点:体积计算公式的推导过程。
教学难点:运用所学的知识解决生活中的实际问题。
教学理念:
1.生活中处处有数学。
2.学习方式以动手实践,自主学习与合作交流为主。
教学设计:
一创设情景,实验导入。
1.将一只土豆放入装有水的圆柱体的容器里。
提问:你们发现了什么?请解释这一现象。
2.揭示课题。
二整理和复习
1.提问:看了课题后,你们准备复习哪些内容?
2.出示目标:
(1)圆柱、圆锥的体积计算公式是怎样的?
(2)圆柱、圆锥的体积计算公式是怎样推导出来的?
3.板书:
三应用发展
(一)自主练习
1.(1)要求学生根据下面表格进行研究。
(2)教师巡视,抽查投影演示。
(二)综合练习
2.(1)出示判断题:
A.电线杆上下两个底都是圆,所以电线杆是圆柱。()
B.一段圆柱形木材,削成一个最大的圆锥体,削去的部分是原体积的1/3.()
C.圆柱的底面半径扩大2倍,高也同时扩大2倍,圆柱体积就扩大8倍。()
(2)出示填空题:
A.一个直角三角形,两条直角边分别为3厘米和6厘米,以短直角边为轴旋转一周,可以得到一个()体,它的体积是()立方厘米。
B.把一根9分米的圆柱形钢材截成两段后,表面积比原来增加了2.4平方分米,这根圆柱形钢材原来的体积是()立方分米。
C.(课件显示)一个铁皮制成的底面直径为20厘米,高10厘米的圆柱形的礼品盒,捆扎时,底面成十字形,打结处用去绳子18厘米,共需塑料绳()厘米,做一个礼品盒至少要用()铁皮,这个礼品盒大约装()立方厘米的礼品。
(三)实践活动
3.(1)出示课前实验的土豆。怎样求出这个土豆的体积?
(2)向学生提供不同立体形体的容器,并要求学生根据下列表格进行实验。
(3)投影展示实验结果。
(四)总结
提问:通过这节课的整理和复习,你们又有了哪些新的收获?
圆柱和圆锥课件(篇6)
教学目标:
1.通过列举实例整理圆柱、圆锥的特征
2.根据特征总结出圆柱的底面积、侧面积、表面积的计算方法,并能运用之解决生活中的实际问题。
3.进一步发展学生的空间观念,提高解决实际问题的能力。
教学重点:整理特征,总结计算表面积的方法。
教学难点:运用所学的知识解决生活中的实际问题。
教学理念:
1.数学来源于生活,又服务于生活。
2.以学生为主体,自主探究,合作交流。(删掉)
教学过程:
一、课前预习:
1、圆柱、圆锥有哪些特征?
2、有关圆柱、圆锥的内容学过哪些计算公式?回想推导过程。
二、展示与交流
(一)举实例
1.请同学们列举出生活中所见到的和用到的圆柱、圆锥的物体
2.分类板书
3.小结:生活中圆柱、圆锥的物体很多,才使我们的生活丰富多彩。要想设计出圆柱、圆锥的物体,首先要掌握它们的特征。
(概括出圆柱的特征)
(概括出圆锥的特征)
4.请同学们介绍圆柱的特征。
5.整理归类
板书,同时课件显示:
圆柱
两个底面完全相同的两个圆
长底面周长
一个侧面一个曲面,展开是长方形
宽高
有无数条高,都相等
圆锥
一个底面圆
一个侧面一个曲面,展开是扇形
一条高顶点到底面圆心的距离(强调扇形的高)
6.请同学们整理归纳。
7.辨析练习
课件显示辨析练习题:
选择正确的答案填在()里
(1)下面物体的形状,不是圆柱体的是()
①日光灯管②汽油桶③粉笔
(2)把圆柱的侧面展开不能得到()
①长方形②正方形③平行四边形④梯形
(3)圆柱的高有()条,圆锥的高有()条
①1条②4条③无数条
(二)总结出圆柱的底面积、侧面积、表面积的计算方法
1.学生总结,分别回忆总结底面积、侧面积、表面积的计算方法
师:请同学们根据整理出的圆柱的特征,分别总结出底面积、侧面积、表面积的计算方法
2.教师板书(学生自己归纳总结,自己板书,老师放手)
底面积S=蟺
侧面积底面周长脳高
表面积侧面积+底面积脳2
3.基本练习:完成书中14页第1题。
三、反馈与检测
1.课件显示:
(1)一个圆柱形水池,直径是20米,深2米
①这个水池的占地面积是多少?
②在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
(2)一个圆柱形罐头盒,底面直径6厘米,高10厘米
①做这个罐头盒至少要用多少铁皮?
②这个罐头盒上的包装纸的面积是多少平方厘米?
总结:联系实际,根据具体情况考虑求哪个面或哪几个面的面积
2、如右图,瓶中装了多少升酒精?
四、课堂小结:
师:通过练习,你这节课有何收获?
板书设计:圆柱圆锥复习课
V圆柱=2S底+S侧
V圆柱=sh
V圆锥=sh/3
课后反思:
让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,把课堂还给学生;同时还可培养学生自主学习和发展创新的意识,以及提高学生自行设计的能力与自主获取知识的能力。培养学生的问题意识,让学生综合应用本单元的计算公式。培养学生的综合应用能力以及拓展学生的思维能力。
圆柱和圆锥课件(篇7)
教学内容:
教材分四段进行教学。第一段,认识圆柱和圆锥的基本特征;第二段,探索并掌握圆柱侧面积和表面积的计算方法,解决相关的一些简单的实际问题;第三段,探索并掌握圆柱的体积计算公式,并运用此体积公式解决一些简单的实际问题;第四段,探索并掌握圆锥的体积公式,并应用体积公式解决相关的实际问题。最后,对本单元的学习内容进行了整理与练习,沟通知识间的联系,进一步提高综合应用数学知识解决实际问题的能力。
教材分析:
本单元内容是在学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学的。前面的学习内容既为新知识的学习奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。学习了新知,既是学生认识上的一次飞跃,又拓宽了学习空间,知识结构得到了进一步的完善,为今后学习其它的立体图形打好了基础。
教学目标:
1、使学生通过观察、操作等活动认识圆柱和圆锥,知道圆柱和圆锥底面、侧面和高的含义,掌握圆柱和圆锥的基本特征。
2、使学生在具体情境中,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱侧面积和表面积的计算方法,以及圆柱和圆锥的'体积计算公式,能解决与圆柱表面积以及圆柱圆锥体积计算相关的一些简单的实际问题。
3、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考,培养初步的分析、综合、比较、抽象、概括和简单的判断、推理能力。
4、使学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的自信心。
教学重点:使学生在具体情境中,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱侧面积和表面积的计算方法,以及圆柱和圆锥的体积计算公式,能解决与圆柱表面积以及圆柱圆锥体积计算相关的一些简单的实际问题。
教学难点:应用圆柱和圆锥的有关知识,灵活、合理地解决一些实际问题。使学生在活动中进一步积累空间与图形的学习经验,增强空间观念。
课时安排:圆柱和圆锥(11课时)
圆柱和圆锥课件(篇8)
教学目标:
1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。
2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。
教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。
教学过程:
一、开门见山、温固引新。
师:还记得哪些与圆柱圆锥有联系的计算公式?
生:回答相联系的数学公式。
师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?
生:回忆基本知识。
师:到底同学们掌握得怎样呢?老师想通过一个练习来检查同学们公式灵活运用的情况,愿意接受这次挑战吗?
1、抢答练习,请说出你的思考过程。
(1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?
(2)一个圆柱体木块的体积是90立方米,用他削成一个等底等高的圆锥模型,被削掉的部分是多少立方米?
(3)一根圆柱形状的木料底面直径16厘米、高20厘米,沿着它的底面直径和高切成相等的两块,表面积增加多少平方厘米?
学生抢答,并说出自己的思考过程,教师板书。
2、解决数学问题:
(1)出示一圆柱图
师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?
竞赛的形式来解决,竞赛要求:
1、时间3分钟。
2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。
(1)学生独立完成;
(2)同桌互查;
(3)学生汇报;
(半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)
(4)如果出现问题下面改正。
师:同学们数学只有在生活中才能体现它真正的价值,现在出现了一道生活中的数学问题大家愿意帮忙解决吗?
二、解决实际问题:
最佳设计方案。
师:问题是这样的:面粉厂准备要招收仓库保管员,领导们打破了常规中只面试就招工的办法,而采用数学考试的方法,出了一道数学题。同学们有兴趣来应聘吗?
有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)
学生活动,老师巡视。小组成员汇报方案。
三、深化应用。
师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?
四、课堂总结。
师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的心情及感受。
其他同学,通过今天这节课的学习,谁来说一说你有哪些收获?你还存有疑惑或问题吗?
五、补充题详见共享空间
课前思考:
潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。
因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。
圆柱和圆锥课件(篇9)
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
全单元编排五道例题、四个练习,把内容分成四段教学。依次是圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积。在单元结束时,还安排了整理与练习以及实践活动《测量物体的体积》。
1.通过观察、操作,认识圆柱和圆锥。
学生在第一学段已经直观认识了圆柱,通过滚一滚、堆一堆、摸一摸等活动初步感受了圆柱的形状与长方体、正方体有不同之处。例1先教学认识圆柱,再教学认识圆锥,要让学生从整体上体会它们的特征,了解围成圆柱或圆锥的各个面,认识圆柱和圆锥的高,并会测量高。
教学圆柱从识别圆柱形的物体开始,因为学生已有这样的能力。例1的图片里,有些物体是圆柱形的,有些物体的一部分是圆柱形的,也有些物体不是圆柱形的。而且,在圆柱形的物体中,有的高,有的矮,有的厚,有的薄,这就为认识圆柱提供了丰富的具体对象。
认识圆柱的教学要引导学生进行观察、交流,同时教师要给予必要的讲解。让学生仔细观察圆柱,发现圆柱的上、下两个面是相同的圆形,圆柱的侧面是曲面,而且圆柱上下是一样粗的。前两点学生容易注意到,第三点往往会疏忽,在交流的时候,要引起学生的注意。在“练一练”里,教材安排了上、下两个底面大小不同的杯子和木桶,两个底面虽然相同但两底之间粗细不同的腰鼓,还有底面是正六边形的盒子,让学生指出这些物体都不是圆柱形,从而加强对圆柱特征的体验。在学生交流圆柱特征的过程中,教师可相机指出圆柱上、下两个面叫做底面,围成圆柱的曲面叫做侧面,及时出现圆柱的几何图形,在图形上标出圆柱的底面和侧面,这是建立圆柱概念的重要一步。同时指出圆柱两个底面之间的距离叫做高,并在圆柱的几何图形上标出高,既直观地表达高的意义,又能使学生想到测量圆柱高的方法。
例题引导学生把认识圆柱的学习方法迁移到认识圆锥上来,在观察圆锥形物体的基础上抽象出圆锥的几何图形,在交流圆锥特征的过程中认识圆锥的顶点、底面和侧面。圆锥的高是教学的一个难点,因为圆锥的高是圆锥内部的一条线段的长。教材指出从圆锥的顶点到底面圆心的距离是圆锥的高,并在圆锥的几何图形上用虚线画出顶点到底面圆心的线段,帮助学生理解圆锥高的含义。
练习五的设计重视空间观念的培养,都是动手操作的习题。第2题从正面、上面、侧面观察圆柱和圆锥,通过立体图形与平面图形、曲面与平面的相应转化,加强对圆柱、圆锥特征的体验,发展空间观念。第3题把长方形绕它的一条边旋转形成圆柱,把直角三角形绕它的一条直角边旋转形成圆锥,把半圆绕它的直径旋转形成球,让学生在动态中感受这些几何体,使已有的圆柱、圆锥概念得到深化。第5题利用教材附页里的图形做圆柱和圆锥,体会圆柱的侧面是长方形卷成的,圆锥的侧面是扇形卷成的,再次经历平面图形变成立体的过程。同时,做成一个圆柱要两个相同的圆,做成一个圆锥只要一个圆,再次体会圆柱与圆锥的特征。测量做成的圆柱、圆锥的底面直径和高,能巩固高的概念,培养测量能力。计算圆柱、圆锥的底面周长和底面积,复习了圆的知识,为继续教学圆柱的表面积,圆柱和圆锥的体积做好准备。
2.在现实的情境中,探索圆柱表面积的计算方法。
圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积是旧知识。为此,教材先在例2里教学圆柱的侧面积,再在例3里教学圆柱的表面积。
例2计算圆柱形罐头盒侧面的商标纸的面积,这个素材容易引发把商标纸剪开后看看、算算等教学活动。教材指导学生“沿着接缝剪开”,经历展开商标纸的活动,体会圆柱的侧面展开图是一个长方形。探索圆柱侧面积的计算方法,要研究展开后长方形的长、宽与圆柱的关系,让学生在侧面展开成长方形和长方形卷成侧面的活动中,发现长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。从长方形的面积计算公式,推导出圆柱侧面积的计算方法。在探索圆柱侧面积算法的过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。
例3教学圆柱的表面积。教材先让学生思考底面直径2厘米、高2厘米的圆柱侧面沿高展开,得到的长方形长和宽各是多少厘米,两个底面是多大的圆,再在方格纸上画出这个圆柱的展开图。思考的过程能帮助正确地画图,画图则有助于体会表面积的含义。“侧面积与两个底面积的和”既是表面积的概念,也是计算表面积的方法。和长方体、正方体的表面积计算一样,圆柱的表面积计算不列出公式,让学生在理解的基础上掌握算法,避免了记忆公式的负担。由于圆柱的侧面积已在例2教学,计算底面积是旧知识,因此例3组织学生讨论算法并独立计算。
练习六应用圆柱侧面积、表面积的知识解决实际问题。第1、2题的练习重点是把实际问题抽象成数学问题,求队鼓的铝皮面积就是计算圆柱的侧面积,求队鼓的羊皮面积是计算圆柱的两个底面积之和,求做一个铁桶用的铁皮是计算圆柱的表面积。第3题有整理知识的作用,通过计算既能区分圆柱的侧面积、底面积、表面积这三个不同的概念以及不同的算法,又能整理三者的关系,进一步理解表面积的意义和计算方法。第4~9题是灵活应用圆柱侧面积、表面积的知识,要联系实际判断所求问题需不需要计算底面积,要算几个底面积。
3.通过猜想—验证探索圆柱、圆锥的体积公式。
例4教学圆柱的体积计算,分两步进行。第一步认识底面积相等、高也相等(以下简称等底等高)的长方体、正方体和圆柱,第二步推导圆柱的体积公式。安排第一步教学要达到三个目的,一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。这些目的要在思考和讨论例题中第(1)、(2)两个问题时实现。第二步的教学主要设计了三个活动。第一,在形成把圆柱转化成长方体的探索思路后,展示转化活动。学生可以看教材里的插图,也可以通过操作学具,明确转化的方法与过程。第二,让学生明白,把圆柱的底面平均分成16份,切开后拼成的是一个近似于长方体的物体。如果圆柱的底面平均分的份数越多,切开后拼成的物体越接近长方体,渗透极限思想,发展想像能力。第三,让学生思考拼成的长方体与原来圆柱的关系,体会圆柱转化成长方体,体积不变,底面积不变、高也没有变。用“底面积乘高”算得的既是转化成的长方体的体积,也是原来圆柱的体积。这是形成圆柱体积公式的推理活动。
例5教学圆锥的体积公式。教材首先出示等底等高的圆柱和圆锥,让学生直观估计圆锥的体积是圆柱的几分之几。进行这个估计是形成一个猜想,如果等底等高的圆柱和圆锥的体积之间存在确定的倍数关系,就可以利用圆柱的体积计算圆锥的体积。然后验证估计,探索等底等高的圆柱和圆锥的体积关系。例题把验证活动分三步进行。第一步指导学生选择实验器具:等底等高的圆柱形容器和圆锥形容器。左图把圆锥形容器放到圆柱形容器的上面,容易比出底面积是否相等。右图把圆柱形容器和圆锥形容器靠近着放在同一桌面上,容易比出高是否相等。第二步指导倒沙活动:在圆锥形容器里装满沙子,倒入圆柱形容器。从“3次正好倒满”证实圆柱形容器的容积是等底等高的圆锥形容器的3倍,也就是圆锥体积是等底等高的圆柱的1/3。第三步进行推理,把实验的结论用数学式子表示,最终得出圆锥的体积公式。
猜想—验证是发现规律、创新知识的常用策略,教材从教学内容的特点和学生的实际能力出发,把圆柱和圆锥体积公式的教学设计成鼓励猜想—引导验证的过程,有利于培养学生的学习能力和科学态度。
练习七和练习八里应用圆柱、圆锥的体积计算知识解决实际问题。计算圆柱的表面积,计算圆柱和圆锥的体积都要进行乘法计算。从过去的教学中我们发现,这一单元的计算学生经常出现错误。对此,教学应采取三点措施:一是营造良好的计算氛围,每次作业的题量不宜过多,给学生的时间要充分,在心理负担较轻的状态下能减少计算错误。保持安静,在无干扰的环境中专心计算也能减少错误。二是较繁的计算使用计算器,通常情况下,三位数乘一位数、三位数乘两位数可以采用笔算,位数更多的数的乘法计算可以用计算器。如果让学生进行过繁的四则计算,不仅容易出错,而且消耗了大量的精力和时间,没有必要。三是指导简便计算,在半径(或直径)的长度数是5、15、25,高的长度数是2、4、8时,经常可以应用乘法运算律使计算简便。
4.测量形状不规则的物体的体积。
长方体、正方体、圆柱和圆锥的体积都有计算公式,生活中还有大量不是这些形状的物体,它们的体积怎样测量呢?实践活动《测量物体的体积》引导学生研究这个问题。
把土豆或铁块放入盛水的圆柱形容器里进行测量是一种方法,这种方法把不规则形体转化成规则形体,利用计算圆柱体积的方法解决了问题。通过质量除以比重(质量和体积的比值)求体积也是一种方法,这种方法不依赖体积计算公式。教材没有把两种方法直接告诉学生,而是安排操作活动,让学生在活动过程中想到和理解这些方法。对于第一种方法,要依次测量圆柱容器的底面积、放入土豆前的水面高度和放入土豆后的水面高度,直观体会容器中水面上升所形成的那段圆柱的体积就是土豆的体积,感悟“等积变形”的转化思想。利用这种方法测量土豆的体积以后,还要再测量两个铁块的体积,为第二种测量方法积累数据资料。对于第二种方法,两个铁块的体积已经测得,再用天平称出它们的质量就能填表。通过计算发现一个铁块的质量与体积的比值和另一个铁块的质量与体积的比值相等。如果测量和计算都正确,这个比值应该约是7.8。要让学生理解这个比值的具体意思是“1立方厘米铁块大约重7.8克”,这样,第三个铁块的体积就可以称出质量后用除法计算了。
圆柱的课件(通用6篇)
老师工作中的一部分是写教案课件,所以老师写教案可不能随便对待。若老师能写出高水平的教案课件,相信课堂教学氛围会非常浓郁,如何写出一篇好的教案?为了解答您的疑惑教师范文大全编辑为您准备了一篇权威的《圆柱的课件》,希望本页面内容能帮助到您!
圆柱的课件 篇1
一、说教材
1、教学内容
本节课是义务教育六年制小学数学课本第十二册第一单元第一小节第四课时。内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2、本节课在教材中所处的地位和作用
《圆柱和圆锥》这一单元是在学习了长方体和立方体的基础上进入了小学里学习立体图形的最后阶段,这个单元知识的综合性和对学生的要求都比较高,化归和类比是常用的思想方法要进行总结,长方形正方形以及圆的基础知识都是本单元的认知基础。.学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
教材的编排特别注重让学生积极主动地实践研究,让学生在合作探究的过程中自主发现规律,先用想一想的思考,回忆圆面积公式推导过程,激活原先“化曲为直”的极限思想和“转化”的思想方法记忆储存,接着用较多的篇幅讲解切拼的过程,便于学生理解和感受转化的过程和极限思想,然后推导圆柱体积的计算公式,并抽象到字母公式。例题直接利用公式解决问题,试一试和练一练对方法进行了巩固,并有所变化,不同条件下求圆柱体积,完善认知结构。
二、说教学目标
根据新课程标准中对空间和图形的目标要求和对教材文本的分析理解,以及我对六年级学生的认知发展水品的认识,我从“知识能力”“过程方法”“情感态度”三个维度制订以下教学目标:
1、经历并理解圆柱体积公式的推导过程,掌握圆柱的体积公式并能应用公式正确地解决实际问题。
2、通过观察、猜测、操作、分析、比较、综合,建立初步的空间观念,并体会知识间相互“转化”的思想方法。
3、让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感。
圆柱的体积公式推导过程可以培养学生多方面的能力,这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,因此我把圆柱的体积公式推导过程作为本节课的教学重点;而小学生的思维是以具体形象思维为主,逐步向抽象逻辑思维过渡,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,而本节课需要把圆柱体切割转化成长方体,我们却找不到某种材料做的圆柱体适合切割拼组,学生理解起来可能会有点困难,所以我认为圆柱的体积公式推导过程也是本节课的教学热点和分化点。
本节课采用的教具和学具为:圆柱体切割组合学具,课件,各小组自备所需演示用具。
三、说教法
本课教学时最大特点是从学生已有的知识水平和认识规律出发,运用迁移,类比猜想、实践演示、自主推导,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以一几个特点:
1、直观演示,操作发现
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生有丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2、巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3、运用迁移,深化提高
运用知识的迁移,培养学生利用旧知学习新能力,从而使学生主动学习,掌握知识,形成技能。
四、说学法
课堂教学中,不是光靠老师单纯地传授知识,而是主要靠在老师的指引下,让学生自已学,任何人都不能代替学生学习。所以要让教法为学法服务,在学法中体现教法。数学教学是数学活动的教学,我们倡导让学生在观察、比较、讨论、研究等一系列活动中协调多种感官参与活动,在活动中体验,在思考中创新,在小组合作学习中相互启发,取长补短,加深理解,培养学生的合作精神,使学生的学习能力得到发展。 /article/
本节课的教学,让学生掌握一些基本的学习方法。
1、学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2、学会转化利用旧知成新知,解决新问题的能力。
3、学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
五、说教学程序
对本节课的教学,我设计了以下几个环节。
(一)复习讨论,为引入新知作准备
1、什么叫做体积?怎样计算长方体的体积?
板书:长方体的体积=底面积x高
2、学习计算圆的面积时,是怎样把圆变换成已学过的图形、再计算面积的?
当学生回答完毕后,用课件再现圆面积的“化曲为直”转换成近似长方形,然后进行推导的过程,让学生领悟到 “把新的知识转换成旧的知识”这样的方法是很重要的方法。
3、出示圆柱,出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(提示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。
教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正成为学习的主人,使教学变得更加明确具体,可操作、可检测。同时也能激起全体学生参与达标意识,学生的主体地位就充分地显示出来了。
(二)操作演示,探索内化新知
1、设疑:要判断圆柱体积大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?
2、演示操作,揭示新知。
引导学生观察,沿着圆柱底面直径把圆柱切开,可以得到大小相同的16块。演示给学生看以后,再让学生动手操作,启发学生说出转化成我们熟悉的形体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的体积与长方体的体积有什么关系?圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?从而推导出圆柱体体积计算的公式,最后让学生说一说圆柱体体积计算公式的推导过程。并板书:
圆柱的体积=底面积×高,引导学生用字母表示出来,最后让学生看书质疑。
这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点、化解难点。
关于难点的突破,我主要从以下几个方面着手:
(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获取新知。
(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3、运用。
(1)、做一做:集体订正后,教师提问,这道题已知圆柱的底面积和高,求它的体积,如果不知道圆柱的底面积,那还必须知道什么条件才能求出它的体积?该怎样求?单位不统一怎么办?
(2)出示例6、先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自已来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。
在掌握了圆柱体积计算的方法之后,安排例6进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。
(四)巩固练习,检验目标
2、完成练习三第1、2题。
已知底面的周长(或半径或直径或底面积)和高,怎样求体积,通过不同条件求圆柱体积的练习,巩固新知,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。
3、变式练习:已知圆柱的体积、底面积、求圆柱的高。
这道题的安排是对所学的内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。
4、动手实践:让学生测量自带的圆柱体。
教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?
这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时教学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。
(五)总结全课,深化教学目标
结合板书,引导学生说出本课所学内容,我是这样设计的:这节课我们是怎么学会圆柱的体积计算方法的?然后理一理化归思想的运用过程:平行四边形转化成长方形,三角形、梯形转化成平行四边形——圆转化成长方形——圆柱转化成长方体,使学生很好地理解化归思想在数学中的运用。
然后归纳,通过本节课的学习,我们懂得了新知识的得来通过已学知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。
圆柱的课件 篇2
教学过程
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(学生互相讨论后汇报,教师设疑)
二、自主探究、
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh
三、巩固发展
1、课件出示例4,学生独立完成。
指名说说这样列式的依据是什么。
2、巩固反馈
3、完成第9页的“试一试”和练一练”中的两道题。
(“练一练”只列式,不计算)
集体订正,说一说圆柱体的体积还可以怎样算?
4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?
5、拓展练习
(1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)
(2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?
四、全课小结:
谈谈这节课你有哪些收获。
教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积
教学目标:
1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积计算公式的推导过程
圆柱的课件 篇3
我说的内容是:九年义务教育六年制小学教科书数学第十二册第三单元中的圆柱体的体积。
因为这是首次学习含有曲面的几何体的体积,不论是思考方法,还是对立体图形的认识上,都更加深入了一步,难度也加大了。所以本节的重点是:对圆柱体体积公式的理解。难点是:圆柱体体积公式的推导过程。
教学目标是:使学生知道圆柱体的体积公式推导过程;理解并掌握圆柱体的体积公式及相关的推论。并能正确运用公式解决一些简单的实际问题。通过对圆柱体体积公式的教学,加深学生对立体图形的认识,培养学生的观察能力,抽象和概括能力及综合运用能力,发展学生的空间观念,同时渗透一些关于极限的辨证唯物主义思想。
学习本节课应具备的旧知识是:1、长方体的体积公式及推导过程。2、圆面积公式的推导过程。
在教学中就是要运用圆面积公式的推导方法,将圆柱体转化为长方体,从而由长方体体积公式推导出圆柱体体积公式。因此根据本节课的特点我采用的教学方法是:
1、有目的的运用启发引导的方法组织教学。
2、采用演示实验的方法,让学生观察比较,从而发现规律,找出体积公式。
3、适当采用“尝试——失败——总结——再尝试——再总结”的方法,引导学生找到推导公式的合理方法。
4、利用多变的练习,加深学生对公式的理解,找到公式的根本内涵。但是要注意循序渐进,由易到难,由简到繁。
在学法指导上,主要是让学生学会观察、比较,归纳概括出体积公式。通过直观实验,吸引学生主动、认真观察图形的拼接过程,积极回答观察结果,主动参与到教学中去,并且在教师的启发下,进行归纳概括。培养学生的自学能力及概括能力。
本节课所需教具为:圆柱体割拼组合教具及事先写好习题的小黑板。
教学一开始,首先复习。目的是:一是通过复习旧知识,为新课作好准备;二是引出新课。
一开始先复习体积的概念及长方体的体积公式。这个练习可采用提问的方式,但是这些知识已学过较长时间,所以适当的时侯教师要加以启发提示。
接下来,教师引导学生回忆长方体体积公式的推导过程,及圆面积公式的推导方法,为新课做准备。
然后,提问:圆柱体的特点是什么?圆柱体的侧面积、表面积公式是什么?由于这些内容刚刚学过,学生很容易回答,可以提问基础较差的学生,并加以鼓励,使他们树立信心,提高兴趣,以便学习新课。
通过以上复习,巩固了旧知识,为学习新知识做好了铺垫,同时调动了全体学生的学习兴趣。利用这一有利时机,教师及时引导、设疑:
圆柱体也是立体图形,也会占有一定的空间,大家一定很想知到道怎样求出这个空间的大小,好,今天我们就来学习求它的方法。——板书课题:圆柱体的体积
这样就顺利转入了新课的学习。
这时教师出示圆柱体模型。
首先引导学生用长方体公式的推导方法尝试。提问:“我们学过的长方体体积是用单位体积的小正方体块来量出的,现在我们也用同样的方法来量一下,现在这个圆柱体的体积是多少?”
学生反复尝试后回答:“无法量出。”
这时教师再问:“什么地方量不出来?为什么?”
学生回答:“圆柱体的侧面是曲面,无法量出。”
在学生尝试失败的基础上,促使他们改变思路,去寻找新的方法。这样充分利用学生的好奇心理,调动学生情绪,转入圆柱体体积公式的教学。
教师启发提问:“圆柱体上下两面是什么形?圆面积公式是怎么得到的?”通过学生的回答,引出新思路:用割拼的方法将它转化为其他的图形。
得到了新的方法以后,教师进行演示实验1:先将圆柱沿底面平分割成8等份,对拼成一个近似长方体。学生观察割拼过程。
教师提出问题:“这个圆柱体拼成了一个近似的什么立体图形?为什么说它是近似的?它的哪一部分不是长方体的组成部分?”
学生回答后,接着再进行演示实验2:将圆柱体沿底面平分16等份,再拼成近似的长方体。
再问:“这次是不是更象长方体了?”
这时教师启发学生想象;“把它平分成很多很多等份,这样拼成的图形将会怎样?”
教师总结:“将会无限趋近于长方体,并且最终会得到一个长方体。”
然后及时引导学生观察这个长方体,并把它与圆柱体进行比较,提问:“这个长方体的哪部分与圆柱体相同?”因为模型各面的颜色不同,所以学生会很快回答出来:“底面积与高。”
“那么这个长方体体积与圆柱体体积有什么关系?”学生回答:“相同。”
“长方体的体积是怎样计算的?”学生回答:“底面积乘以高。”
“那么圆柱体是否也可以这样算呢?”学生回答:“是的。”
这时教师根据学生的回答,及时板书这两个公式。
通过以上的教学,引导学生归纳概括出了圆柱体的体积公式。这样先通过复习做知识的铺垫,然后由学生进行尝试,充分运用思维的迁移规律,用圆面积公式的推导方法搭起了桥梁,顺利地实现了本节课的第一个目标。并且在推导过程中渗透了关于极限的辨证唯物主义思想。
学生通过尝试得到了成功的喜悦,思想高度兴奋。教师及时利用这一时机,将公式向深处拓展。设问:“如果不知道圆柱体的底面积和高,怎么求体积?”学生考虑,教师出示尝试题:
1、已知圆柱体的底面半径和高,怎样求体积?
2、已知圆柱体的底面直径和高,怎样求体积?
3、已知圆柱体的底面周长和高,怎样求体积?
4、已知圆柱体的侧面积和高,怎样求体积?
学生分组讨论。讨论完毕后,每组选一名代表回答,其他同学做适当补充。学生回答完毕后,教师及时进行总结,并且板书有关公式的推论。
通过以上练习,避免了学生只注意了公式的表面特征,而忽略了公式的本质特征。使学生明确,不论条件怎样变化,最终都要归到底面积乘以高上来。从而使学生理解了本公式的内涵,为灵活运用公式做好了知识的准备。
最后要求学生用字母表示公式。由于此方法学生早已熟悉,所以可全班集体回答。
学生理解和掌握了公式后,教师及时出示习题,指导学生将公式应用于实际:
(出示准备好的小黑板)
例4、一根圆柱形钢材,底面面积是50平方厘米,高是2·1米。它的体积是多少立方厘米?
例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米。这个水桶的容积是多少立方分米?
提问:“这两道题是否要进行单位换算?各应选用什么公式?”学生回答完毕后,一起独立完成。教师巡视检查,发现问题,及时补救。
最后,对本节课进行小结。提出应用公式时应注意的问题:1、仔细审题,弄清条件的变化。2、单位名称要统一。
布置课后作业。
本节课到此结束。
圆柱的课件 篇4
教学目标
圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具
推导圆柱体积公式的圆柱教具一套。
教学过程
【复习导入】
1.口头回答。
(1)什么叫体积?怎样求长方体的体积?
(2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。
【新课讲授】
1.教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?
学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?
学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
2.教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是1250px2,高是2.1m。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。
(3)出示下面几种解答方案,让学生判断哪个是正确的。
①50×2.1=105(cm3)答:它的体积是2625px3。
②2.1m=5250px 50×210=10500(cm3)
答:它的体积是262500px3。
③1250px2=0.5m2 0.5×2.1=1.05(m3)
答:它的体积是1.05m3。
④1250px2=0.005m2
0.005×2.1=0.0105(m3)
答:它的体积是0.0105m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。
【课堂作业】
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
【课堂小结】
通过这节课的学习,你有什么收获?你有什么感受?
【课后作业】
完成练习册中本课时的练习。
课后小结
1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。
2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。
3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。
课后习题
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
圆柱的课件 篇5
一、说教材
1.教学内容
本节课是苏教国标教材六年小学数学(下册)第二单元25页的例4教学。内容包括圆柱体的体积计算公式的推导和运用公式解决一些简单的实际问题。
2.本节课在教材中所处的地位和作用
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,等积转化数学思想的培养以及观察比较新旧图形的联系,做出合请推理,从而推导圆柱体积公式的过程是本节课的难点。
4.教学目标
(1)让学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。
(2)使学生进一步体会“转化”方法的价值,培养应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。
(3)通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
二、说教法
从学生已有的知识水平和认知规律出发,经过观察、比较、猜想、思考、、验证等方法,自主探究,合情推理。
三、说教学过程
本节课的教学过程分为六个教学环节,主要包括:
1、复习引导,揭示课题。
明确已有的圆柱的特征、体积概念的认识、平面图形公式的研究方法等知识水平,建立新的学习和探究欲望。
2、观察比较,建立猜想。
在观察长方体、正方体、圆柱体等底等高时,猜想他们的体积是否都想等?猜想后强调“可能“相等,因为是猜想的。圆柱的体积是不是等于底面积乘高,我们还没有研究出公式来,所以这里只能是一种没有经过验证的猜想,只能用“可能”相等,没有经过验证的观点,不可以用“一定“两个字,让学生体会数学的严谨性。
3、激励思考,提出验证的方法。
有没有一个可以借鉴的好的研究方法,来证实等底等高的圆柱体与长方体、正方的体积有可能相等呢?或者说圆柱的体积也有可能等于底面积乘高呢?学生可以通过回忆平面图形面积计算公式时的推导方法,获取一些思考。
4、自主探究,合情推理。
在学生回忆的基础上,可以提出使用“切割—转化—观察—比较—分析—推理”等方法,四人一组,来讨论下面的问题:
小组讨论纲要:
(1)用 方法,把圆柱体转化成了 体。
(2)在这个转化的过程中, 变了, 没有变。
(3)通过观察比较,你发现了什么?
(4) 怎么进行合情推理?
(5)怎样用简捷的形式表示你推导出来的公式呢?
把课堂还给学生,教师的角色是组织和引导。
5、学以致用,解决实际问题。
应用所推导出来的圆柱体积计算公式,解决一些生活中的简单实际问题,理解生活中处处有数学,体会数学的应用价值和广泛领域。
6、全课小结,提升认识水平。
在研究圆柱体积公式的时候,我们运用了哪些方法?这里的切割是指切割旧图形,还是切割要研究的新图形?转化是指转化成已学过的旧图形,还是转化成没有学过的新图形?观察比较什么?怎样分析推理?这里蕴藏着什么样的数学思想?最后问大家这样一个问题,发明电灯重要,还是使用电灯重要,哪个更能造福人类,造福子孙万代?科学家、发明家就是这样诞生的,他们善于猜想、善于发现,敢于探究。如果我们将来想成为科学家,我们必须具备这样的品质。通过这节课的学习,你敢不敢大胆去尝试、去探究圆锥体的体积计算公式,或是更广泛的研究上下底面都是相等的三角形、上下底面都是相等的正多边形等一些直棱柱的体积计算方法呢?在研究中,你会发现,数学很美,它是思维的体操,有兴趣的同学,可以把你研究的成果告诉老师一起分享。
四、说教学反思
在本节课的教学中,我主要让学生自己动手实践、自主探索与合作交流,在实践中体验,在实践中提升,从而获得知识。讲课时,我再利用教具学具和课件双重演示,让学生通过眼看、脑想、讨论等一系列活动后,用自己的语言说出圆柱体体积计算公式的推导过程。我的第一层次是复习。通过复习来导入新课。第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析的和归纳能力。第三层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。
这节课,在设计上充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于乐中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。
当然,由于经验不足,在教学过程中还有很多环节没有处理好。恳请大家提出宝贵的意见和建议。
圆柱的课件 篇6
教学内容:数学第十二册《圆柱的体积》
教材分析:这部分内容包括圆柱体积的推导公式,在教学时,先回忆前面学习过的圆面积的转化,由此推想圆柱的体积能否转化成已经学习过的立体图形,求出它的体积。这部分内容重点是让学生理解圆柱体积公式的推导过程,通过教具演示和学生动手操作弄懂可以将圆柱转化成以前学习过的长方体(近似),再根据长方体的体积等于底面积乘得到圆柱的体积也应该是它的底面积乘高。
教学目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。
教学重点:掌握圆柱的体积计算方法。理解圆柱体积公式的推导过程。
教学难点:掌握圆柱的体积计算方法。理解圆柱体积公式的推导过程。
教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。
教学设想:利用教具演示将圆柱进行切割拼凑的方法,让学生理解将圆柱转化成长方体,再依据长方体的体积计算方法推导出圆柱体积的计算方法。通过例题教学让学生进一步掌握圆柱体积的计算公式。
教学过程:
一、复习
1、圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。)
2、长方体的体积怎样计算?
学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?
二、导入新课
教师:请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?
先让学生回忆,同桌的相互说说。
然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的
计算公式导出求圆面积的计算公式。
教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?
让学生相互讨论,思考应怎样进行转化。
指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开,教师应该给予表扬。
教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
板书课题:圆柱的体积
三、新课
1、圆柱体积计算公式的推导。
教师出示一个圆柱,提问:这是不是一个圆柱?(是。)
教师用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:
“大家看,这是不是一圆?”(是。)
“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。
教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?
指名学生回答后,老师进行操作演示,先只把底面部分拿给学生看,。大家看,圆柱的底面被拼成了什么图形?”
学生:长方形。
教师:大家再看看整个圆柱,它又被拼成了什么形状?
(有点接近长方体:)
然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
教师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。
教师:“而长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。
教师:请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
板书:圆柱的体积=底面积×高
教师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式;V=SH
2、教学例4。
出示例4。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
(2)出示下面几种解答方案,让学生判断哪个是正确的?
①V=SH=50×2.1=105
答:它的体积是105立方厘米。
②2.1米;210厘米
V=SH=50×210=10500
答:它的体积是10500立方厘米。
③50平方厘米=0,5平方米
V=SH=0.5×2,1=1.05
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=SH=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、②种解答要说说错在什么地方。
三、练习:
1、做“做一做”的第1题。
让学生独立做在练习本上,做完后集体订正。
2、完成练习八的1、2题
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。
圆柱的认识课件范本
作为学生,阅读大量的范文是必不可少的,优秀的范文能让我们感到受益匪浅,通过阅读范文我们可以提高语言组织能力。多阅读范文还能帮助我们加深阅读写作的认识,那么,优秀范文的优秀模板有哪些呢?教师范文网(jk251.com)小编特地为大家精心收集和整理了“圆柱的认识课件范本”,但愿对您的学习工作带来帮助。
圆柱的认识课件 篇1
活动目标:
1、认识圆柱体,了解圆柱体的基本特征,会说出、找出并制作出与圆柱体相似的物体。
2、感知圆柱体与球体的不同特征。
活动准备:
1、提供圆柱体实物若干,如易拉罐、积木、塑料瓶等,纸、笔
2、每人10枚一样大小的硬币、长方形纸张、双面胶等
3、提供圆柱体实物若干,例:易拉罐、积木、塑料、球、纸张等。
4、准备学习包《科学·神奇的几何体》。
活动过程:
一、引导幼儿观察,激发幼儿参与活动的兴趣:
观察实物的.特征。注意物体相对的上、下部。
二、幼儿动手操作,自由探索。
[1]小组探索:提供圆柱体事物,让幼儿自由探索。
观察的过程中发现了什么?圆柱体和球有什么不同?把这两种实物立放在桌上和侧放在桌上会出现什么不同的现象?
[2]想办法把易拉罐上、下两面画下来,说说看你自己发现了什么?
[3]想想用什么方法才能把长方型的纸张变成圆柱体?
[4]想想怎样把橡皮泥变成球体或是圆柱体?
1、组织幼儿进行讨论:和小朋友们一起说说,自己在日常生活当中还见过什么像球体或是圆柱体的物品?
2、教师指导幼儿完成学习包《科学·神奇的几何体》
3、活动延伸:
找找家中什么东西是球体的?什么东西是圆柱体的?并且把它记录下来,带到班级来与同伴交流。
圆柱的认识课件 篇2
(1)观察、联想:
师:我们认识了长方体(师拿出一个用红布蒙着的圆柱笔筒,揭开布)这是长方体吗?它是什么?(板书:圆柱),今天,老师准备把它作为一件礼物,送给大家。(教师再出示几个圆柱模型)
(2)联系、想象:学生议论,说一说,在生活中,哪些物体的形状也是圆柱形的?我们教室里哪些东西是圆柱形的?
(3)想一想、画一画。
①.让学生闭起眼睛,想象圆柱的形状是怎样?
②.把想到的圆柱形状用简图画在练习本上;
③教师电脑显示:水杯、水壶、铁罐实物图并逐步抽象为立体图。(贴出立体图)
1、认识圆柱的特征及各部分名称。
刚才,同学们举出了好多例子,这说明在生活和生产中离不开圆柱形的物体。我们应该进一步地认识它!(板书:认识)
(1)请学生说一说,你想认识圆柱的什么?(生:我想知道圆柱由哪几部分组成,圆柱有什么特征……)
(2)操作感知——认识各部分名称。
②初步发现:(学生回答)圆柱体有三个面,其中有两个面是平面,是完全相同的两个圆,叫做圆柱的底面;还有一个面是曲面,叫做圆柱的侧面。(师在立体图上标明名称,学生闭起眼睛摸手中的圆柱,并说出它的各部分名称)
③猜一猜,做一做。
哪两个面是一样的,你是怎样知道的?引导学生观察、议论,并说出自己的做法:a.可以剪出来比较;b.量半径、量直径;c.量周长;d.把模型的底面固定在纸上沿着它的周边在纸上画出一个圆,再把模型倒换过来比较。
(1)指着图中高、低两个圆柱问:哪个圆柱比较高,哪个比较低,为什么?引导学生发现:圆柱的高低与圆柱两个底面之间的距离有关。
(2)怎样测量圆柱的高。
①引导学生观察圆柱的纵切模型,(师出示圆柱纵切模型图)感知两底面圆心的距离叫做圆柱的高。
②媒体演示:圆柱的高可以在圆柱的侧面上来表示。(师在立体图上表示出高,学生在自己的圆柱上画高。)
(3)学生讨论发现:①圆柱可以有无数个纵切面,每个纵切面都是长方形或正方形,长方形对边平行,说明(圆柱纵切面可以有无数条高,长度都相等。②侧面上可以作无数条高;③在两底面之间只要量出垂直于底面的线段的长度都是圆柱体的高)(师板书:有无数条高,长度都相等)
(1)师:圆柱的两个底面都与侧面相交,观察一下,两个底面与侧面相交的线是底面的什么?(底面周长)
(2)侧面是一个曲面,如果沿着它的一条高剪开,再展开,你能想象出侧面会变成一个什么图形吗?(长方形或者正方形)(学生动手操作)
(3)讨论这个长方形的长、宽与圆柱有什么关系?
学生讨论发现:长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。
(4)画一画、议一议:展开图可以是一个其它图形吗?如果不沿着高展开,侧面剪开可能是什么形状?
圆柱体有什么特征、侧面呢?这些知识你是怎么学会的?
3、用硬纸做一个底面半径为2厘米,高5厘米的圆柱。
通过本节课的学习,你有什么收获?
教学内容:人教版新课标六年级下册第二单元第10页至12页、做一做、练习二的第1-4题。
教学目标:
1、出示一个圆柱体,学生能列举出圆柱的各部分名称。
2、学生能借助日常生活中圆柱体实物,说出圆柱的特征,并用圆柱体的特征来判断哪些物体是圆柱体。
3、学生能看懂圆柱的平面图,能归纳出圆柱体的侧面展开图与圆柱之间的关系。
4、学生能运用圆柱的特征动手试做一个圆柱。
教学准备:
教具准备:圆柱体的实物、模型、圆柱的纵切模型和相应电脑课件。
学具准备:自带贴有标签纸的圆柱形物体或按照教科书第153页的图样,用硬纸做一个圆柱;剪刀、线、尺
圆柱的认识课件 篇3
1、认识圆柱,掌握圆柱的基本特征,知道圆柱的各部分名称。
2、理解圆柱的侧面展开图与圆柱各部分的关系。
师:同学们,今天我们来学习“圆柱的认识”(板书课题)。
1、认识圆柱,掌握圆柱的基本特征,知道圆柱的各部分名称。
2、理解圆柱的侧面展开图与圆柱各部分的关系。
认真看课本第10页到第12页的例1和例2,看图看文字,,重点看圆柱的侧面展开图,想:
1、圆柱有几部分组成,各部分名称是什么?
2、圆柱的侧面展开图是什么形状,与圆柱有什么关系?
5分钟后,比谁能做对检测题!
师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。
学生认真看书,教师巡视,督促人人都在认真地看书。
第11、12页的“做一做”
师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)
1、看图认为判断正确的请举手。
2、观察自己做的圆柱,侧面展开图是什么形状?它的长和宽相当与圆柱的什么?
[长方形的长等于圆柱底面的周长,宽等于圆柱的高]
3、评正确率、板书,并让学生同桌对改。
今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有练习题,敢不敢来试一试?(出示)
圆柱有个底面,是完全相同的(),有一个(),展开后是个()。
下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。
1、圆柱有上下两个底面(是圆),有一个侧面(长方形)。
2、长方形的长等于圆柱底面的周长,宽等于圆柱的高。
圆柱的认识课件 篇4
教学内容:
教科书第38—39页的内容,完成第39页上的“做一做”和练习十的第1题。
教学目的:
使学生认识圆柱的特征,能看懂圆柱的平面图;认识圆柱侧面的展开图。
教具准备:
教师准备长方体形和正方体形的物体各一个,及多个圆柱形的物体(如罐头盒、茶叶筒、药盒、药瓶、纸盒等);让学生也收集几个圆柱形的盒子,同时让学生将教科书第153页上的图沿边剪下来。
1.已知圆的半径或直径,怎样计算圆的周长?
2.求下面各圆的周长(口算)。
教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确。
教师手中先后拿一个长方体形的物体和正方体形的物体,提问:我手里拿的物体是什么形状的?他们有什么特征?
由此引导学生复习长方体和正方体的一些特征。
教师出示几个圆柱形的物体,“大家注意了,你们看看这些物体跟长方体、正方体的形状一样吗?”
教师:请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它们与长方体有什么不一样?
1.圆柱的认识。
让学生拿着圆柱形的物体观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到长方体、正方体都是由平面围成的立体图形;而圆柱则有一个曲面,有两个面是圆,从上到下一样粗细,等等。
教师指出:像这样的物体就叫做圆校体,简称圆柱。这节课我们就来学习这种新的立体图形。
教师:大家刚才认识了圆柱形的物体,我们把这些物体画在投影片上。出示有圆柱形物体的投影片。
教师:现在我们沿着这些圆柱形物体的轮廓画线,于是就可以得到这样的图形。随后教师抽拉投影片,演示得到圆柱形物体的轮廓线。
教师:请大家再观察一下,这些圆柱的上、下两个面有什么特点?
引导学生发现:圆柱的上、下两个面都是平面,并且它们是完全相同的两个圆。
然后在图上标出底面以及两个圆的圆心O。
同时还要指出:我们所学的圆柱是直圆柱的简称,即两个底面之间从上到下一样粗细,高垂直于底面。
接着让学生用手模一模圆柱周围的面,使学生发现圆柱有一个曲面,由此指出:圆柱的这个曲面叫做侧面。(在图上标出侧面。)
让学生看圆柱形物体,指出:圆柱的两个底面之间的距离叫做高。然后在图上标出高。
然后让学生拿出自己的学具,同桌的两名同学相互指出圆柱的两个底面、侧面和高。
小结:圆柱的特征(可以启发学生总结),强调底面和高的特点。
(1)做第39页“做一做”的第l题。
要求学生说出日常生活中哪些物体是圆柱形的,如钢管、汽油桶、炉子姻简、截面是圆形的铅笔等。
(2)出示(投影)一组立体图形,辨析哪些是圆柱,哪些不是圆柱?为什么?
3.教学圆柱侧面的展开图。
出示一个带完整商标的罐头盒。
“它的侧面是哪个面?”
让前排的学生指示给全班同学看,使学生明白,这个圆柱的侧面实际上可以用罐头盒上的商标纸来表示。
然后沿着罐头盒的一条高剪开,再将商标纸打开,平展在黑板上。
教师沿着商标纸的边在黑板上画出长方形,再将这张长方形的纸包在圆柱的侧面上,提问:请大家仔细观察一下,展开后得到的长方形的长与圆柱底面的周长有什么关系?长方形的宽与圆柱底面的高有什么关系?
引导学生分析、比较、概括出:长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高。
1.做第39页“做一做”的第2题。
可以将教科书上的图用投影仪放大或画在小黑板上,指名学生指给大家看,其他学生评月是否正确。
2.做第39页“做一做”的第3题。
让学生拿出课前准备好的模型纸样,先做成圆柱,然后让学生试着独立量出它的底面直径和高。教师行间巡视,对有困难的学生及时辅导。
量完后,可以让学生说出自己是怎样量的。
3.做练习十的第1题。
指名学生回答,引导学生利用圆柱的特征来解释。
圆柱的认识课件 篇5
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称。能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。
媒体呈现:大屏幕出示学生生活中常见的物体(有长方体、正方体、圆柱各3-5个)。
1、让学生分类整理,想想它们有哪些特征和量的计算。
2、观察没有学习过的物体,告诉学生对这些物体我们将陆续进行学习,今天我们认识其中一个,它叫圆柱引出课题。
【设计意图】生活是生态的,通过展示学生生活中常见的物体,创设有利于学生学习的生态情境,在分类中自然地引入课题,使课堂自然、生动。
(1)谈谈圆柱,你喜欢圆柱吗?请同学说说喜欢圆柱的理由。
(2)找找圆柱,请同学找出生活中圆柱形的物体。
(1)认识圆柱的面。
师:请同学摸摸自己手中圆柱的表面,说说发现了什么?
(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
a.操作思考:一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状。
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
(2)操作探究。展开的长方形的长和宽与圆柱的关系并旋转。
师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
归纳:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现展开的平行四边形的底和高及正方形的边长与圆柱的关系。
让学生从旋转的角度来认识圆柱,感受平面图形与立体图形的联系和旋转。
1.做第18、19页“做一做”习题。
2.做第20页练习三的第1题。
3.做第19页“做一做”习题。
4.做第20页练习三的第2~5题。
圆的面积课件
希望这份"圆的面积课件"能够解决您所遇到的困境,希望本文能够解答您的疑惑让您更加明白。教案课件是老师上课预先准备好的,而课件内容需要老师自己去设计完善。教案是落实教学目标的有效手段。
圆的面积课件【篇1】
一、说教材
1、说课内容:说课内容是西师版六年制小学数学第十一册第二单元中《圆的面积计算》第一课时。
2、教材、学生情况分析:
这是一节概念与计算相结合研究几何形体的教学内容,我认为该内容与教材前后的内容有着密切的关系。它是在学生学习了平面直线图形的面积计算和圆的初步认识以及圆的周长的基础上进行教学的。是几何知识的一项重要内容,为以后学习圆柱、圆锥等知识和绘制统计图作了铺垫。
从学生的知识水平来看,从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。从空间观念方面来说,进入了一个新的领域。
3、教学目标
遵循教材的编写意图并从学生的知识水平以及生活经验出发,我拟订这节课的教学目标为:
(1)知识与技能目标:推导出圆面积计算的公式,并会用公式计算圆的面积。
(2)过程与方法目标:进一步培养学生树立和运用转化的思想,初步渗透极限思想,培养学生的观察能力和动手操作能力。
(3)情感态度与价值观目标:注重小组合作培养学生互相合作、互相帮助的优秀品质及集体观念。
基于以上的教学目标:把教学重点定为是掌握圆面积的计算公式;教学难点则是圆面积计算公式的推导和极限思想的渗透;教学关键是弄清拼成的图形的各部分与原来圆的关系。
二、说教学策略
为了突出重点、突破难点,培养学生的探究精神和创新精神,本课教学我以“学生发展为本,以活动探究为主线,以创新为主旨”:主要采用了以下4个教学策略:(具体教学策略请看教学过程部分)
1。知识呈现生活化。以云南景洪的曼飞白塔的塔基为圆柱形石座,底面周长是42米,这座塔至少占地多少平方米。让生活数学这一条红线贯穿于课的始终。
2。学习过程活动化。让学生在操作活动中探究出圆的面积计算公式。
3。学生学习自主化。让学生通过动手操作、自主探究、合作交流的学习方式去探究圆的面积计算公式。
4。学习方法合作化。在探究圆的面积计算公式中采用4人小组合作学习的方法。
从而真正实践学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
三、教学过程
秉着“将课堂还给学生,让课堂焕发生命的活力”的指导思想,我将教学过程拟订为“创设情境,激趣引入——引导探究,构建模型——分层训练,拓展思维——总结全课,布置作业”四个环节进行,努力构建自主创新的课堂教学模式。
(一)创设情境,激趣引入
兴趣是学生积极主动地获取知识,形成技能的重要心理基础,为了使学生乐学,在第一环节中,我首先通过教材插图,从而引出课题:圆的面积计算。
在这一环节中,我通过情景设置,拉近数学知识与现实生活的距离,从而激发了学生的求知,为下一环节做好铺垫。
(二)引导探究,构建模型
第二环节是课堂教学的中心环节,为了做到突出重点,突破难点,我安排了启发猜想,明确方向——化曲为直,扫清障碍——实验探究,推导公式——展示成果,体验成功——首尾呼应,巩固新知五大步进行:
第一步:启发猜想,明确方向。
鼓励学生进行合理的猜想,可以把学生的思维引向更为广阔的空间。因此,在第一步:启发猜想,明确方向中。我启发学生猜想:“比较两个圆谁的面积大,你觉得圆的面积和哪些条件有关?怎样推导圆的面积计算公式呢?”对于第一个问题,学生通过观察比较,很自然的会作出合理猜想。但对于怎样推导圆的面积计算公式这个问题,学生根据已有知识,想到可以将圆转化为以前学过的图形,再求面积。至于如何转化,怎样化曲为直,因受知识的限制,学生不能准确说出。我抓住这一有力契机,进入下一步教学。
第二步:化曲为直,扫清障碍。
在第二步:化曲为直,扫清障碍教学中。我首先借助多媒体课件将大小相等的圆分别沿半径剪开,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,让学生通过观察比较,发现平均分的份数越多,分成的近似等腰三角形的底就越接近于线段。这一规律的发现,不仅向学生渗透了极限的思想,更要的是为学生彻底扫清了“转化”的障碍。这时我适时放手,进入下一步教学。
第三步:实验探究,推导公式。
在第三步:实验探究,推导公式教学中。我首先提出开放性问题:你能不能将圆拼成以前学过的图形,试着剪一剪,拼一拼,想一想,议一议拼成的图形的各部分与原来的圆有什么关系?能不能推导出圆的面积计算公式?这里,我没有硬性规定让学生拼出什么图形,而是放开手脚让学生拿出已分成16等份的圆形卡纸小组合作去剪,去拼摆,并鼓励学生拼摆出多种结果,从而培养了学生的发散思维和创新能力。
第四步:展示成果,体验成功。
在学生小组讨论后,我将引导学生进入第四步教学,为学生创设一个展示成果,体验成功的机会。让学生向全班同学介绍一下自己是如何拼成近似平行四边形,长方形,三角形和梯形的,如何推导出圆的面积计算公式的。然后由学生自己,同学和教师给予评价。同时对拼成近似长方形的情况,教师再结合多媒体的直观演示,并结合板书。
首先让学生明确圆周长的一半相当于这个近似长方形的长,半径等于宽,圆的面积等于长方形的面积,这是教学的关键,再此基础上进行推导,得出圆面积等于周长的一半乘以半径,再让学生弄清圆周长的一半等于πr,从而得到圆的面积计算公式化简后用字母表示为S=πr2。
第五步:首尾呼应,巩固新知
在学生获得圆的面积计算公式后,我进入第五步:首尾呼应,巩固新知的教学。这座塔至少占地多少平方米;求出它的面积。从而达到了对新知的巩固。
四、分层训练,拓展思维
为了深化探究成果,在第三环节:分层训练,第一层:基本性练习,第二层:综合性练习,第三层:发展性练习。实现层层深入,由浅入深。逐步训练学生思维的灵活性和深刻性,并使学生深刻体会到“数学来源于生活,并为生活服务”的道理。
圆的面积课件【篇2】
【教学内容】
探索活动(二)《三角形的面积》教材第25页——26页
【教学目标】
知识目标:①使学生经历、理解三角形面积公式的推导过程。
②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。
能力目标:①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力;②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。
德育目标:①利用教材上的德育资料对学生进行爱国主义教育。②通过练习中的德育因素对学生进行交通安全教育。
【教学重点】
理解三角形面积计算公式,正确计算三角形的面积 理
【教学难点】
理解三角形面积公式的推导过程。
【课前准备】
三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。
教师准备多媒体课件一份、演示教具一套
【教学进程】
一 复习引入
1、出示课件
师:比一比,下面两个图形哪个面积大?
生:观察 比较 说说你是怎么比较的
师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。
2、回顾平形四边形面积公式的推导
师:谁能告诉老师平形四边形面积公式推导过程
生答后,师课件演示
师:在这个过程,我们运用了一个什么数学思想。
生:转化
师板书:转化
师:现在,我们已经掌握了几种图形的面积公式了呢?
生答后,师简要小结
3、设疑,引入新课
小明有一张彩纸(课件出示),他想知道这张纸 面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识
师板书:三角形的面积
二、探究新知
1、知识猜想
师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关?
生讨论、作答(可能和底、高有关)
2、动手实践
一组学生拿出直角三角形学具
二组拿出锐角三角形学具
三组拿出钝角三角形学具
四组拿出任意三角形学具
剪一剪、拼一拼,你能发现什么?
师巡回检查、指导
3、实践汇报
各组汇报实践结果
一组:我们是拿两个完全一样的三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。
二组:两个完全一样的锐角三角形也可拼成一个平行四边形。
三组:两个完全一样的钝角三角形也可拼成一个平行四边形。
四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。
各组就实践汇报展开讨论。
4、演示总结
师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样?
出示课件(演示1两个完全一样的三角形拼成平行四边形)
师引导生观察
(1)、拼成的平行四边形和原三角形面积有什么关系?
生:平行四边形面积是三角形面积的2倍。
(2)、平行四边形的底和高与三角形的哪些部分有关?
生:平行四边形的高等于三角形的高;
平行四边形的底等于三角形的底
师小结并板书
平等四边形的面积= 底 × 高
三角形的面积= 底 × 高 ÷ 2
出示课件(演示2一个三角形剪拼成平行四边形)
师:观察平行四边形面积与原三角形面积有何关系?
生:相等
师:平行四边形的底和高与三角形底、高有什么关系?
生:平行四边形的底等于三角形的底
平行四边形的高等于三角形的高的一半
师小结并板书
平行四边形面积= 底 × 高
三角形面积= 底 × 高 ÷ 2
三角形的面积=底×高÷2
字母表示: S=ah÷2
5、师生一起回顾三角形面积公式的推导过程
6、基本练习
师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?
生:能
师:好那大家帮他算一算
生解答,师巡回检查
强调:1、注意运用公式 2、注意面积单位
三、巩固检测
1、出示课件
师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?
生答、师订正
师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?
生独立完成
师统一订正
2、出示课件
师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?
生板演 师讲解订正
四、回顾总结
师:学完这节课,你都有些什么收获呢?
生讨论、作答
师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。
附:【板书设计】
三角形的面积
平行四边形面积 = 底 × 高
转化
三角形面积= 底 × 高 ÷ 2
S= a×h÷2
圆的面积课件【篇3】
教学内容:
义务教育课程标准实验教科书第十一册P67—68。
教学目标:
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积。教学难点:理解圆的面积计算公式的推导。
学具准备:
相应课件;圆的面积演示教具
教学过程:
一、创设情境,导入新课
出示教材67页的情境图。
师:同学们,请看上面的这幅图,从图中你发现了什么信息?
生:我发现图上有5个工人在铺草坪。
生:我发现花坛是个圆形。
师:哦,是个圆形。还有没有?请仔细观察。
生:我发现一个工人叔叔提出了一个问题。
师:这个问题是什么?
生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”
师:你们能帮他解决这个问题吗?
师:求圆形草坪的占地面积也就是求圆的什么?
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
二、游戏激趣,理解圆面积的概念
师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)
生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。
师:圆所占平面的大小叫做圆的面积
(板书:圆所占平面的大小叫做圆的面积)
师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)
三、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的发生了变化,但是它们的不变?
②转化后长方形的长相当于圆的,宽相当于圆的?③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为?所以?”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
4、公式运用,巩固新知。
师:现在大家懂得计算圆的面积了吗?我们来试试看。
四、应用公式,解决生活中的实际问题
师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。
师:(出示教材第67页的情境图)这是刚才课前发现的问题。师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?)[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
五、练习反馈,扩展提高
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?
2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?
六、全课总结
同学们,这节课我们学习了哪些知识?你有什么收获?
七、板书设计
圆的面积
圆所占平面的大小叫做圆的面积
长方形面积=长×宽
=半径
S=πr×r
=πr2
圆的面积课件【篇4】
各位领导、各位老师:
大家好!
我设计的课件《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
本节课的教学目标是:
1. 要使学生明确圆面积的概念,理解和掌握圆面积公式的推导及应用。
2. 通过学生操作,发现推导圆面积的公式。
3. 结合知识的教学,渗透转化极限的数学思想。
本节课的重点是:圆面积概念的建立,公式的推导及应用。
难点是:转化和极限两种数学思想的渗透。
考虑到本节课是几何前后知识的重要纽带,教学内容相对抽象,学生的年龄特点,导致抽象逻辑思维较差,还是以形象直观思维为主,所以使用多媒体作为辅助教学手段,变抽象为直观,为学生提供丰富的感性材料,促进学生对知识的感知,帮助学生理解,激发学生学习的兴趣。
本课使用多媒体,设计时主要想突破以下几个问题:
一. 明确概念:
圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。
二. 以旧促新
明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
三. 转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。考虑学生的实际情况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自己的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎么样?电脑继续演示16等份的圆,放在一起比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎么样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想—极限思想的渗透。
四. 公式推导
平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2 =πr h=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r =πr2。
此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画 》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前.”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2 ,通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
五.公式的应用.
探究出公式,要学会应用,并能把利用所学的知识解决生活中的实际问题,培养学生解决实际问题的能力.先引导学生观察面积公式,思考要想计算圆的面积应该知道哪些条件?让学生讨论.练习安排了三个层次的练习:
第一:看图计算面积。主要是巩固新知,强化公式的应用。两个图一个是已知半径,另一个是已知直径。
第二:变式练习。学生根据公式一般认为计算圆的面积,必须知道半径,否则无法计算,这一题是已知r2=5平方厘米。根据目前知识,学生没有能力求出半径,怎么办?激起学生的认知冲突,引导学生讨论,就会发现,除了知道r,可以求出面积,若能知道r2,不必求出半径,直接利用公式计算面积,打破学生的思维定势,全面理解公式,达到对公式的进一步认识。
第三:实践练习。圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。
至此,课件设计的初衷,概念—旧知—转化—推导—应用五个任务就算完成了,这也是设计时个人的一些想法,敬请大家批评指正,谢谢!
圆的面积课件【篇5】
教学理念:
本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。
接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。
教学目标:
1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。
2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。
3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。
4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。
教学重点:
运用圆的面积计算公式解决实际问题。
教学难点:
理解把圆转化为长方形推导出计算公式的过程。
教学准备:
多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。
教学过程:
一、创设问题情境,激发学生学习兴趣。
1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。
2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的?(电脑课件演示)
二、合作交流,探究新知。
1、出示圆:
(1)让学生说出圆周长的概念,并指出来。
(2)想一想:圆的面积指什么?让学生动手摸一摸。
(揭示:圆所占平面的大小叫做圆的面积。)
(3)对比圆的周长和面积,让学生感受他们的区别。
同时引出课题——圆的面积。
[设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的`意义打下良好的基础。]
2、推导圆面积的'计算公式。
(1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?
(2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?
[设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。]
(3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。
①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?
②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?
[设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。]
③当圆转化成近似长方形时,你们发现它们之间有什么联系?
课件演示:
师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份??又会是什么情形?
④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。
[设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。]
(4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。
①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。
②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?
③学生讨论交流:长方形的长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径,即b=r。
教师板书如下:
(5)小结:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!
(6)学生打开书本P68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?
[设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。]
三、实践运用,巩固知识。
1、已知圆的半径,求圆的面积。
判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?
=3、14×5×2=31、4(米)
(学生先独立思考,再汇报交流,共同修改。)
强调:半径的平方是指两个半径相乘。
2、已知圆的直径,求圆的面积。(教学例1)
①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)
②学生汇报计算方法,要强调首先算什么?
③打开书本P68补充例1
3、已知圆的周长,求圆的面积。(书本P70练习十六第3题)
小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?
①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?
②根据圆的周长公式,师生间推导出求半径的计算方法。
③学生独立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。
4、一个圆形溜冰场,半径30米。
(1)这个溜冰场的面积是多少平方米?
(2)沿着溜冰场的四周围上栏杆,栏杆长多少米?
提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?
[设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。]
四、总结评价,拓展延伸。
1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?
2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?
圆的面积课件【篇6】
教学过程:
一、认识组合图形。
1、师生谈话导入:什么是组合图形?
(1)出示火箭模型的平面图。观察一下,你有什么发现?
(2)像长方形、三角形、梯形等这些都是我们已经认识的简单的平面图形,那么这个图形与它们有什么关系呢?
(3)揭示名称与含义:组合图形是由几个简单的平面图形组合而成的。
2、在我们身边有不少物体表面的形状是组合图形。说一说,这些组合图形是由哪些图形组成的?
3、学生自己试举例说明。
二、计算组合图形的面积。
1、揭示课题。
(1)出示中队旗,计算它的面积。
80cm
20cm
30cm
30cm
(2)谈话:中队旗是什么形状?要求做一面队旗要多少布就是求它的什么?怎样求组合图形的面积,下面我们一起来研究这个问题。(出示课题:组合图形的面积)
2、学生尝试。
(1)学生讨论算法。
(2)独立计算。鼓励用不同的做法。
演板:
(80-20+80)×30÷2 80×(30+30)-(30+30)×20÷2
= 4200(平方厘米) = 4200(平方厘米)
(80-20)×(80-20)+30×20÷2×2
= 4200(平方厘米)
(3)比较:哪种方法比较简便?
2、小结:用哪些方法可以计算组合图形的面积?
三、巩固练习。
1、计算花坛的面积。
让学生感受:不是任何分解都可以计算的,要根据条件进行分解。
2、求火箭平面图的面积。
3、选一个求字母“l”和“n”的面积。
四、总结。
你有什么感受?
五、作业。(略)
六、板书:
组合图形的面积
(80-20+80)×30÷2 80×(30+30)(80-20)×(80-20)
= 4200(平方厘米) -(30+30)×20÷2 +30×20÷2×2
= 4200(平方厘米) = 4200(平方厘米)
课后反思:
学生的经验和活动是他们学习空间图形的基础。他们对组合图形的认知是通过观察获得的,关于组合图形的面积计算又是建立在认知的基础上。因此本课的教学设计,是根据数学新课标的基本理念,铺设学习情境,让学生主动参与,灵活运用积累的经验解决问题,体现了数学学习是“经验”、“活动”、“思考”、“再创造”的特点。
一、 导入——铺设学习情境。
《数学课程标准》在课程实施建议中明确指出:“数学活动要紧密联系学生的生活实际,创设各种情境,为学生提供从事数学活动的机会,激发对数学的兴趣,以及学好数学的愿望。”学生的学习,往往带着浓厚的感情色彩,在熟悉的情境中,他们就能够自觉地、顺利地参与到学习中来。在本节课中,先让学生观察火箭模型的平面图,让他们说说有什么发现,激活他们已有的知识经验,通过感受由几个简单图形的组合,揭示组合图形的含义。再让他们分析身边物体表面中的组合图形,把数学与生活紧密联系起来,激发学习的兴趣。
二、尝试——开启创造之门。
弗莱登塔尔认为,学生学习数学是一个有指导的再创造。数学学习的本质是学生的再创造。在本课的教学过程中,有意识的为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。课堂中采取了这样一些策略:设计富有挑战性的问题,激发学生主动思考和创造的愿望。为学生提供比较充足的探索与创造的时间、空间,让学生尽量释放创造的潜能。如:计算中队旗的面积时,要求学生先仔细观察这个图形,然后这样设问:“你能自己试着来解决这个问题吗?”学生经过自主的思考,能创造出不少的方法来计算组合图形的面积。课堂上学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。还有一个学生在其他不同的方法后,又提出他独特的观点:把组合图形分成两个梯形,再把两个梯形拼成一个长方形来计算它的面积。他的想法恰恰运用了“出入相补”的原理。这正是知识、方法融会贯通的体现。
“给我一个杠杆,我可以撬起地球”,我们还有什么理由不相信学生惊人的创造力呢?
三、练习促进动态生成。
让学生体会到数学的价值,力求人人学有价值的数学,以满足学生适应未来学习、生活的需要。在练习的设计中,我安排了这样三个层次:第一、只列式不计算。让学生明确求组合图形的面积,要根据数据进行分解,不是所有的分解都能进行计算的。第二、解决具体问题,计算火箭模型的平面图的面积。第三、解决实际问题,练习设计打破学科界限,让学生喊出英文单词“lion”,然后在英文乐曲中,选择计算“l”或“n”的面积。学生学得趣味
圆的面积课件【篇7】
本节课我教授的内容是六年级上册第五单元第三小节的内容圆的面积,本课是第一课时。教学目标是:让学生经历探索圆的面积的计算公式,掌握圆面积的计算公式,能够利用公式进行简单的圆面积的计算。激发学生参与教学活动的兴趣,培养学生分析、观察和概括能力,渗透转化的数学思想。
在教学中我把重点放在了圆面积公式的推导上,我首先通过正方形面积引入,唤起学生的旧知,再引入长方形、平行四边形、三角形等面积公式,期中平行四边形和三角形都是通过割补、拼凑等方法引入的,自然引入到圆面积的推导上,我充分运用教具,让学生经历动手探索,归纳概况的学习过程,推导出圆面积的计算公式,最后相机出示例题,让学生运用所学的知识进行解决实际问题,提高运用意识。
本节课不足之处是学生自己制作的教学用具操作不充分,课堂练习不够,尤其是部分学生对半径的平方理解计算上不到位,导致在练习中出错,在课后中应加强辅导和训练。
年11月18日
圆的面积课件【篇8】
教学目标
1.明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3.渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点
在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点
选择有效的计算方法解决实际问题。
教具准备
ppt课件、简单图形的面积整理表、铅笔和三角板等学习用具、彩粉笔。
教学过程
一、创设情境,生成问题
老师准备了几幅漂亮的图片,我们一起来欣赏一下,好吗?
课件展示
图一图二图三
请大家仔细观察,这些物品的表面有哪些我们已经学过的图形?(逐一分析,然后重点展示中队旗)它们有什么共同特点呢?(学生口答)
介绍:上面这些图形都是由几个简单图形组合而成的,这样的图形叫组合图形。
板书:组合图形
师:今天,我们就来探究组合图形面积的计算。
补充板书:组合图形的面积
二、探索交流,解决问题
1.谈话引入
师:我现在想要做一面中队旗需要多少布呢?也就是求什么?
生:求中队旗的面积,也就是计算出组合图形的面积。
2.独立思考,分组讨论
师:请大家独立思考:组合图形可以转化成哪些学过的图形,怎样计算出组合图形的面积?有了想法之后,和你的同桌说一说。
生独立思考,同桌交流。
3.汇报交流
(1)师:谁来说一说你的想法?
生:分割成两个梯形。
《组合图形的面积》教学设计《组合图形的面积》教学设计
师:这是一个不错的想法(板书:分割)。那这种方法能计算出组合图形的面积吗?为什么?
生:能,因为梯形的上底、下底和高我们都能知道。
(2)师:大家想想,还有不同的做法吗?
《组合图形的面积》教学设计生:添补成一个长方形。
《组合图形的面积》教学设计
师:又是一种不错的方法(板书:添补)。验证一下,这种方法能计算出组合图形的面积吗?怎么求?
生:能,用长方形的面积减去三角形的面积,长方形的长和宽,三角形的底和高都是已知的。
《组合图形的面积》教学设计《组合图形的面积》教学设计(3)生:分割成一个大梯形和一个三角形。
师:这种方法也可以。大家思考一下,这种方法能计算出组合图形的面积吗?如果不能,缺少什么条件?
(4)生:分割成一个正方形和两个三角形。
《组合图形的面积》教学设计《组合图形的面积》教学设计
师:这种方法也可以将组合图形分解成几个简单图形。这种方法能求出组合图形的面积吗?怎样求?
生:能求出组合图形的面积。用正方形的面积加上两个三角形的面积。
《组合图形的面积》教学设计(课件分别演示各种方法)
4.独立计算
师:下面就请大家选择一种你喜欢的方法,快速的计算出组合图形的面积。
指名板演。集体订正。
5.小结
师:刚才我们用好几种方法求出了中队旗的面积,这些计算方法有什么共同特点呢?
生:都是把一个组合图形转化成几个简单图形。
师:数学中我们习惯用分割法或添补法,先用辅助线把一个复杂的组合图形转化成几个比较简单的图形的和或差。如果没有要求用多种方法的,我们尽量选择最简单的方法来计算。画辅助线时要注意画虚线,还要用铅笔和直尺作图。
板书:转化成简单图形。
6.我们学习了这么多组合图形知识,请你说一说生活中哪些地方有组合图形。
三、巩固应用,内化提高
1.师:同学们的表现真了不起。咱们学校有个老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是用平方米来计算的,请你们帮忙算一算。(课件出示例4)
师:怎样才能计算出这个组合图形的面积呢?
(先让学生思考,再动手计算。然后交流汇报。)
方法一:
这个组合图形分成一个正方形和一个三角形,分别计算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方形面积后,再减去两个小三角形的面积。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。
师:请同学们观察这几种解法,它们有什么相同的地方?
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。
师:非常感谢大家为老师解决了难题。在日常生活中,到处都有组合图形,我们计算面积时,先用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了。这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
《组合图形的面积》教学设计《组合图形的面积》教学设计《组合图形的面积》教学设计2.课本做一做:新丰小学有一块菜地,形状如右图,这块菜地的面积是多少平方米?
师:图中菜地由哪些简单图形组成的?计算每个简单图形的条件是多少?
学生独立计算,集体订正。
四、回顾整理,反思提升
师:这节课你有什么收获?
板书设计
组合图形的面积
分割法或添补法(转化):分解成简单图形。
圆的面积课件【篇9】
一、分析教材
面积单位间进率是《人教社》九义教材三年级下册第六单位的教学内容。
本单元的教学内容有面积和面积单位、长方形、正方形的面积计算,面积单位的进率,常用的土地面积单位。
这部分教学是在学生已经掌握了长方形和正方形的特征,并会计算长方形和正方形周长的基础上进行的。小学生从学习长度到学习面积,是空间形式认识发展上的一次飞跃。学好本单元的内容,不仅有利于发展学生的空间观念,提高解决简单实际问题的能力。
本课的教学内容是在学生已经建立了面积的概念并掌握了长方形、正方形面积计算的基础上,探究常用面积单位之间的进率。同时它也是学生在以后四年级学习的小数与复名数和与面积有关的应用题及在生活中解决与面积有关的知识打下坚实的基础。
在设计本课时我们力图展现概念的形成过程,使学生在多种活动中获得多种感观认识,抽象出面积单位间的进率。
我们注重让学生经历探究的过程,使学生明了活动目的,亲身经历比较完整的探究过程,获得探究的体验。
二、说教材的三维目标和重难点
1、知识目标:进一步熟悉面积单位的大小,掌握相邻面积间的进率是100,会进行简单的换算。
2、能力目标:培养学生观察、比较、抽象、概括、判断、推理能力及空间观念。
3、情感目标:培养学生生生合作的学习精神,乐于助人的集体精神。
重点:掌握相邻面积间的进率是100。
难点:掌握相邻面积间的进率是100。
三、说设计意图
对于这节课的教学设计,我们组的教师们尝试从不同的角度去理解教材,先后尝试了多种不同的教学设计,下面仅结合课堂教学中的三大环节(开课、活动操作、练习设计)来简述一下我们的研究过程及我们对每种设计的感受。
1、第一环节开课的研究
关于开课的研究,第一次试教,学生回忆长度单位复习长度单位间的进率引导到面积单位的研究。这里教师让学生通过画1cm、1dm的线段,1cm2、1dm2的面积来引入。第二次教师拿出一个长方形(面积是1dm210cm2)让学生猜它的面积是多少,学生会选择以平方分米为单位来描述大小,当老师用1平方分米的正方形进行覆盖发现多了一点,给学生制造研究的动力,学生用低级面积单位去描述,并引导学生对结论进行思考展开对面积单位的进率的研究,第三次试教叶靓老师出示三个不同大小图形,分别是正方形、长方形让学生选择手中的学具研究得出三种图形的面积。由于3号图形是1dm2也就是100cm2,从而揭示cm2与dm2之间的进率。第四次试教我们回归课本,从回顾长度单位的进率迁移到对面积单位的进率的学习。
这四次开课研究每次的侧重点不同。第二、三次的导入设计突出了面积单位的应用价值试教发现分散了教学重点,给学生的学习增加了认知障碍,重点不够突出。
而第一、四次开课研究目的性更强,直接引导学生对重点问题进行探索。尤其是第四次的教学设计借用多媒体使学生对相邻面积单位之间的关系产生强烈的视觉冲击,有效的排除了相邻长度单位间的进率这一知识点产生的负迁移效应。
2、第二大块:探研活动的教学设计
这一个教学环节我们设计了很多种不同的活动形式
第1次是学生分小组活动探究,叶老师把学具全部提供给学生,学生活动内容丰富有摆一摆,有用面积计覆盖、有用尺量一量等,但我们发现容易造成小组活动混乱,我们应引导他们有条不紊地操作,而今天叶老师让学生自主选择其中的一种或二种学具进行探究,让学生带着问题,满怀疑惑和好奇去探索。首先让学生思考和选择工具(这实际上是引导学生先思考、再动手)同时教师鼓励学生用不同的方法展开研究。不同的方法启迪了学生的思维,使
不同水平的学生都能通过自己的探索找到解决问题的途径。
这样,通过猜想、研究、验证等一系列的过程,充分放手让学生研究、发现、归纳、总结,学生不仅学会研究问题的方式方法,而且还培养了学习的意识。
对于书本的使用,叶老师也没有忽略,教学完这一环节后叶老师指导学生阅读课本,帮助学生学会用教材来学习,必竟教材是学生学习的文本。
3、第三大块,练习
数学本身来源于生活,又应用于生活。在课堂上,把数学经验生活化,运用数学知识解决生活问题是数学学习的出发点和归宿。因此,叶老师结合日常生活情形丰富特点,设计开放的实践活动,放手让学生应用,促进自身主动发展。学生探索出面积单位间的进率后,有一种应用的期待,“我努力的结果究竟能解决什么问题呢?”马上引入实践应用。
本节课,我们对练习的设计有这样一个思考
“本课我们到底练什么?”
虽然这节课我们认为:是教学面积单位间的进率,如果练习仅仅停留在面积单位间的换算是不够的。
我们的看法:
1、继续夯实对面积单位进率的认识,所以在叶老师的练习中出现了针对实际物体填写合适的面积单位,再对面积单位进行换算的练习形式。
2、本节课的练习形式多样有填空、连一连、实际应用。
能有效帮助使学生进一步掌握面积单位间的进率。
3、如何使练习具有延伸课堂的效果
对于一节课的学习是不是就是40分钟?答案是否。
教师在课常上教给学生的知识与方法如何换变成学生的能力,怎样让学生的学习延续到40分钟以外?在本节课中,叶老师引导学生用各种不同方法,引导学生得到相邻两个面积单位间进率,叶老师在课的最终提出的思考题给予那些学有余力的学生继续研究的目标,鼓励学生用课堂上学到的知识、方法、数学思想去继续研究。
圆柱课件10篇
学习数年,我们读过很多范文,这些优秀的范文里有很多值得借鉴的地方,阅读范文可以帮助我们平复心情,让自己冷静思考。阅读范文需要我们不断地积累阅读,有哪些可以借鉴的教师相关优秀范文呢?为此,小编从网络上为大家精心整理了《圆柱课件10篇》,供您参考,希望能够帮助到大家。
圆柱课件 篇1
课题圆柱的表面积教时一3(3)
学习
目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
学习
重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
过程与方法
教师活动
一、基本练习
二、实际应用
求压路的面积是求什么?
三、实践活动
学生活动
说说计算方法。
说自己的想法,独立解答。
说自己的想法,独立解答。
学生讨论后完成。
学生实际操作。
板书设计
圆柱的表面积教学反思
学生掌握了求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。但是个别学生计算的不准。
课题圆柱的表面积教时一4(4)
学习
目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
学习
重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
过程与方法
教师活动
实际应用
1、
2、
3、
学生活动
指名读题,说出题意以及解题思路,然后指名做出。
结合生活实际进一步明确题意,以便做出。
学生互评互议。
板书设计
圆柱的表面积
圆柱的表面积 = 圆柱的侧面积+底面积×2
教学反思
在实际应用中,简单的问题还能轻松完成。
圆柱课件 篇2
设计说明
本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:
1.利用迁移、猜想,理解圆柱表面积的意义。
新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。
2.利用演示、分析探究圆柱表面积的求法。
直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。
3.联系实际,解决问题。
在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。
课前准备
教师准备 PPT课件
学生准备 圆柱形实物
教学过程
⊙复习导入
1.铺垫。
师:长方体的表面积指的是什么?(6个面的面积之和)
师:怎样求长方体的表面积?
预设
生1:长方体的表面积=长×宽×2+长×高×2+宽×高×2。
生2:长方体的表面积=(长×宽+长×高+宽×高)×2。
2.迁移。
(1)圆柱的表面积指的是什么?(三个面的面积之和)
(2)怎样求圆柱的.表面积?(生自由回答)
3.导入。
圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。这节课我们就来学习圆柱的表面积的相关知识。(板书:圆柱的表面积)
设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。
⊙探究新知
1.教学例3,探究计算圆柱表面积的方法。
(1)理解圆柱表面积的意义。
①出示圆柱模型,观察思考:圆柱的表面积指的是什么?
②结合学生的回答,课件演示理解:圆柱的表面积指的是两个底面的面积加上一个侧面的面积。
(2)探究圆柱表面积的求法。
学生独立探究,然后汇报交流。
①圆柱的侧面积=底面周长×高。(强调长方形的长为圆柱的底面周长,宽为圆柱的高)
用字母表示为S侧=Ch。
②底面积=πr2。
③圆柱的表面积=圆柱的侧面积+两个底面的面积。用字母表示为S表=Ch+2πr2。
2.教学例4,解决求圆柱表面积的实际问题。
课件出示例4。(利用圆柱表面积的计算方法解决实际问题)
(1)学生读题,找一找这道题的所求问题。
明确:求做这样一顶帽子至少要用多少平方厘米的面料,就是求圆柱的表面积。
(2)想一想:怎样求这个圆柱的表面积呢?
①一顶帽子由几部分组成?
(一个侧面+一个底面)
②明确解题思路及解法。
先求帽子的侧面积:帽子的侧面积=πdh。
再求帽顶的面积:帽顶的面积=πr2。
最后求帽子的侧面积与帽顶的面积之和。
师:解题时需要注意什么?
圆柱课件 篇3
教学过程
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(学生互相讨论后汇报,教师设疑)
二、自主探究、
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh
三、巩固发展
1、课件出示例4,学生独立完成。
指名说说这样列式的依据是什么。
2、巩固反馈
3、完成第9页的“试一试”和练一练”中的两道题。
(“练一练”只列式,不计算)
集体订正,说一说圆柱体的体积还可以怎样算?
4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?
5、拓展练习
(1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)
(2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?
四、全课小结:
谈谈这节课你有哪些收获。
教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积
教学目标:
1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积计算公式的推导过程
圆柱课件 篇4
【教学过程】
一、揭示课题,确定目标
谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)
启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)
引导:
(1)什么是圆柱的体积?
(2)圆柱的体积和什么有关?
(3)圆柱的体积公式是怎样推导出来的?
(4)圆柱的体积是怎样求出来的?
(5)学习圆柱的体积公式有什么用?
谈话:对!刚才这几位同学跟老师想的一样。
启发:圆柱的体积就是圆柱所占空间的大小
谈话:这堂课我们主要解决三个问题:(出示探究问题)
1、圆柱的体积和什么有关?
2、这个公式是怎样推导出来的?
3、学习了圆柱的体积能解决什么实际问题?
【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。
二、温故知新,自学课本
1、提出问题
谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计 算的?
引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。
谈话:长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
统一为:长方体或正方体的体积=底面积×高
谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?
引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。
谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接 用体积单位去量呢?
引导:它的侧面是一个曲面,用体积单位直接量是有困难的。
2、引发猜想
谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)
引导:圆柱体的体积既和底面积有关,又和高有关。
3、自学课本
谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?
启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)
引导:我们用图形转化的方法,求圆柱的体积。
谈话:这个办法很好。那么把圆柱转化成什么图形呢?
引导:长方体。
谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。
(用多媒体演示圆形的转化过程,边出示、边交流)
【设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。
三、合作交流 发展能力
谈话:同学们观察一下,拼成的是什么图形?
引导:近似的长方体。
启发:说得很好,为什么说是近似的长方体,哪里不太像?
引导:长都是许多弧线组成,不是直的。
谈话:这里我们把圆柱分成16等分,还能分吗?
谈话:究竟能分多少份呢?
引导:无数份,可以永远分下去。
谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。
四、师生合作 归纳结论
谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?
汇报:把圆柱体转化为近似的长方体,形状变了,体积没有变。
谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。
汇报:
(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。
(2)转化后的近似长方体的高与原来的圆柱体的高相等。
因为:长方体的体积=底面积×高
所以:圆柱的体积 =底面积×高
(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)
长方体的体积=底面积×高
圆柱的体积 =底面积×高
交流:我们也可以用字母表示圆柱的体积计算公式:v = s h (板书)
引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。
现在请同学们把圆柱体积公式的推导过程再完整地说一遍。
谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。
通过分一分、拼一拼我们把圆柱转化成了近似的长方体。
通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。
【设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。
圆柱课件 篇5
一、说教材
1.教学内容
本节课是苏教国标教材六年小学数学(下册)第二单元25页的例4教学。内容包括圆柱体的体积计算公式的推导和运用公式解决一些简单的实际问题。
2.本节课在教材中所处的地位和作用
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,等积转化数学思想的培养以及观察比较新旧图形的联系,做出合请推理,从而推导圆柱体积公式的过程是本节课的难点。
4.教学目标
(1)让学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。
(2)使学生进一步体会“转化”方法的价值,培养应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。
(3)通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
二、说教法
从学生已有的知识水平和认知规律出发,经过观察、比较、猜想、思考、、验证等方法,自主探究,合情推理。
三、说教学过程
本节课的教学过程分为六个教学环节,主要包括:
1、复习引导,揭示课题。
明确已有的圆柱的特征、体积概念的认识、平面图形公式的研究方法等知识水平,建立新的学习和探究欲望。
2、观察比较,建立猜想。
在观察长方体、正方体、圆柱体等底等高时,猜想他们的体积是否都想等?猜想后强调“可能“相等,因为是猜想的。圆柱的体积是不是等于底面积乘高,我们还没有研究出公式来,所以这里只能是一种没有经过验证的猜想,只能用“可能”相等,没有经过验证的观点,不可以用“一定“两个字,让学生体会数学的严谨性。
3、激励思考,提出验证的方法。
有没有一个可以借鉴的好的研究方法,来证实等底等高的圆柱体与长方体、正方的体积有可能相等呢?或者说圆柱的体积也有可能等于底面积乘高呢?学生可以通过回忆平面图形面积计算公式时的推导方法,获取一些思考。
4、自主探究,合情推理。
在学生回忆的基础上,可以提出使用“切割—转化—观察—比较—分析—推理”等方法,四人一组,来讨论下面的问题:
小组讨论纲要:
(1)用 方法,把圆柱体转化成了 体。
(2)在这个转化的过程中, 变了, 没有变。
(3)通过观察比较,你发现了什么?
(4) 怎么进行合情推理?
(5)怎样用简捷的形式表示你推导出来的公式呢?
把课堂还给学生,教师的角色是组织和引导。
5、学以致用,解决实际问题。
应用所推导出来的圆柱体积计算公式,解决一些生活中的简单实际问题,理解生活中处处有数学,体会数学的应用价值和广泛领域。
6、全课小结,提升认识水平。
在研究圆柱体积公式的时候,我们运用了哪些方法?这里的切割是指切割旧图形,还是切割要研究的新图形?转化是指转化成已学过的旧图形,还是转化成没有学过的新图形?观察比较什么?怎样分析推理?这里蕴藏着什么样的数学思想?最后问大家这样一个问题,发明电灯重要,还是使用电灯重要,哪个更能造福人类,造福子孙万代?科学家、发明家就是这样诞生的,他们善于猜想、善于发现,敢于探究。如果我们将来想成为科学家,我们必须具备这样的品质。通过这节课的学习,你敢不敢大胆去尝试、去探究圆锥体的体积计算公式,或是更广泛的研究上下底面都是相等的三角形、上下底面都是相等的正多边形等一些直棱柱的体积计算方法呢?在研究中,你会发现,数学很美,它是思维的体操,有兴趣的同学,可以把你研究的成果告诉老师一起分享。
四、说教学反思
在本节课的教学中,我主要让学生自己动手实践、自主探索与合作交流,在实践中体验,在实践中提升,从而获得知识。讲课时,我再利用教具学具和课件双重演示,让学生通过眼看、脑想、讨论等一系列活动后,用自己的语言说出圆柱体体积计算公式的推导过程。我的第一层次是复习。通过复习来导入新课。第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析的和归纳能力。第三层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。
这节课,在设计上充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于乐中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。
当然,由于经验不足,在教学过程中还有很多环节没有处理好。恳请大家提出宝贵的意见和建议。
圆柱课件 篇6
一、说教材
1、教学内容
本节课是北师版小学六年级数学课本十二册第一单元第三课时。内容包括圆柱体的体积计算公式的推导和运用公式解决生活中的实际问题。
2、本节课在教材中所处的地位和作用
〈〈圆柱的体积〉〉是数学课程标准中“空间与图形”领域内容的一部分。〈〈圆柱的体积〉〉一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。制定以下三维教学目标:
3、教学目标
知识目标:(1)通过经历圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。
(2)通过操作让学生知道知识间的相互转化。
能力目标:倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念,培养学生的逻辑推理能力。
情感目标:让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。
4、教学重点
由于小学生的思维以具体形象思维为主,要抽象出直观的立体图形,建立表象,形成初步的空间观念并不容易。圆柱的体积公式推导过程可以培养学生多方面的能力,是圆锥体积计算的基础。这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,所以,我根据〈新课程标准〉的思想要求和学生的实际知识基础确定了本节课的教学重点是:
(1)通过观察操作,使学生初步感知立体图形之间的关系,掌握圆柱体积公式的推导过程。并能应用公式解决实际问题。
(2)通过小组合作、交流,培养学生的合作意识。
5、教学难点
教学源于生活又应用于生活,但难的就是如何让学生学会用数学的眼光去发现生活中的数学问题,用数学思考和方法去分析和解决生活当中的问题。圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑思维能力,因此,我确定本课的难点是:推导圆柱体积计算公式的过程,学生逻辑思维能力的培养。
6、教具、学具准备:
本节课采用的教具为课件和学具。
二、说教学过程
数学〈〈课程目标〉〉明确指出:数学教学是数学活动的教学,是师生之间、学生之间互动与共同发展的过程。因此,在新课的教学当中,我设计了三个活动,让学生在活动中掌握圆柱体积计算公式的推导。
对本节课的教学,我设计了以下几个环节:
(一)情境导入,激发兴趣
活动一、猜一猜
出示一个圆体的实物和一个长方体的实物,猜猜它们的体积谁大一些?
在没有学习圆柱体体积的情况下,学生会猜①圆柱体积大一些。②长方体体积大些。③一样大。④我们必须通过动手验证才能知道谁大。由此揭示课题,今天来探索圆柱体的体积。
(这一活动的设计,激发了学生的学习兴趣,使学生为了验证自己的猜想而产生了强烈的求知欲望,从而进入最佳的学习状态。)
(二)师生互动,验证猜想
活动二:学生自由探索,圆柱体积计算方法
以小组为单位设计出一种自己学过的知识计算圆柱体积的方法,通过合作,学生想到的办法可能有:
①把橡皮泥捏成圆柱体,再捏成长方体,量出长方体的长、宽、高。算出长方体的体积,也就是圆柱的体积。
②把圆柱形的杯子装满沙子,铺平,然后把沙子倒入较大的长方体的盒子中,量出长方体盒子的长、宽及沙子的高,算出沙子的体积,也就是圆柱的体积。如果杯子的厚度忽略不计的话。杯子的容积就是杯子的体积。
③把一个圆柱体放到装有(正)长方体容器中,水会上升,上升的水的体积就是圆柱的体积。
(这一活动的设计,是通过观察力求让学生体验到我们在计算圆柱的体积时都是把圆柱的体积转化为其他形体的体积来进行计算的。由此,也就可以验证学生的猜想是否准确,但是为了不影响学生的求知欲,我设计了这样一个问题:你能用这些方法来计算我们的学校门口这根圆柱形柱子的体积吗?
活动三:通过教师演示,理解转化,掌握圆柱的体积的计算公式,在教学中我们尊重、欣赏学生用自己的方式去体验、探索学习的过程。也许会产生这样的矛盾,但正是这些矛盾激发了学生更加强烈的求知欲,由此我安排了学生利用手中的学具把圆柱体拼成一个近似的长方体,让学生观察长方体与正方体有那些密切的关系。再利用课件把圆柱体转化为长方体的过程演示一遍,使学生明白圆柱体转化成长方体时体积没有变化。长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积等于底面积乘高。所以,圆柱的体积也等于底面积乘高。
(活动三的设计是根据教材的特点、学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成操作——演示——观察——比较——归纳——推理的认识过程。让知识在观察、操作、比较中内化,实现由感性到理性、由具体到抽象,这种教学方法符合学生的认知规律,有助于突出重点,突破难点。)
三、知识的运用
算一算:已知一根柱子的底面半径0.4米,高5米,算出它的体积?
四、知识的拓展
你能算出鸡蛋的体积吗?
总之,我认为课堂教学在本质上是学生在教师的引导下主动参与、自主发现与探究、独立思考和不断创新的过程,而不是简单、被动地接受教师和教材提供的现成的观点和结论。这也是诚如古罗马教育家普鲁塔克所说,儿童的心灵不是一个需要添满的罐子,而是一颗需要点燃的火种。因此。在课堂教学中,教师应积极创造条件,引导学生在主动的、探究的、体验的、建构的学习方式中,不断地实现自我超越和自我实现,获得多方面的满足和发展。
圆柱和圆锥单元学习学生易出现的问题:
1.圆柱的侧面积公式与圆柱的体积公式混淆。
圆柱的侧面积公式与圆柱的体积公式,前者是底面的周长×高,后者是底面的面积×高。学生学习了圆柱侧面积计算公式后,大部分学生都能利用圆柱侧面积计算公式进行计算。当学习圆柱的体积计算公式后,有一部分学生可能会与前公式混淆。
2.圆柱的体积公式与圆锥的体积公式混淆,
后者是前者的三分之一(在等底等高条件下),在教圆锥体积公式时,教师虽然用等底等高的圆柱和圆锥进行了演示,把倒满水的圆锥里的水倒在圆柱里,刚好可倒三次,为了加强学生三次,也就是说圆锥的体积是圆满柱体积的三分之一的关系,我演示了三次,还邀请三位学生上台实验。但是在作业中也有一部分学生忘了三分之一。也许是课堂上学习的注意力集中在演示上,也许是我高估了学生,我以为通过这样的几次的实验,学生应该能行,对公式的就一带而过。后来学生们去完成课本及练习中的一些习题,通过这样几个课时下来,孩子们都能较好地掌握。
3.应用公式解决实际能力较差。
本单元的难点是解决等积变形的应用题。例如:一个圆锥形麦堆,底面周长是25.12米,高2.1米,把这些小麦装入底面半径是2米的圆柱形粮囤正好装满,这个粮囤的高是多少?这是比较典型的等积变形题目,学生在处理这题时出现几种:第一种是思路不清,不知道要先求什么(圆锥的底面半径),再求什么(圆锥的体积),接着求什么,(圆柱的底面积),最后求什么(圆柱的高)。第二种是利用公式混乱,上题中牵连到圆的周长、圆锥的体积、圆的面积、圆柱的体积公式。第三种是计算、书写粗心,因为这一题计算繁多,步骤复杂,学生在书写时往往会眼花看错。
在圆柱和圆锥的体积教学目标中,都要求让学生经历“类比猜想—验证说明”的探索其体积计算方法的过程,教材这样要求是基于什么考虑?
我们以圆柱体积的内容安排为例。教材安排了探索圆柱体积计算方法的内容,引导学生经历“类比猜想—验证说明”的探索过程,体会类比、转化等数学思想方法。教材先呈现了“类比猜想”的过程,由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材又引导学生“验证说明”自己的猜想,教材中呈现了两种“验证说明”的方法:一种是用硬币堆成一堆,用堆的过程来说明“底面积×高”计算圆柱体积的道理,这实际上是“积分”思想的渗透;另一种方法是转化思想的渗透,即把圆柱通过“切、拼”转化为长方体,再根据长方体体积的计算方法推导出圆柱体积的计算方法。
要求让学生经历“类比猜想—验证说明”的探索其体积计算方法的过程,首先在于这种过程的重要性。数学发现通常都是在通过类比、归纳等探测性方法进行探测的基础上,获得对有关问题的结论或解决方法的猜想,然后再设法证明或否定猜想,进而达到解决问题的目的.类比、归纳是获得猜想的两个重要的方法.类比是一种合情推理的方式,运用归纳、类比可以帮助人们猜想出结论。当然,通过合情推理得到的猜想还需要进一步证明。在小学阶段不要求给出严格的证明,学生只要能够从不同角度说明其合理性即可,也就是验证说明。
圆柱和圆锥的体积与已学习过的长方体和正方体的体积存在诸多相似点,为实施类比提供了可能。所谓类比,就是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。运用类比法的关键是寻找一个合适的类比对象.在学习长方体和正方体的体积时,学生已经初步理解了体积和容积的含义,掌握了长方体和正方体的体积计算方法,这些知识都是学习圆柱体积的基础,特别是长方体和正方体的体积计算公式“底面积×高”对探索圆柱的体积计算方法有正迁移作用。这就使得圆柱和圆锥的体积学习有了合适的类比对象或者说是类比的基础。
由于圆柱和长方体都是直柱体,长方体的体积可以用“底面积×高”计算,因而我们可以类比猜想圆柱的体积是否也可以用“底面积×高”计算。这是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。同样,圆柱与圆锥体积之间,我们也可做出相近的猜想。
圆柱课件 篇7
【教学内容】
《义务教育课程标准实验教科书路数学》六年级下册P10鈥?2页。
【教学目标】
1.使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征,发展学生的空间观念。
2.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。
3.通过学生自主研究,使学生掌握研究立体几何的一般方法,丰富其学习数学的积极体验。
【教学重点】
使学生掌握圆柱的基本特征
【教学难点】
圆柱的侧面与它的展开图之间的关系
【教具、学具准备】
圆柱体、硬纸、剪刀、胶带、圆规、直尺、课件、
【教学过程】
一、复习旧知,渗透学习方法。
师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方面?
生:长方体的组成,就是长方体有6个面,12条棱和8个顶点。相对的面的面积相等,相对的棱的长度相等。
师:正向大家所说,我们在认识一种几何图形时,通常研究它的两个方面:即它的组成和组成部分之间的关系。今天这节课我们就用这种方式研究一种新的立体图形。
【评析】用长正方体的学习方法来研究圆柱体,体现了研究方法的一致性,有利于学生学习能力的提高。
二、图片引入,探索圆柱的特征。
1.课件引出研究问题。
师:屏幕上的这些物体都是什么形状的?(课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等)
(课件抽出圆柱的几何模型)今天我们一起研究圆柱的认识。(板书课题)
2.结合实物,初步探索圆柱的组成。
师:研究圆柱,我们先要研究圆柱的组成,每个人都有一个圆柱形的物体,请大家用手摸一摸,看一看,援助是有哪几部分组成的?(学生独立观察、操作)
生1:圆柱有三部分组成,两个圆和一个周围的面。
生2:两个圆的面积相等,
生3:圆柱有无数条高。
师:你能给大家指一指圆柱的高在哪里吗?(学生指)
教师划一条侧面上的斜线,这是圆柱的高吗?为什么?两个底面圆心的连线是高吗?高有多少条?
师:大家的观察很仔细,确实圆柱是由三部分组成的,两个圆和一个曲面,并且两个圆的面积相等,在圆柱中,两个圆叫圆柱的底面,曲面叫做圆柱的侧面,圆柱有无数条高。(板书)
3.设置问题障碍,深化特征的研究。
师:通过刚才的研究,我们知道:圆柱是有两个完全一样的圆和一个侧面组成的,是不是任意两个完全相等的圆和一个侧面就一定能组成圆柱呢?(不是)我这里有两个大小完全相同的圆和一个侧面,他们能不能组成一个圆柱呢?(不能)
圆柱的底面和侧面之间又有什么样的关系呢?请大家以小组为单位,结合手中的学具进行研究。
汇报1:
生1:圆的大小和侧面的粗细一样。
师:大家的感觉没错。可是老师总感觉底面圆和侧面之间的关还不够具体,谁有办法能让大家很容易的看到它们之间的关系?再次进行小组合作。
汇报2:
组1:我们可以把圆柱的侧面剪开,把它展开后就变成了一个长方形。这样它们就都成了平面图形,就容易进行比较了。
师:这个小组的同学把侧面剪开变成了长方形,是沿哪里剪的?(圆柱的高)这样就把侧面这一曲面转变成了平面。板书:化曲为直
在以前的学习中,还有哪些知识也用到了这一方法?
生2:学习圆的周长时我们也是用到了这一思想。
生3:学习圆的面积时我们也是用到了这一思想,把原转化成了近似的长方形。
师:大家的想法很有创造力,那展开后的长方形和底面圆之间有什么关系?
组2:现在长方形的长等于圆柱的底面周长。
师:大家把剪开的圆柱体再围起来,验证一下这位同学的结果。(学生操作)
还有其他发现吗?
生4:长方形的宽等于圆柱的高。
师:现在谁能完整地说一说展开后的长方形和圆柱的关系?
生5:圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。
板书:
师:请同位两个用本子作学具互相说一说。
4.课件演示,建构圆柱的特征。
【评析】具有挑战性的问题情境,引导学生的思维层层推进,使学生的操作经验内化到原有的认知结构中,丰富了对圆柱特征的理解。在比较圆柱的侧面和底面圆的关系时,教师适时地启发学生联想圆的周长和面积的公式推导中所用的思想、方法,潜移默化中教会了学生解决问题的策略。
三、运用特征,解决问题。
师:刚才通过大家的努力,我们发现了圆柱的基本特征。现在每个小组都有一张长方形纸(长62.8厘米、宽31.4厘米),你能利用刚刚学到的知识做一个以这张长方形纸为侧面的圆柱吗?请大家先讨论应该怎样去做,有了想法后动手操作。(小组合作)
(交流汇报)
组1:我们组是利用长62.8厘米求出了底面圆的周长也是62.8厘米,62.8梅3.14梅2=10厘米,所以底面圆的半径是10厘米。用圆规画出了两个圆。粘起来就做成了一个圆柱。
组2:我们是把31.4厘米作为圆柱的底面周长,求出底面半径是5厘米,用圆规画出了两个圆做成了圆柱。
师:请大家把做成的圆柱举起来互相欣赏一下。虽然两个小组做成的圆柱形状不同,但他们都用到了今天所学的圆柱的基本特征:圆柱由两个完全相等的圆和一个侧面围成的,圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。大家解决问题的能力有了很大的发展,老师真为你们感到高兴。
【评析】圆柱体的制作,引导学生能用所学的知识和方法寻求解决问题的策略,既培养和发展了学生的应用意识和能力,又发展了学生的空间观念。
四、巩固练习,夯实基础。
1.下面的图形哪些是圆柱?请标注来。
2.折一折,想一想,能得到什么图形,写到括号中
【评析】有效的练习,既巩固了本节课所学习的知识,又发展了学生的空间观念。
圆柱课件 篇8
教学目标
1、理解圆柱体体积公式的推导过程,掌握计算公式。
2、会运用公式计算圆柱的体积。
教学重点
圆柱体体积的计算。
教学难点
理解圆柱体体积公式的推导过程。
教学过程
一、复习准备
(一)教师提问
1、什么叫体积?怎样求长方体的体积?
2、圆的面积公式是什么?
3、圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)
二、新授教学
(一)教学圆柱体的体积公式。(演示动画“圆柱体的体积1”)
1、教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。
2、学生利用学具操作。
3、启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。
③近似长方体的高就是圆柱的高,没有变化。
4、学生根据圆的面积公式推导过程,进行猜想。
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5、启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体。
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
6、推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由。
因为长方体的体积等于底面积乘高。(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)
(3)用字母表示圆柱的体积公式。(板书:V=Sh)
(二)教学例4。
1。出示例4
例4。一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
2。反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5。
1、出示例5
例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3.14×
=3.14×100
=314(平方厘米)
水桶的容积:
314×25
=7850(立方厘米)
=7.8(立方分米)
答:这个水桶的容积大约是7.8立方分米。
三、课堂小结
通过本节课的学习,你有什么收获?
1、圆柱体体积公式的推导方法。
2、公式的应用。
四、课堂练习
(一)填表
底面积S(平方米)
高h(米)
圆柱的体积V(立方米)
15
3
6.4
4
圆柱课件 篇9
【教学内容】:
p13-14页例3-例4,完成“做一做”及练习二的部分习题。
【教学目标】:
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
【教学重点】:
理解求表面积、侧面积的计算方法,并能正确进行计算。
【教学难点】:
能灵活运用表面积、侧面积的有关知识解决实际问题。
【教学过程】:
一、以旧引新
1.圆柱体有()个面,分别是()、()、()。
2.圆柱体上底和下底之间的距离,叫做(),有()条。
3.长方形面积=()×()
圆的周长=()c=()
圆的面积=()s=()
二、新课
1.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
①这两道题分别已知什么,求什么?
②计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3.理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①帽子的侧面积:3.14×20×28=1758.4(平方厘米)
②帽顶的面积:3.14×(20÷2)2=314(平方厘米)
③需要的面料:1758.4+314=20xx.4≈20xx(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2.练习七第6题。
【板书】:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
例4:①帽子的侧面积:3.14×20×28=1758.4(平方厘米)
②帽顶的面积:3.14×(20÷2)2=314(平方厘米)
③需要的面料:1758.4+314=20xx.4≈20xx(平方厘米)
答:需要用20xx平方厘米的面料。
圆柱课件 篇10
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。
【学生分析】
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】
1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学重点】掌握圆柱的侧面积和表面积的计算方法。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【学具准备】圆柱形纸盒。
【教学过程】
一、引入新课
1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?
2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)
3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?
4、这节课我们就一起来研究“圆柱的表面积”这个问题。
二、探究新知
1、初步感知
(1)请同学们观察圆柱,想一想什么是圆柱的表面积。
总结:圆柱所有面面积的总和就是圆柱的表面积。
(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)
(3)圆柱的表面积怎么求?(两个底面积+侧面积)
(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。
2、侧面积
(1)小组合作:
请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。
(2)学生汇报
(3)教师总结演示。
(4)推导圆柱侧面积公式
圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh
3、表面积
(1)总结表面积公式
怎么求圆柱的表面积?
圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。
(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?
侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2 )
三、巩固练习
1、现在我们自己尝试来算一算这两个圆柱的表面积。
过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。
2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?
4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?
5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?
四、总结收获
同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?
请记住同学们善意的提醒,这节课就上到这!
五、板书设计
圆柱的表面积
侧面积=底面周长×高
圆柱表面积= S侧=C×h=2πrh S表=2πrh+2πr2
底面积×2 =2πr2
”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。
【学生分析】
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】
1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学重点】掌握圆柱的侧面积和表面积的计算方法。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【学具准备】圆柱形纸盒。
【教学过程】
一、引入新课
1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?
2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)
3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?
4、这节课我们就一起来研究“圆柱的表面积”这个问题。
二、探究新知
1、初步感知
(1)请同学们观察圆柱,想一想什么是圆柱的表面积。
总结:圆柱所有面面积的总和就是圆柱的表面积。
(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)
(3)圆柱的表面积怎么求?(两个底面积+侧面积)
(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。
2、侧面积
(1)小组合作:
请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。
(2)学生汇报
(3)教师总结演示。
(4)推导圆柱侧面积公式
圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh
3、表面积
(1)总结表面积公式
怎么求圆柱的表面积?
圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。
(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?
侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2 )
三、巩固练习
1、现在我们自己尝试来算一算这两个圆柱的表面积。
过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。
2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?
4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?
5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?
四、总结收获
同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?
请记住同学们善意的提醒,这节课就上到这!
五、板书设计
圆柱的表面积
侧面积=底面周长×高
圆柱表面积= S侧=C×h=2πrh S表=2πrh+2πr2
底面积×2 =2πr2
梯形的面积课件十四篇
我们在闲暇时也会去看一些范文的,闲暇时看一些范文是对自己有好处的,通过阅读范文我们可以学会将内心情感通过文字表达。多阅读范文还能帮助我们加深阅读写作的认识,那么,一份好的优秀范文要怎么写呢?小编经过搜集和处理,为您提供梯形的面积课件十四篇,希望能为您提供更多的参考。
梯形的面积课件(篇1)
一、学情分析
学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。
因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。
二、教材分析
"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。
三、教学目标设计
1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。
2.通过动手操作使学生经历公式的推导过程,培养学生的'迁移类推能力和抽象 概括能力,将转化策略的教学融入到学生 的“拼 、剪、画、说”活动中,使学生领悟转 化思想,感受事物之间是密切联系的,使 学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析 问题和解决问题的能力,通过演示和操作,让学生在拼 剪中感受数学知识的内在美,培养团队合作意识。
四、教学重点难点
教学重点:
1.理解并掌握梯形的面积计算公式。
2.运用梯形的面积计算公式解决问题。
教学难点:
梯形面积公式的推导过程。
五、教学过程设计
(一)导课
1、我们都学过哪些图形的面积?
2 有两个小朋友因求图形的面积需要我们的帮忙。
3、梯形的面积公式是什么呢?(板书课题)
(二)新知
1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?
2、你能用我们学过的转化思想推导梯形的面积计算公式吗?
3、学生动手操作
4、学生展示自己的方法。
5、分析转化后的图形与梯形的关系,推导出梯形的面积公式。
梯形的面积=(上底+下底)×高÷2
6、用字母表示。
S = (a+b) h÷2
(三)应用知识
1、口答练习运用公式。
2、运用公式解决实际问题。(学生自己解答例3)
3、提升练习
(四)课堂总结
1、通过这节课,你有什么收获?
2、课后研究:梯形面积和三角形面积之间的关系?
梯形的面积课件(篇2)
一、说教材
1、说课内容:《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。
2、教学目标:
认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。
能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
3、教学重、难点:
重点:使学生掌握梯形面积的计算公式。
难点:理解梯形面积计算公式的推导过程。
二、说教法与学法
1、根据几何图形教学的特点,我采用了以下几点教法:
①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;
②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、通过本节课的教学,使学生掌握一些基本的学法:
①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;
②让学生学会自主发现问题,分析问题,解决问题的方法。
三、说教学过程
新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:
(一)、创设情境,引出问题。
1、课件出示“神七”发射实况
2、谈话引出课题
梯形的面积如何计算?引出学习的内容。〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉
(二)、自主探究,合作交流
1、直接切入主题:对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)
〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉
2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)
3、自主探究,合作学习
学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉
4、分小组展示汇报,教师深化点拔。
教师板演推导过程。
5、引导学生用字母表示公式:s=(a+b)×h÷2
6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)
〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉
梯形的面积课件(篇3)
一、基于课程标准
本节课的内容标准是:能利用方格纸或割补等方法探索并掌握梯形的面积计算公式。
课程标准对本节课的学段目标规定为:
1、经历探索物体与图形的位置关系,再认梯形,进一步发展空间观念。
2、能探索出解决梯形面积的有效办法。
3、体验数学与日常生活的密切相关。
二、基于教材
《梯形面积》的教学是在学生已经掌握并能灵活运用平行四边形和三角形面积计算公式以及理解梯形特征的基础上进行教学的。学好这部分内容,既发展了学生空间观念,又培养了学生运用知识解决问题的能力,为后面学习组合图形的面积打好了基础。因此我把掌握梯形面积的计算公式,并会用公式解决实际问题确定为本节课的教学重点。
本节课教材第88页,由车窗玻璃抽象出梯形,唤起学生的生活经验。接着88页中间,通过不同的剪拼的方法,自己探索出梯形的面积计算公式。教材89页的例3是对梯形面积公式的应用,结合生活实际解决问题。89页的“做一做”是求车窗玻璃的面积,和本节课的导课前后呼应,更贴近生活。
三、基于学生经验
本节课的教学对象是五年级学生,学生已经了解了梯形的特征,理解了平行四边形、三角形面积公式的推导过程,并初步感受到“转化”的数学思想。但是,本节课不仅让学生利用一种方法推导出梯形面积公式,而且还要感受梯形面积公式推导方法的多样化,这对于学生来说有一定困难,所以理解梯形面积公式推导方法的多样化就成了本节课所要突破的难点。
四、叙写学习目标
1、用推导三角形面积公式的方法,通过自主探究,能推导出梯形的面积公式,并能正确计算梯形的面积。
2、应用已有的知识经验和方法,培养解决实际问题的能力。
3、在探究新知的过程中,通过合作、观察、比较,体会转化方法的价值,发展自己的空间观念和初步的推理能力。
突出重点、突破难点的方法:
在学生的展示和教师的讲解中运用课件,把梯形面积公式的推导过程生动、形象、直观的呈现给学生,有利于学生对公式各种推导方法的理解,从而突破教学难点。
五、评价设计
本节课我采用的评价方式是交流性评价、表现性评价和应用式评价。根据确定的学习目标,力求评价的可操作性和可检测性。
针对目标1,我采用交流式评价和应用式评价,评价任务是推导梯形的面积公式和会求梯形的面积。
针对目标2,我采用交流式评价和表现式评价,评价任务是利用梯形的面积公式解决生活中的实际问题。
针对目标3,我采用交流式评价和表现式评价,评价任务是渗透转化、迁移的数学思想方法。
下面我就结合我的课堂教学实践将本课的教学媒体应用以及效果向大家做一个简要的介绍。
六、教学流程
(一)复习旧知,导入新课。
上课伊始(演示课件),我先引导学生回忆平行四边形和三角形面积公式以及它们的推导过程,使学生再次感受转化的数学思考方法,为新知学习及知识的迁移作好充分的铺垫。然后利用汽车窗户的形状抽象出梯形,导入新课。
(二)猜想验证,探究新知。
在本环节的教学中应用探究式的学习方式,先让学生大胆猜想梯形可以转化成以前我们学过的什么图形,然后再动手验证自己的猜想,最后把自己的推导方法演示给大家。学生推导的方法是具有局限性,这时教师用课件将多样化的推导方法演示出来:用两个完全一样的梯形拼成一个平行四边形,这是大部分同学都用到的方法,课件的演示使学生直观的看到平行四边形面积等于两个梯形的面积,平行四边形的底就是梯形的上底加下底,高就是梯形的高,因此就推导出了梯形的面积计算公式。还有一些方法在课堂上出现的较少,用一个梯形通过剪拼的方法,把梯形转化成三角形,这个三角形的面积就等于梯形的面积;还可以先找到两腰的中点,连一条线,沿线剪开,通过翻转,把它转化成平行四边形等等。课件图文并茂的演示,使学生清楚的看到转化后的图形和梯形之间的关系,弥补了学具展示不够规范、清楚的不足;避免了讲解抽象,学生难以形成清晰、完整表象的弊端。从而拓展了学生的思路,激发了学习兴趣,也突破了本节课的教学难点。
(三)应用公式,巩固新知。
习题分为三个层次,一是基础练习,利用公式直接求出梯形的面积。二是利用所学公式解决实际问题,求水渠、河坝的横截面积,机翼的面积,圆木总根数,这些习题离学生的生活较远,课件真实的再现生活情景,从而帮助学生弄懂了题意。三是拓展练习,寻找合适的条件,求出图形中梯形的面积。
梯形的面积课件(篇4)
教学目标
重点:
难点:※知识与技能
过程与方法
情感态度与价值观
使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积.
※培养学生运用数学知识解决生活中问题的能力.
教具,学具
电脑,课件
课件
梯形面积的计算练习
设计思路
一,复习有关知识,做到有的放失.
二,通过基本练习,让学生进一步熟悉公式,明白求面积必须要知道的量是哪些拼成的平行四边形和原来梯形的关系.
三,进行提高练习,结合练习四第2题,让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.第3题通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.第5题要注意两个问题:1,统一面积单位;2,讲清楚数量关系.第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.
三,针对学生在学习过程中出现的问题适当的进行补充和强化.
教学过程
自我设计
一,复习梯形面积的计算公式.
二,基本练习:
1,求下面梯形的面积:
上底2米下底3米高5米
上底4分米下底5分米高2分米
2,填空:
两个完全一样的梯形可以拼成一个()形,这个拼成的图形的底等于梯形的()与()的和,高等于梯形的(),每个梯形的面积等于拼成的平行四边形面积的().
3,梯形的上底是a,下底是b,高是c,则它的面积=()
4,一个梯形上底与下底的和是15米,高是4米,面积是()平方米.
5,一个梯形的面积是8平方厘米,如果它的上底,下底和高各扩大2倍,它的面积是()平方厘米.
6,判断:
1)梯形的面积等于平行四边形的面积的一半.()
2)两个完全相同的直角梯形,可以拼成一个长方形.()
3)一个上底是5厘米,下底是8厘米,高是3厘米的梯形,它的面积是12平方厘米.()
三,提高练习:
1,练习四第1题.用两个完全一样的梯形拼成一个平行四边形,已知每个梯形的面积是24平方分米,拼成的平行四边形的面积是多少平方分米
2,第2题让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的.
3,第3题右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.
4,第5题要注意两个问题:1,统一面积单位;2,讲清楚数量关系.
5,第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.
课后反思
通过基本练习,让学生进一步熟悉公式,明白求面积必须要知道的量是哪些拼成的平行四边形和原来梯形的关系.进行提高练习,结合练习四第2题,让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.第3题通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.第5题要注意两个问题:1,统一面积单位;2,讲清楚数量关系.第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.
梯形的面积课件(篇5)
“梯形面积的计算”说课稿
各位老师大家好,我今天的说课题目是“梯形面积的计算”,下面我将从说
教材、说教学目标、说教学重难点、说教学方法、说教学过程、说板书设计、说作业布置这七个方面展开我今天的说课。
一、说教材
“梯形面积计算”是苏教版九年义务教育六年制小学数学第九册第二单元多边形面积计算中的一部分内容,梯形的面积计算是小学数学图形与几何知识领域的一个重要内容,本节课的教学是在掌握平行四边形的面积的基础上进行教学的。学生已经熟练地掌握平行四边形的面积计算方法,知道两个完全相同的三角形可以拼成一个平行四边形,将三角形的面积转化为一个等底等高的平行四边形的面积来进行计算。利用孩子已有的知识经验,应用转化的策略,将梯形转化为一个平行四边形,从而推导出它的面积计算公式,计算的它的面积。教学中向学生渗透了迁移类推的数学思想和转化策略,提高他们的动手操作能力、创新能力和思维空间能力。为学生将要理解和掌握新知识奠定基础。
二、说教学目标
基于对苏教版以上教材的分析,根据新课标的理念和中年级学生的年龄特点、认知规律,特拟定如下教学目标:
(1)知识与技能:通过本节课的学习,使孩子能够理解梯形面积计算公式的推导过程,掌握梯形面积的计算方法;使孩子能够熟练地应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;
(2)过程与方法:在公式的推导活动中,培养学生的推理能力、分析能力和实践能力。(3)情感态度价值观:在学习活动中,让学生体会数学与生活的密切联系,形成合作交往意识;感受数学在自己身边,激发学习兴趣;发展数学素养。
三、说教学重难点
本课的教学重点:梯形面积算公式的推导过程;应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;
教学难点:理解在计算梯形面积时,为什么要“除以2”
四、说教学方法
(一)教法
根据本课教学内容的特点和学生的思维特点,我选择了直观演示法、引导发现法等方法进行教学,应用演绎推理。充分发挥老师的主导作用,调动学生的能动性,引导他们去发现 问题、分析问题、解决问题、获取知识,从而训练思维、培养能力。
直观演示法:让孩子在教具中直观地表示出拼成的平行四边形与梯形的关系; 运用演绎推理:探讨出拼成的平行四边形与梯形的关系后,运用演绎推理,实行归纳概括,获得结论。组织变式,有层次练习,增加体验,应用知识解决问题。
(二)学法
教学时,我发挥学生的主体作用,充分调动学生的各种感官参与学习,诱发其内在的学习需要和学习潜力,独立主动地探究知识,使他们不仅学会,而且会学。把学生的求知欲由潜在状态诱发为活动状态,借以培养学生主动探索的精神。在此基础上,通过学生的观察、比较、分析,培养学生的演绎推理能力。
小组合作、活动探究法:引导学生动手操作用同样的梯形去拼平行四边形,合作交流,相互启发。
采用小组讨论、同桌交流等方法各抒己见,让每一位学生都有展示自己的机会,以学生为中心,努力为学生营造一个轻松、愉快的课堂学习氛围。
五、说教学过程
为了有效地达成以上教学目标,突破重点与难点,体现新课标倡导自主学习方式,我设计以下六个环节来组织学生开展探究活动。
(一)巩固复习,导入新课
复习求平行四边形和三角形的面积。要求学生回忆平行四边形形面积计算公式的推导过程。通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。(复习梯形的特征。拿出梯形的图形,回忆梯形的特征(上底,下底,高,面积)
给出一般梯形(上底,下底,高)。老师提出疑问:你们如何去求梯形面积。学生用自己的模型拼图,小组讨论学习。(引起学生求知欲,激发学生探索,自主学习)
(二)动手操作,探究新知
在学生说出三角形、平行四边形的推导过程的基础上,安排学生进行小组讨论、交流,让学生从中感悟到用转化的方法可以解决新问题,从而对学生的学法做了有力地指导,使学生更好地自启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望。
为贯彻“学习是学习者主体主动建构的过程”这一理念,在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。自主探究学习,出示例题,引导学生动手操作,在拼拼剪剪中实现转换,使学生感受两个完全 一样的梯形都可以拼成一个平行四边形,同时并叙述梯形与转化后图形之间的关系、探究、讨论,用拼图的方法,推导梯形面积的计算公式。让学生在小组间相互交流,展示不同的思考方法。学生汇报时要充分肯定他们的推理与计算。
平行四边形的底=梯形的上底+下底
平行四边形的高=梯形的 高
(学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展。在这的同时借助多媒体的演示课件,和教师准备的教具动手操作,帮助学生理解图形的转化,数形结合,使抽象的知识变得直观形象,给学生一个创新的空间。)
(三)推导公式,字母表示
学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,这时就要我们教师点拨。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,结合板书与平行四边形的面积计算方法,应用演绎推理,师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。孩子理解了梯形的面积计算公式,就让他说一说,既是巩固新知,又在帮助孩子深化理解。
师生共同总结梯形面积的计算公式:梯形面积=(上底+下底)×高÷2 字母表示:S=(a+b)h÷2(通过拼组活动,培养学生的动手操作能力,合作意识,及归纳总结能力。)
(四)、公式应用、强化练习
练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下两个层次的练习: 1.巩固练习(直接用公式求面积):
书第20页,练一练1、2、3 2.发展与综合性练习
书第21页,练习四4、5、6(学生尝试解答,充分认识梯型与平行四边形的面积关系,通过多方面练习让学生掌公式、运用公式,提高学生运用公式解决问题的能力)
(五)、小结 今天我们学习了梯形面积的计算,回想一下,这节课学了什么?我们是如何推导出它的面积计算公式的?想一想,通过剪、拼能把一个梯形转化成平行四边形吗? 要计算梯形的面积,必须要知道几个条件?还要注意什么?为什么?(通过结课让学生对整节课内容进行回顾,形成知识整合)
(六)、布置作业,课外延伸
1.书P21第1、2、3 2.一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米.它的横截面的面积是多少平方米?
3.一块梯形地,上底是30米,下底减少10米变成一个平行四边形,它的面积就是1500平方米,原来梯形的面积是多少?
六、说板书设计
在教学的过程中逐步形成,这样的设计体现了教学内容的系统性和完整性,又做到了重点突出,板书的结构便于演绎推理得出计算公式。
梯形面积的计算
平行四边形的底=梯形的平行四边形的高=梯形的 梯形面积=(上底+下底)×高÷2 字母表示:S=(a+b)h÷2
七、说作业布置
在本课的学习中,我紧扣生活实际,从学生已有的知识基础出发,让学生感受到学习的现实意义,有效开展探究活动,引导学生主动沟通已有知识内在联系,帮助学生更好地掌握知识,形成技能,培养素质。因而在作业布置这一块安排了书中的基础题,以巩固基础知识,同时设计了两道与生活有关的题目,将课堂上所学的知识真正运用到生活中。
梯形的面积课件(篇6)
1、导入新课
(1)投影出示一个三角形,提问:
我们之前学过了一些图形之间的面积计算都有一些联系,比如三角形?哪位同学来说看看。学生回答后,指名学生操作演示转化的方法。然后概括:
a、三角形面积是和它同底等高的平行四边形面积的一半
b、两个完全一样(两个同底等高)的三角形可以拼成一个平行四边形。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
2.猜想:
(1)请你猜一猜, 这梯形的面积可能与它的哪部分有关系?(梯形的面积与它的上底、下底和高有关系)
这里可以根据学生的回答,命名如:如XXX猜想。(提高学生的学习积极性)
(2)怎样找到梯形的面积与它各部分的关系,推导出梯形的面积公式? 教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2、新课展开
第一层次,推导公式
一、引导学生得出梯形面积和其他图形面积的关系
(1)之前我们通过拼两个完全相同的三角形,得出了三角形和平行四边形的面积关系。
(2)那么现在我们能不能也利用我们手中的这2个完全相同的梯形,来拼看看,是否会拼出我们会算的图形。
(3)学生拼组梯形活动(约3分钟)
二、让学生上台展示。同时老师将准备好的相应类型的梯形按照学生所说贴在黑板上。
三、有以下几种情况(在后面标注 “能计算”和“暂不能计算”)
四、在“能计算”的图形组合中,你发现
(1)2个梯形组成了一个什么图形?
(2)这种图形的面积怎么计算?
让学生思考并回答
(1)2个梯形组成了一个平行四边形
(2)面积是平行四边形的一半
五、(1)标出梯形的“上底”“下底”和“高”
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2--为什么要除以2 ?
③字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习习近平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
A、把一个梯形剪成两个三角形(见下左图)。
推导:
梯形的面积=三角形1的面积+三角形2的面积
=梯形上底×高÷2+梯形下底×高÷2
=(梯形上底+梯形下底)×高÷2
b、把一个梯形剪成一个平行四边形和一个三角形。
推导:
梯形的面积=平行四边形面积+三角形面积
=平行四边形的底×高+三角形的底×高÷2
=(平行四边形的底+三角形的底÷2)×高
=(平行四边形的底+三角形的底÷2)×高×2÷2
=(平行四边形的底×2+三角形的底÷2×2)×高÷2
=(平行四边形的底+平行四边形的底+三角形的底)×高÷2
因为
梯形的上底=平行四边形的底
梯形的下底=平行四边形的底+三角形的底
所以梯形的面积=(上底+下底)×高÷2
C、从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形。
推导过程:
平行四边形的底等于(梯形的上底+梯形的下底)
平行四边形的高等于梯形的高÷2
梯形的面积等于拼成的平行四边形的面积
所以
梯形的面积=(上底 +下底)×高÷2
(以上的3种方式在教学中根据学生的接受水平适当展开,但只要点到为止)
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3、全课小结。
1、这节课同学们有什么收获
2、这节课同学们有收获,老师也有收获,你们能通过自己的操作推导出梯形的面积,老师看到你们获得了新知,老师心里就获得了快乐。
4、布置作业:
课堂作业本一页。
练习本:P90的第3题
操作题;P91页的第7题
板书设计:
梯形面积的计算
平行四边形的面积
= 底×高
梯形的面积=(上底+下底)×高÷2--为什么要除以2 ?
S
=(a +
b)
h ÷ 2
梯形的面积课件(篇7)
梯形的面积教学设计
教学内容:教科书第88-90页。
教学目标:
1、在实际情境中,认识计算梯形面积计算的必要性。在自主探索活动中,经历推导梯形面积公式的过程。
2、能应用梯形的面积计算公式,解决相应的实际问题。
3、让学生感受到我们可以应用学过的数学知识来解决问题,体验生活中处处有数学。
教学重点:
在实际情境中,认识计算梯形面积计算的必要性。在自主探索活动中,经历推导梯形面积公式的过程。
教学难点:
能应用梯形的面积计算公式,解决相应的实际问题。
教具准备: 梯形图形。
教学过程
一、复习
师:前面我们学过了长方形、正方形、平行四边形、三角形的面积计算,我们是怎样找到平行四边形和三角形面积公式的?(课件指引学生回想)
(出示梯形的车窗玻璃)我们要推导梯形的面积计算公式,该怎么办呢?
(把梯形转化成我们学过的图形。)
二、探索梯形的面积计算公式。
师:怎样把梯形转化成我们学过的图形呢?请同学们先以小组为单位,在小组里动脑筋、想办法,看看哪个小组的同学能最先想到办法。
1、学生小组合作、交流。
请小组代表发言。
2、、归纳出梯形面积计算的方法。
方法一:把两个完全一样的梯形拼成一个平行四边形。
思考:拼成后的平行四边形跟原来的梯形之间有什么关系?
师:通过比较,你们能不能得出梯形的面积计算公式呢?
方法二:可以把梯形分解成一个平行四边形和一个三角形。
如果这样分解,可以怎样算出梯形的面积?
方法三:把梯形分解成两个三角形。
师:这样分解可以怎样算出梯形的面积?
方法四:把梯形剪拼成一个三角形。师:用这种方法应该想一想从哪开始剪哟!
各小组独立思考后,动手操作,整理推导梯形面积公式。
3、各小组完成后派代表把推导梯形面积公式的过程写在本组的小黑板上。
4、全班交流各组的推导过程。
5、总结公式:
梯形的面积=(上底+下底)×高÷2 用字母表示梯形的面积公式: S=(a+b)×h÷2
三、应用知识,解决问题。
1、学习例3:(课件出示)
学生独立尝试完成。
师对学习有困难的学生给予个别辅导。
请两位同学板演,再全班订正。
2、练习:
(1)学生独立完成“做一做”
(2)课件 出示2个不同的梯形计算面积。
四、拓展练习。(课件出示题)
五、小结:
师:通过这节课的学习,你们有什么收获?
六、作业设计。
书P90第1、2、3、4,做在作业本上。
梯形的面积课件(篇8)
一、说教材
1、说课内容:《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。
2、教学目标:
认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。
能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
3、教学重、难点:
重点:使学生掌握梯形面积的计算公式。
难点:理解梯形面积计算公式的推导过程。
二、说教法与学法
1、根据几何图形教学的特点,我采用了以下几点教法:
①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;
②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、通过本节课的教学,使学生掌握一些基本的学法:
①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;
②让学生学会自主发现问题,分析问题,解决问题的方法。
三、说教学过程
新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:
(一)、创设情境,引出问题。
1、课件出示“神七”发射实况
2、谈话引出课题
梯形的面积如何计算?引出学习的内容。〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉
(二)、自主探究,合作交流
1、直接切入主题:对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)
〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉
2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)
3、自主探究,合作学习
学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉
4、分小组展示汇报,教师深化点拔。
教师板演推导过程。
5、引导学生用字母表示公式:s=(a+b)×h÷2
6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)
〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉
(三)、学以致用,解决问题
1、学习例3
(1)、借助教具演示,理解“横截面”的含义。
(2)、弄清渠口、渠底、渠深各是梯形的什么?
(3)、学生尝试计算横截面积。
〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉
(四)、应用深化,巩固练习:
1、做一做:请两名学生板演。
2、课件出示练习题。
(通过练习,加深学生对知识的理解,掌握数学知识,形成技能,提高学生应用所学知识解决实际问题的能力和创新能力。)
(五)、总结,反思体验
回想这节课所学,说说自己有哪些收获?学生谈收获,谈学习方法,教师小结强调梯形面积公式的推导过程。
四、板书设计
板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。
梯形的面积课件(篇9)
练习要求:使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。
练习重点:应用所学的知识解决一些实际问题。
练习过程:
一、基本练习
1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。
7.20.122.40.30.212.65
0.3810000.82526.1-3.5-7.5
3.8+2.5+6.2102.54.80.2+5.20.2
2.看图思考并回答。
(1)怎样计算梯形的面积?
(2)梯形面积的计算公式是怎样推导出来的?
(3)右图所示梯形的面积是多少?
二、指导练习
1.练习十八第6题,名数的改写。
(1)名数的改写方法是什么?根据学生的回答板书:
除以它们之间的进率
低级单位高级单位
乘它们之间的进率
(2)根据改写的方法将第6题的结果填在课本上。
3.6公顷=()平方米1200平方米=()公顷
4平方千米=()公顷52公顷=()平方千米
160平方厘米=()平方分米=()平方米
0.25平方米=()平方分米=()平方厘米
(3)集体订正时让学生讲一讲自己的想法。
2.练习十八第8题:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?
(1)生独立审题,分小组讨论解法。
(2)选代表列出解答算式,不计算。
(3)由学生讲所列算式的想法,
(4)指导学生讲(100+48)250为什么不除以2?
(5)学生计算出它的面积,集体订正。
三、课堂练习
1.练习十九第7题:根据表中所给的数值算出每种渠道横截面的面积。
渠口宽(米)
3.1
1.8
2.0
2.0
渠底宽(米)
1.5
1.2
1.0
0.8
渠深(米)
0.8
0.8
0.5
0.6
横截面面积(平方米)
生独立解答出结果并填在课本上,集体订正。
2.练习十八第10题:一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?
四、作业
练习十九第9题。
梯形的面积课件(篇10)
瓦窑镇双庙小学公开课教案
执教者:
执教班级:
执教时间: 学
科:
教学内容:梯形面积计算 教学目标:
1.使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。
2.使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。教学重点:理解并掌握梯形面积的计算公式。
教学难点:理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。教学过程:
一、复习导入:
⒈回顾三角形面积公式的推导过程
⒉导入:今天我们继续运用这种方法来研究梯形面积的计算。(板书课题:梯形面积的计算)
二、自主学习,合作探究:
1、教学例6:
你想怎么做?与同学交流。学生上台介绍自己的想法。
2、教学例7:(1)出示例7:
师:用117页中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。(2)测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。师:如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关系?
学生独立思考,全班汇报结果。
得出以下结论:这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一个平行四边形。
这个平行四边形的底等于 梯形的上底 +下底 这个平行四边形的高等于 梯形的高
因为每个梯形的面积等于拼成的平行四边形面积的 一半 所以梯形的面积 =(上底 + 下底)×高÷2(3)如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高。尝试用公式表示。(学生独立尝试,指名板演:字母公式:s=(a+b)×h÷2,教师再次强调公式中的“÷2”,这儿的“÷2”能少吗?为什么?
3.完成15页“试一试 ”。
学生独立完成,再交流思考过程与计算结果。
三、巩固练习
⒈完成P15练一练 第1题
学生独立完成后,同桌交流,再集体评析,加深理解。⒉完成P18页练习三 第1、2题:
⑴提问:你能准确说出每个图形的上底、下底和高吗? ⑵再计算它们的面积。⒊完成练习三 第3题
结合题意,使学生先读懂题目,并理解“横截面”的含义: ⑴说一说,你是怎样理解“横截面”的?
⑵指一指,图中的物体的“横截面”具体在哪里? ⑶再应用公式进行计算。
四、小结反思:
今天我们学习了梯形面积的计算,回想一下,我们是如何推导出它的面积计算公式的?想一想,通过剪、拼能把一个梯形转化成平行四边形吗?有兴趣的同学可以课后去试一试。
教师公开课教案
新沂市瓦窑镇双庙小学
2015——2016学年度第一学期
梯形的面积课件(篇11)
《梯形面积的计算》是人教版数学第九册内容。听过学区本节公开课,确有可借鉴之处,同时也存在一些问题,值得深思。
教学成功之处主要体现在以下几点:
一、首尾照应实现数学价值。
由实际事件帮工人师傅计算花坛面积引出探究主题梯形面积的计算,得出结论后,运用公式解决这一实践问题。教师创造性使用教材,改变例题为学生身边常见事物,始终将数学置于生活背景之中,充分体现数学来源于生活,回归于生活的理念,实现数学的应用价值。
二、转化推理蕴涵思想方法。
梯形面积的计算是在平行四边形、三角形面积计算的学习基础之上提出的。教师首先请学生回忆了三角形面积的推导方法,使学生意识到梯形也可与学过的其他图形产生联系,从而计算出面积。让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想,也落实了数学要在学生已有的知识背景下学习这一教学理念。
三、合作探究促进创造思维。
在学生独立思考、自主探索的基础上组织合作交流是本节课的重点环节。苏霍姆林斯基说过:在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。面对同样的问题,学生会出现不同的思维方式。利用梯形与其他图形的联系求梯形面积,学生有着不同的做法:有的利用等腰梯形、有的利用直角梯形、有的利用普通梯形,有的拼成了长方形,有的拼成普通的平行四边形;有的把梯形分割为平行四边形与三角形自由的探讨交流带来的是思维的充分扩展,是质的飞跃。在独立思考的基础上进行合作交流,能满足学生展示自我的心理需要;通过师生互动、生生互动,促使学生从不同角度去思考问题,对自己和他人的观点进行反思与批判,在各种观点相互碰撞的过程中迸发创造性思维的火花。
考问教学细节,又发现一些问题:
镜头一:利用公式求梯形面积的练习中,一同学列式为(3.5+2)82,而原图中,3.5为下底,2为上底。教师强调:这样做不对,应为上底加下底,也就是(2+3.5)。
上底加下底与下底加上底,对于求梯形面积而言,究竟有何区别呢?教师本不宜如此循规蹈矩、照本宣科。倘若该同学反问:把这个梯形倒过来,面积是不变的。那么我的算式是否正确?教师该如何应答?可惜,没有一个同学提出质疑。教师强依公式而下的结论显然并不合适,为什么却无人指出?公式是不可不依的、老师的结论是不可推翻的一言堂教学的印痕桎梏着师生的思维,使探究有时不免流于形式。对学习而言,这是可怕的。学起于思,思起于疑。学贵有疑,疑则进也。要真正发挥学生的主体作用,必须鼓励学生善疑、敢疑。当然,这需要教师的能力与勇气自我质疑的能力、承认错误的勇气。
镜头二:学生在练习本上完成了习题,在教师示意下走上讲台,利用投影把答案展示给大家。第一次展示,同学们趣味盎然;二次、三次过后,变得兴味索然。几声简单的对、同意,使课堂气氛趋于沉闷。
作为教学辅助手段,多媒体愈来愈受到师生青睐。但是,多媒体的运用必须把握好度。不是所有环节都适合使用多媒体,不是任何步骤的实施都需要多媒体。学生练习的是几道非常简单的基础性题目,正确率相当高,教师巡视时也能发现这点,那么,以口答的形式订正不仅简单明了,更节省了宝贵的课堂时间。对于稍有难度的题目,则可以利用多媒体展示的方式,组织学生进行短时间交流,使学生知其然亦知其所以然,而不是简单地回答对或者错。
梯形的面积课件(篇12)
教学内容:混合练习(课本第84-85页,练习十九第11-18题)
教学目标:⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。
⒉在复习与梳理中学会联系,进而提高综合分析解题能力。
教学过程:
一、复习梳理
⒈公式的复习
我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?
师生共同进行:边回顾、边画图、边讨论;
⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。
二、练习巩固
⒈独立完成练习十九的第12题--看谁正确率最高!
要求:开列已知条件;写出相应的面积公式;列式解答。
⒉完成第14题
先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。
⒊完成第13和15题
在求得面积之后,怎样选择算法求解。
三、综合提高:
讨论:
⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?
⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?
⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?
四、总结:
多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要2。
五、板书设计:
梯形面积的计算
六、教后感:
步测和目测教材87页练习二十4---7第课时总第课时
教学目标:了解步测和目测的意义以及方法。
教学重点:了解步测和目测的方法
教具学具:标杆
一、谈话
上节课学习了怎样用工具测定直线和测量距离。在实际生活中,有时没有测量工具或对测量结果要求不十分精确时,可以用步测或目测。今天我们就来学习怎样进行步测和目测。
二、在室内教学步测
1、步测就是人走步,然后通过所走的步数计算一段距离的长度的方法。实际上是以步代替工具进行测量。
2、测定走一步的长度
步测时,首先要知道自己走一步是多少。通常先量出几十米的距离,再用均匀的步子沿直线在这里走三、四次,记好每一次的步数,然后算出平均走几步,再算走一步的平均长度。
87页例1,先读题,再问:这道题先算什么?
求出平均步数后再求什么?
学生口头列式,师板书。
3、平测两地间的距离
知道了自己走一步的平均长度,再测出以一个地方到另一个地方所走的不数,你能算出两地间的距离吗?
88页例2
步测两点间的距离,首先要测自己一步的平均长度,再测出走两点间的步数就能计算两点间的距离。
三、室内教学目测
1、测一段距离,除了用工具测量或步测外,还可以用目测。目测是用眼睛估量一段距离,在没有测量工具和要求测量结果不很精确时使用,还有些特殊情况,如士兵射击和投弹时也常用。
2、用目测需要经常练习,积累一定经验后再进行目测较准确。(阅读88页中一段话)
看88页的图,这是一幅实物参照图,图上给出的是相隔200米,500--600米,700--800米处人的大小轮廓。一般讲,距二百米能看清人的脸,距五、六百米能看清轮廓,在距七、八百米只能看出是人但轮廓已不很清楚。
四、室外实地步测
课前在30米的两端放两块砖。
学生用步测的方法先测出每一步的长度,再步测出另两个砖块(45米)的距离。
五、室外实地目测
练习:师课前准备好练习设备,让几个同样身高的学生站在标杆处,让其余学生观测,再换个方向练习目测,看谁的结果接近实际距离。
(误差:10%内很好,20%内较好,30%内较差)
六、巩固
89页6、7
分组练习
七、作业
89页(4、5)
板书设计:
步测和目测
教后感:
梯形的面积课件(篇13)
教学内容:梯形面积计算的应用(第81页的例题,练习十九第5-10题)
教学目标:进一步熟练掌握梯形的面积计算公式,并能正确解答有关的实际应用问题。
教具准备;沟渠的实物模型
教学过程:
一、复习
⒈梯形的面积计算公式是什么?它为什么与三角形的面积公式类似,也要2?
⒉面积常用的计量单位有哪些?相邻两个面积单位之间的进率是多少?
填写课本第84页第6题。
⒊口答:
⑴求梯形的面积。
①a=3b=6h=4②a=9b=10h=0.4
⑵求三角形的面积。
①a=2.1h=5②a=49h=10
⑶求平行四边形的面积。
①a=5h=8②a=49h=10
二、新授
⒈例题教学:
一条新挖的渠道,横截面是梯形。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?
⑴出示渠道实物模型,帮助学生理解;渠道横截面面积就是梯形的面积,渠口宽就是梯形的上底,渠底宽就是梯形的下底,渠深就是梯形的高。
⑵学生独立完成例题,教师巡视、指导。
⑶指名板演,再评讲。
(2.8+1.4)1.22
=4.21.22=2.52(平方米)
⒉学生质疑。
三、巩固练习
⒈完成练习十九第7题,先计算,再填表。
⒉完成练习十九第8、9、10题。
教师讲评并作全课总结。
四、板书设计:
梯形面积的计算
五、教后感:
梯形的面积课件(篇14)
教学内容:教科书第88-90页。
教学目标:
1、在实际情境中,认识计算梯形面积计算的必要性。在自主探索活动中,经历推导梯形面积公式的过程。
2、能应用梯形的面积计算公式,解决相应的实际问题。
3、让学生感受到我们可以应用学过的数学知识来解决问题,体验生活中处处有数学。
教学重点:
在实际情境中,认识计算梯形面积计算的必要性。在自主探索活动中,经历推导梯形面积公式的过程。
教学难点:
能应用梯形的面积计算公式,解决相应的实际问题。
教具准备: 梯形图形。
教学过程
一、复习
师:前面我们学过了长方形、正方形、平行四边形、三角形的面积计算,我们是怎样找到平行四边形和三角形面积公式的?(课件指引学生回想)
(出示梯形的车窗玻璃)我们要推导梯形的面积计算公式,该怎么办呢?
(把梯形转化成我们学过的图形。)
二、探索梯形的面积计算公式。
师:怎样把梯形转化成我们学过的图形呢?请同学们先以小组为单位,在小组里动脑筋、想办法,看看哪个小组的同学能最先想到办法。
1、学生小组合作、交流。
请小组代表发言。
2、、归纳出梯形面积计算的方法。
方法一:把两个完全一样的梯形拼成一个平行四边形。
思考:拼成后的平行四边形跟原来的梯形之间有什么关系?
师:通过比较,你们能不能得出梯形的面积计算公式呢?
方法二:可以把梯形分解成一个平行四边形和一个三角形。
如果这样分解,可以怎样算出梯形的面积?
方法三:把梯形分解成两个三角形。
师:这样分解可以怎样算出梯形的面积?
方法四:把梯形剪拼成一个三角形。师:用这种方法应该想一想从哪开始剪哟!
各小组独立思考后,动手操作,整理推导梯形面积公式。
3、各小组完成后派代表把推导梯形面积公式的过程写在本组的小黑板上。
4、全班交流各组的推导过程。
5、总结公式:
梯形的面积=(上底+下底)×高÷2 用字母表示梯形的面积公式: S=(a+b)×h÷2
三、应用知识,解决问题。
1、学习例3:(课件出示)
学生独立尝试完成。
师对学习有困难的学生给予个别辅导。
请两位同学板演,再全班订正。
2、练习:
(1)学生独立完成“做一做”
(2)课件 出示2个不同的梯形计算面积。
四、拓展练习。(课件出示题)
五、小结:
师:通过这节课的学习,你们有什么收获?
六、作业设计。
书P90第1、2、3、4,做在作业本上。